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Higher-harmonic production in a model atom with short-range potential
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Production of higher harmonics in a model atom described by a three-dimensional &function
potential in the presence of a monochromatic linearly polarized field is investigated. The rates for
production of the individual harmonics can be expressed as one-dimensional integrals. The only

property of the atom that enters the model is its ionization energy. The results are in qualitative

agreement with many of the data. In particular, the model exhibits a "rising plateau. "

Interest in multiphoton-ionization of atoms has risen
considerably with the observation of above-threshold ion-
ization, ' the first phenomenon in the history of the field
that is not explained by lowest-order perturbation theory.
A closely related process is the emission of higher har-
monics of the incident laser light by the irradiated atoms.
A number of experimental studies has shown 2 rather copi-
ous production of surprisingly high harmonics. The in-
terest in these harmonics rose considerably when it turned
out 3 ' that the intensity of the harmonics did not, as anti-
cipated, more or less continuously decrease with increas-
ing harmonic number. Rather, after an initial, rapid de-
crease the harmonic intensities establish a "plateau" re-
gion of fairly constant intensities. Finally, the plateau has
a quite well-defined rim from where on the harmonic in-
tensities decrease quickly. The most recent and extensive
measurements on xenon, argon, krypton, and neon for in-
tensities of a few times 10'3 W/cm at a wavelength of
1064 nm are reported in Ref. 5.

A theoretical description of the observed production of
higher harmonics is much more complicated than a theory
of above-threshold ionization. The latter experiments
could be performed at low pressure such that collective
effects could essentially be ruled out. In contrast, produc-
tion of higher harmonics requires comparatively high
pressures. As a consequence, the atoms no longer emit (or
absorb) independently. Maximum net emission of the en-
tire gas sample in a given direction requires "phase match-
ing" which, in a possibly complicated way, depends on
details of the atom, the laser pulse, and the gas jet. Phase
matching becomes less effective for increasing harmonic
number. It has been estimated that (in the case of a gas
jet with Lorentzian shape) the phase-matching factor de-
creases by almost 5 orders of magnitude from the 5th to
the 31st harmonic. This would imply that the response of
the individual atom has to increase by a corresponding
factor in order to yield the observed plateau in the collec-
tive response. It is not quite clear, however, in how far
the phase-matching results, which assume comparatively
weak fields, apply to the current experiments.

In view of these difficulties, previous work has concen-
trated on harmonic emission by a single atom, using
lowest-order perturbation theory, ' essential-state mod-
els, " one-dimensional computer simulations of model
atoms, ' as well as a fairly realistic Xe atom. ' There is

A(t) acos(tat)x. (2)

Any quasienergy solution of the Schrodinger equation
satisfies

9'(r, t) - d r'dt'G ( (rt, r't') V(r')+(r't'), (3)

where G (rt, r't') denotes the propagator of a free parti-
cle in the presence of the field (2). Following Refs.
17-19, we notice that, owing to the &function potential
(1), Eq. (3) allows for the computation of the wave func-
tion @(r,t), provided it is known at the origin. We are in-
terested in the quasienergy solution +u(r, t) which devel-
ops out of the ground state when the field is turned on.
One can easily convince oneself that near the origin this
wave function diA'ers from the wave function in the ab-

also an analytically solvable model where the external
field couples to the Lenz vector rather than the position
vector. ' References 9, 10, 12, and 13 show clear evidence
of a plateau region. More and more sophisticated com-
puter simulations of realistic atoms including the collec-
tive aspects are under way. '5

In this paper, we will consider one of the simplest con-
ceivable models: one three-dimensional b-function poten-
tial with a regularizing factor. '6 The limitation to one
"atom" prevents direct comparison of the results with the
experiments. The oversimplification of our atom, howev-
er, should give insight into whether the production of very
high harmonics and the existence of the plateau is a gen-
eral intense-field effect or a property dependent on the
more subtle features of the atom.

Our model potential is

V(r) b(r) r,2x a
xm 8r

where the regularizing factor (8/Br)r acts on the ensuing
wave function. The potential supports exactly one bound
state with binding energy ~ Eo( x /2m and wave func-
tion exp( —xr)/r. In the presence of a monochromatic
field with circular or general elliptic polarization quasien-
ergy wave functions have been found in (not entirely, but
largely) analytic form. ' ' In order to generate harmon-
ics in the context of the dipole approximation, we will con-
sider a linearly polarized monochromatic field with the
vector potential
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sence of the field only by a time-dependent factor u(t),
V1Z. 7 -10 Ar

e'p(r, t) —[(1/r) —x]u(t) . (4)

Using Eq. (4) in Eq. (3), one can carry out the integration
over r'. In the limit r 0, one then obtains an integral
equation for u(t). The ansatz

+

C)
bo0

C3

C3

u(t) -e 'e'w(t), w(t) - g a„e"" ', (5)

2xQ
V

i/2

d rdte'"'%p(r, t) er s%'o(r, t), (6)

where V is a normalization volume. We notice that this is
essentially the Fourier transform of the ground-state ex-
pectation value of the dipole moment as calculated in
Refs. 15 and 16. As we already did for the description of
the laser field, here we adopted the dipole approximation
for the emitted photon, too.

All of the integrations indicated in Eqs. (3) and (6) can
be carried out analytically up to one final integration
which is left for numerical evaluation. The result for the
matrix element M will display a sequence of odd harmon-
ics which formally originate from two different sources:
Both the Volkov propagator G~ei and the periodic func-
tion w(t) [Eq. (5)] have higher-harmonic frequencies in

I

with periodic w(t), viz. , w(t) w(t+tr/to), determines
both the quasienergy E and the function w(t), i.e., the
Fourier coefficients a„. A priori, the quasienergy is only
specified modulo multiples of hco. We have to select that
particular branch E —

I Ep I +6 —
& iT, where d and I

tend to zero when the field is turned off. The real part 6 is
the small Stark shift of the ground state while I is the to-
tal ionization rate per time. The quasienergy approach
only makes sense when both quantities are very small
comparedwith IEpI.

If the quasienergy E and the Fourier coefficients a„are
known, the wave function %'p(r, t) of the dressed ground
state is determined by Eq. (3) up to a quadrature. We
can then evaluate the matrix element for emission of a
photon with frequency 0 and polarization a by the atom
which remains in the process in the dressed ground state
ep(r, t):

-20
10 20 30

their Fourier expansions. Both contributions are qualita-
tively similar. Both, for example, have the same leading
power of rt. Quantitatively, however, the contributions
arising from the propagator are dominant. It has been
shown' that the approximation w(t) const, i.e., a„

apb„p, introduces a relative error of order (to/4 IEpI )z
in the total ionization rate I. The corresponding error in
the harmonic spectrum may well be larger. Our prelimi-
nary estimates of the coefficients a„ indicate that for
rt (ea) /4mro&3 we have Iai I

&10 IapI. The high-
er coefficients decrease further in magnitude. The approx-
imation a„apb„p therefore seems reasonably safe. The
remaining constant ap is determined by the normalization
of the field-free wave function I ao I (gm I Eo I ) '

Squaring the matrix element (6), multiplying with the
phase-space density of the emitted photon with momen-
tum K( I K I 0), dividing by a long normalization time,
and integrating over the frequency then gives the rate of
emission dRik+i/dQit per unit time and solid angle of a
photon with frequency 0 (2k+ 1)to

' -4«,'(2k+I) '—' to I L,, I', (7)

with

harmonic order 2k+ 1

FIG. l. log~o(2k+1) 3
I Lk I as a function of the harmonic or-

der 2k+1 for argon for three different intensities: solid dia-
mond, 3 &10"W/cmi; open rectangle, 2.21 x10"W/em~; solid
rectangle, 1.55 x 10'3 W/cmi.
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where

&/z
e '"~[cosakPk (p)Jk [z(p)] —e '~sinakPk (p)Jk+ i [z (p)]],g p p3/2

IEol
aI, =~ +g 1—

N

sin p/2
p/2

+( 1
k+) ir 1 4k;pg .

4
' k(2k+1) (2k+1)p

l

(k+ 1)(2k+ 1)
4(k+ I);~/q . . 4sin p/2
(2k+1)p '

p
e '~/ sinp/2, z(p) =rt sinp—

The quantity rt = (ea) /4m' is the ratio of the quivering energy of a free electron in the field (2) over the energy @to of a
field quantum, r p e /m is the classical electron radius, and A, 2ii/to denotes the laser wavelength. In the above expres-
sions we dropped the small quantities 6 and I .
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FIG. 2. log(2k+1) i
I Lt, I~ as a function of the harmonic or-

der 2k+ I for I 3it10" W/cm' and IEOI/to corresponding to
the rare gases Xe, Kr, Ar, Ne, and He.

FIG. 3. log(2k+I) ILk I as a function of rt IEq. (7)] for
several higher harmonics in argon.

The results which come out of this model are shown in

Figs. 1-3. In each case the quantity (2k+1) ILk I is
plotted. Figure 1 displays the harmonic spectrum of Ar
for several intensities I of the laser field while Fig. 2 com-
pares the spectra of Xe, Kr, Ar, Ne, and He for fixed in-

tensity I 3X10'i W/cm2. In each case, the laser fre-
quency is Ii to 1.16 eV [yttrium aluminum garnet
(YAG)]. The specific atom enters only via its ionization
energy I Eo I, which determines the parameter
x (2m IEoI )'i. The ionization potentials for Xe, Kr,
Ar, Ne, and He are 12.13, 14.00, 15.76, 21.56, and 24.59
eV, respectively, corresponding to a minimum number of
photons for ionization of N 11, 13, 14, 19, and 22, re-
spectively, for the YAG frequency. All spectra show an
initial rapid decrease of the harmonic intensities with a
pronounced minimum between the 7th harmonic for Xe
and the 13th for He (at I 3x10'i W/cm2). This initial
dip is followed by a more-or-less ragged plateau which is,
on the average, sloping upwards rising from the dip to its
maximum by several orders of magnitude. From some or-
der on, which for t)&1 is roughly given by 2k+1-2
x ( I Eo I /to+ ri)+ I, the harmonic intensities start drop-
ping rapidly. All of these features are qualitatively
present in the data of Ref. 5 (taking into account the
phase-matching factor). Quantitatively, the most obvious
discrepancy between this model and the data is in the
steep drop of the initial harmonics which the model exag-
gerates. Otherwise, quantitative differences are within 1

order of magnitude. Figure 3 gives the intensity depen-
dence of selected harmonics. For t)&0.3 the slope is
2k+1 as expected in lowest-order perturbation theory
[note that ILk I

—ri
+' for ri«1 since z(p) —ri]. It is

interesting that even for intensities where the individual

harmonics still exhibit the slope predicted by perturbation
theory, their emission rates do not always decrease with
increasing order. For example, Fig. 3 shows that for
tI~ 1, the 21st harmonic becomes more intense than the
7th, even though both still display the respective slope of
2k + 1 of lowest-order perturbation theory. Similar
effects have been observed by other authors. 9' In the
plateau region the intensity dependence is more compli-
cated. Figure 3 is not really trustworthy for tI & 10 due to
the approximation that a„aob„o, the values given are
only supposed to indicate the trend.

There are two gross features which dominate the behav-
ior of the integral Lt, the smal. lness of the Bessel functions
when max[z(p)] —1.5t) «k and the exponential which is
rapidly oscillating except when IEoI/co+ri-k. The in-
terplay of these two properties accounts for the initial dip
and the rising plateau with the steep upper edge.

In view of the extreme crudeness of the model it should
not be compared with specific features of the data. Notic-
ing, however, the strong suppression of the 15th harmonic
in Ar in the intensity range covered by Fig. 1, it is difficult
not to be reminded of the absence of the 13th harmonic in
Ar in the data. The suppression shown in Fig. 1 is due to
the two terms in the integral Lk beating against each oth-
er. This is strongly intensity dependent: the suppression
goes away for lower and higher intensities. While the
near agreement with the data may well be coincidental, it
is remarkable that a model as simple as this allows for a
strong dynamic suppression of individual harmonics.

In conclusion, the simple model of a b-function poten-
tial qualitatively displays many of the features observed in
higher-harmonic emission by rare gases including a rising
plateau in the single-atom response which should lead to a
fiat plateau in the collective response.
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