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In the recent article by M. Bylicki [Phys. Rev. A 39, 3316 (1989)],many remarks were made con-

cerning the saddle-point technique developed by this author. These remarks appear to have been
based on a misunderstanding of both the spirit as well as the actual application of this method. In
this Comment, I shall try to clarify some of these misunderstandings, and one hopes, put the prob-
lem in its proper perspective.

The saddle-point technique was developed by Chung in
1979.' In the past ten years, the method has been applied
to numerous two- and three-electron systems. In the
course of application, some well-accepted interpretations
of experiments were challenged. ' Many heretofore
unidentified Auger lines seen in existing experiments were
identified. ' While I have never claimed the method to
be exact, the precision of our results had led to the recali-
bration of several high-resolution Auger spectra in which
experimental absolute calibration is difficult. Perhaps
one of the most remarkable successes is the unambiguous
identifications of some lithiumlike triply excited states
arising from ion-atom or ion-molecule collisions. Here
the selection rules break down and many assorted triply
excited states are produced in the collision experiment.
Many of the resonances have several decay channels, thus
further complicating the Auger spectra. These
identifications have not been challenged by other
methods. This saddle-point method is further incor-
porated with the complex-rotation method to calculate
the Auger width' or the spin-induced width" of atomic
ions. Many of these predictions were verified by precise
experiments. '

However, very recently, Bylicki claimed that "there
are many instances in which it does not work. "' This
claim is based on the example of He 1s2s2P P for
which he added 15 [(s,s),p] P terms to the wave func-
tion. He was able to decrease the energy of this state by
0.000099 a.u. (2.69 meV) and therefore these terms are
not negligible as I have suggested. On the other hand,
including this partial wave in the wave function will lead
to variation breakdown in his saddle-point calculation.
This is due probably to misunderstanding of the applica-
tion of this method.

He 1s2s2p P is a broad resonance with a width of
about 500 meV. ' The methods Bylicki and I have used
are approximations in which the interaction with the
open-channel segment are neglected. As I explained in
Ref. 3 (Sec. V), the shift of the resonance position for this
state will be large. I will not be surprised if this shift
turns out to be about 200 meV and therefore the result
will agree with the scattering calculation' or complex-
rotation calculation' when this shift is included. One
can always debate the "vital importance"' of 2.69 meV
when 200 meV is already neglected. But, there is a more
basic reason why I did not include this [(s,s),p] partial
wave at the time. This is related to the historical inter-
pretation of He 1s2s2p P.

Before Ref. 3 was published, it was commonly believed
by experimentalists and theoreticians alike that this
He P state was a shape resonance associated with the
(ls2s) S open channel. I was using a new, but not yet
popularly accepted, method to challenge a well-accepted
concept. I claimed that this resonance was formed by the
strong coupling of [(ls2s)', 2p] and [(ls2p)', 3d] rather
than the ( ls2s) S channel. Therefore, I wanted to use a
wave function that was orthogonal to the ( ls2s) S chan-
nel by symmetry so as to show this resonance arises in the
complete absence of this open channel. Also, I needed a
wave function that Temkin s quasi-projection-operator
method' in its simplest form can use to obtain the same
conclusion. The latter reason was a central point of my
previous publication. Reference 3 did not concern the
accuracy of a few meV, rather, the nature of this reso-
nance.

The saddle-point method does not encounter a problem
when this [(s,s) S,p] is used. The effectiveness of the
method lies in the ever-important fact that one builds the
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TABLE I. Energy convergence of ls2s2p 'P' He (in a.u. ). hE is the binding energy contributed by
adding the partial wave; for the detailed form of the wave function, see Ref. 3.

Partial wave

[(s,s)'S,p]
[(s.p) 'P, d ]
[(s,s)'S,p]
[(p,p)'S,p]
[(s,d)'D p]
[(d,d )'S,p]
[(p,d )'P, d]
[{s,d )'D,f ]

Total

No. of terms

38
4

17
5
3
2
1

1

2.0
2.0
1.1
2.0
2.0
2.9
1.6
2.0

Nonlinear parameters

0.54
0.515
0.39
1.6
0.44
3.0
1.84
0.69

0.345
0.42
0.905
0.24
0.77
0.25
0.37
0.87

2.141 133
0.006 308
0.000056
0.000 859
0.000 608
0.000066
0.000 034
0.000 033

2.149 097

correct physics into the wave function. Since the system
lies in the inelastic channel, one must build the proper va-
cancy such that the open channel is removed. This open
channel is of the form of [(ls2s)'S, kp]. Therefore, one
must not allow the two s electrons in this [(s,s ) S,p ] par-
tial wave to form a 1s and another 2s orbital simultane-
ously. There are a number of ways to accomplish this
purpose when this partial way is used. Notice that in all

my discussions of the hole projection operators, the an-
tisymmetrization is taken after the projection is done.
Therefore, if one wishes to define a single projection
operator for the total wave function, one only has to
define the projection operator as

(I —
lg ), (2) & ~q (, (2) )(I —

lq &, (3) & ~q (, (3) l)

and write the partial wave as [p, (s,s ) S]. When we leave
all the other parts of the wave function the same, the
variation calculation can be carried out, there will be no
breakdown. To illustrate, I carried out a calculation with
this approach. A 17-term [p, (s, s ) ] partial wave is used
with no term selection. This result is given in Table I.
We found a contribution of 0.000056 a.u. which is a
slightly smaller contribution than that of Ref. 13. It is
difBcult to judge which result is more reliable because of
the severe approximate nature of the target states used in
Ref. 13. The 1s2s S basis function does not even have
the proper node structure, not to mention radial or angu-
lar correlation. If Ref. 13 can use a much more flexible
target basis, it is likely that his result may agree better
with this work. In any case, I did not obtain a "spuri-
ous" result as suggested by Bylicki. ' Regardless of
whether one likes this procedure, one should not lose
sight of the fact that we are discussing a partial wave
which contributes 2 meV when more than 200 meV is
neglected. How one deals with this partial wave is not
important when the open channels are included in pbtain-
ing the correct resonance position. I fail to see the "vital
importance" mentioned in Ref. 13.

Bylicki stated that, "The proof of Ching's theorem for
a many-particle system is unsatisfactory. " It should be
emphasized that I do not have a "theorem" for a many-
particle system.

I tried very hard to explain the mathematical and
physical foundations of the saddle-point technique in the
conclusion of Ref. 1 and more explicitly on p. 76 of Ref.

2. I emphasized that it is based on the variation principle
of quantum mechanics and the validity of the "inner-
shell-vacancy picture. " Therefore, I did not "derive" this
method. I generalized the result of the one-electron
theorem to the many-particle system simply to indicate
that one should search for a certain maximum in the vari-
ation procedure. The projection operator for each appli-
cation must depend on the physics of that problem. The
accuracy of this method depends on whether the "inter-
shell-vacancy picture" is an accurate description of the
physical reality. In fact, this shift of 200 meV of He P
may very well be an indication that this "inner-shell-
vacancy picture" is not an accurate description of the
system. (Judging from Bylicki's result, ' the "generalized
saddle-point method" fares no better. ) However, in the
case that the resonance does not lie very close to an open
channel, the accuracy of results never ceases to amaze
me. I have recently extended the calculations to four-
electron systems. The results obtained thus far indicate
to me that many interesting identifications will be made
in the four-electron Auger spectra.

Bylicki stated correctly that the hole projection is a
method of building vacancy not a method of orthogonali-
zation. As is well known, because of the Pauli antisym-
metry principle, an exact Feshbach projection operator P
or Q for three or more electrons does not exist in closed
form. For this reason, I never tried to define a P space
for orthogonalization. Rather, according to the physics
of the system, I consider that the wave function should
consist of two parts. The closed-channel part consists of
appropriate holes. The open-channel part consists of no
holes similar to that of the closed channel. Hence, if the
holes are built in correctly there should be no continua in
the closed-channel wave function. In this sense, ortho-
gonality is achieved automatically. We have actually
checked a few cases in which resonance is not very close
to an open channel, orthogonality is achieved to an amaz-
ing degree. '

This seeming "weakness" of the saddle-point method is
precisely where the strength of the method lies. What it
means is that I do not need to worry about the target-
state wave functions in the P space which are different for
each and every problem. To calculate any resonance is
just the same as bound-state configuration-interaction
(CI) calculation. A uniformly applicable computer code
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can be constructed. With very limited resources we have
generated numerous results in a few years, the primary
reason being the simplicity of the method. An interesting
feature we found is that the structure of the vacancy or-
bital is very simple. At one time I tried to make it more
complex, hence, more flexible, but the result does not
change appreciably.

Bylicki' has proposed a method to project out the P
space. If projecting out the P space is of such importance
then P must be defined accurately. In Bylicki's calcula-
tion, the two-electron targets are defined by a one-term
function (with symmetrization). It is not clear why the
radial and angular correlations are not included, or why
it is not important. It is also not clear whether it is feasi-
ble to apply this method with a correlated target-state
wave function (e.g., with 20-term three angular-partial
waves).

Bylicki stated that, "Difficulties appearing in the hole-
projection technique do not occur in the generalized
saddle-point method. "This gives the impression that the
"generalized" method must have a wider applicability
than the restrictive method developed by myself. The
restrictive method can generate a high-precision result
for important resonances such as lithium-like 2s2s2p P
(Ref. 2) or beryllium-like ls2s2s2p P or ls2s2p2p 3P

(Ref. 18) where infinite open channels exist. How to pro-
ject out the infinite numbers of open-channel target states
from the total wave function would be an interesting
question. If this cannot be done easily, perhaps the word
"generalized" is somewhat misleading.

This work is supported by the National Science Foun-
dation, Grant No. PHY 87-15238.

'K. T. Chung, Phys. Rev. A 20, 1743 (1979).
~For progress of this method in its earlier years, see K. T.

Chung and B. F. Davis, in Autoionization II, edited by A.
Temkin, (Plenum, New York, 1985), Chap. 3.

K. T. Chung, Phys. Rev. A 23, 1079 (1981).
4K. T. Chung, Phys. Rev. A 22, 1341 (1980).
~K. T. Chung, Phys. Rev. A 23, 2957 (1981).
K. T. Chung, Phys. Rev. A 25, 1596 (1982); B. F. Davis and K.

T. Chung, J. Phys. B 15, 3113 (1982); R. Bruch and K. T.
Chung, Comments At. Mol. Phys. 14, 117 (1984).

7K. T. Chung and R. Bruch, Phys. Rev. A 28, 1418 (1983); R.
Bruch, K. T. Chung, W. L. Luken, and J. C. Culberson, ibid.
31, 310 (1985).

M. Rddbro, R. Bruch, and P. Bisgaard, J. Phys. B 12, 2413
(1979).

9K. T. Chung and B.F. Davis, Phys. Rev. A 26, 3278 (1982).
' B. F. Davis and K. T. Chung, Phys. Rev. A 29, 1878 (1984);

31, 3017 (1985).
"B.F. Davis and K. T. Chung, Phys. Rev. A 37, 111 (1988);39,

3942 (1989).
' L. Engstrom et al. , Phys. Scr. 36, 250 (1987);T. Andersen and

S. Mannervik, Comments At. Mol. Phys. 16, 185 (1985); Y.
Baudinet-Robinet, H. P. Garnir, and P. D. Dumont, Phys.
Rev. A 34, 4722 (1986).

' M. Bylicki, Phys. Rev. A 39, 3316 (1989).
'4G. J. Schulz, Rev. Mod. Phys. 45, 378 (1973).
' P. G. Burke, J. W. Cooper, and S. Ormonde, Phys. Rev. 183,

245 (1969);W. C. Fon et al. , J. Phys. B 11, 325 (1978).
B.R. Junker, J. Phys. B 15, 4495 (1982).

' A. Temkin, A. K. Bhatia, and J. N. Bardsley, Phys. Rev. A 5,
1663 (1972);A. Temkin and A. K. Bhatia, ibid. 18, 792 (1978).

K. T. Chung (unpublished). Results will be supplied on re-
quest.


