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Emission and absorption by two atoms in a damped cavity
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Emission and absorption from two two-level atoms interacting with a single mode of a cavity field

in the vacuum state are investigated. The role of cavity losses, detuning, and cooperativity on the
Rabi oscillations is studied. Absorption from a weak probe field with the cavity at zero temperature
computed to third order in the atom-probe coupling constant is analyzed to determine the effect of
cavity damping and detuning on the Rabi splitting.

Recent advances in experimental techniques have made
it possible to observe some interesting aspects of the
atomic behavior in a cavity such as vacuum-field Rabi os-
cillations, ' collapses and revivals, and inhibition and
enhancement of spontaneous emission, etc. Much of the
theoretical understanding of this behavior rests on the
Jaynes-Cummings model, which has been known to be
exactly solvable in the absence of cavity damping. Re-
cently, however, Agarwal and Puri have presented exact
quantum-electrodynamic results for the emission and ab-
sorption spectra of a single atom contained in a cavity
with finite Q. In this paper we present a generalization of
the results of Agrawal and Puri to the case of two atoms
in a damped cavity.

Our system comprises two identical two-level atoms of
resonance frequency coo, interacting with a single mode of
the quantized radiation field of frequency co in a cavity.
The Hamiltonian of the system is

H=AcooS'+ficoa a+fig(aS +a S ),
where

S'= —,'(cr', +o'z), i =x,y, z

S—=S "+iS~,

'g3 = 4K'g3+ l 2g'g9

Yj4
= 4K'$4+i 6'g5 l 2g'g7

i&s
= i 2—&2gg, +i 2v'2grtz+i b rid «rid —i—2gi)6,

'j6 = t 2g r—
i5 '2tcrt6—+i 2hrt7+i &2g rt9,

g 7
= —t 2g ri 4 +i 2 b, ri6 2 tc i)7

—+i &2g its

'gs —t v 2gr/7 3K7]s+ tkrt9

g9 l 4g g 2 + l 4g g 3 + r &2g g 6 + i 6 f18
—3xg9
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where for the sake of economy of notation we have
defined

rtt(t)=&0, elplO, e), iiz(t)=& l, i lpl l, i ),
i)3(t)= &2,g lpl2, g &,

n, «)=& 1, tlplo, e&+&o,elpll, t &,

rt6 7(t) =
& 2,g plO, e )+ & O, e pl 2,g ),

i)s 9(t)=&2,g pll, t'&+& l, t lpl2, g) .

(12)

Incidentally, in the simplest case of 5=~=0, the solu-
tion for ri3(t) is given by

cr' (j =1,2) are the Pauli-spin matrices for the jth atom,
a and a are the creation and annihilation operators of
the field, and g is the field-atom coupling constant.

We assume a cavity of finite Q. The leakage of photons
from the cavity leads to decay of the field at a rate K. The
density matrix of the system satisfies the equation of
motion

(2)

The states of the system may be labeled as lS, M;n ),
where M = —S, —S + 1, . . . , S and

l
n ) denotes the Fock

state of the field. We consider transitions from the state
1,1;0):—

lO, e ) to the states l1,0;1)—:l, i ) and
1, —1;2 ) =—

l 2,g ) . Using Eq. (2) we obtain the following
equations of motion for the density matrix elements:

'9& = ' R'9s

'g2 = —2K /2+ t +2g 7)5
—t 2g'g9

(3)

(4)

Bp 1

Bt
[H,p] —«( a ap

—2a pa +pa a ):Lp . —

i)9(t)= —,'(3 —4cos&6gt+cos2&6gt) . (13)

We are in a position now to study the physics of
radiation-matter interaction in terms of the inAuence of
cavity relaxation and detuning on the vacuum-field Rabi
oscillations and the role of cooperativity. Numerical
solutions for g, (t) for a general case (6 and tc both
nonzero) are shown in Fig. 1. The cascade structure be-
tween the adjacent peaks is to be seen only in the pres-
ence of detuning: it disappears when we set 6=0 and
smooth oscillations result, albeit of decreasing amplitude
due to damping. The cascade periodicity is 5.2gt. The
oscillation frequency, however, depends on 5 and it de-
creases with increase in A. The fact that the single-atom
case does not show any structure between the adjacent
peaks leads us to infer that we are witnessing here the
effects of cooperativity. Another manifestation of
cooperativity appears in the different oscillation frequen-
cies of the one- and two-atom on-resonance cases with v
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a(s) =(s +ico+tc)/(s —si )(s —si ),
P(s) = —i v'2g /(s —s, )(s —sz),

where

si z
= —

—,'[i(co+coo}+tc]+(i/2)(h +8g —lc +2i hie)'

If 6=0,

si i = ice—,'a—+—(i/2)(8g tc —)'~

(19)

0
0 2 4 6 8

gt
10 Incidentally, the good and bad cavity values (a «4g and

s. &&4g, respectively} are

FIG. 1. The probability g& vs time with 5=2g and different

values of ~. Curve (a) ~=0.1; curve (b) a=0.2; curve (c)
K =0.5.

s, i = ice—(1—/2)tc+i v'2g, i co —
( I /2—)lc+ ( I /2)lc .

The first-order contribution to Wis thus

8'= —4A'vlGl Rea( —iv), (20)

nonzero which are found to be 3. 1gt and 2.6gt, respec-
tively. The problem of two atoms in a damped cavity has
also been discussed by others though with a different em-
phasis and for the on-resonance cavity only. %'e have
seen that detuning is not merely an inessential complica-
tion; it reveals some important structure between adja-
cent peaks in the transition probability which upon com-
parison with the single-atom case can clearly be attribut-
ed to cooperativity.

In order to see how the cavity damping affects the ab-
sorption spectrum, we consider absorption of energy by
the cavity bound atoms from a weak probe field of fre-
quency v. The time rate of absorption is proportional to
&
S+ ). To compute this expectation value we expand the

density matrix in powers of the coupling constant 6 of
the probe field with the atoms. The first nonzero contri-
bution to &S+) comes from p"', the expression for
which is given by

p"'(t)= iGe '"J —dtie 'e '[S+,p(0)]+H. c. (14}
0

We start with a cavity with zero temperature so that the
initial density matrix can be written as

p" =lO, g)&O, gl .

where a( iv)—may be obtained by setting s = i v —in the
first of Eqs. (19).

In this order the final state reached is l l, i ). To reach
the ground state we need a higher-order calculation. It
turns out that the second-order contribution to W van-
ishes. We have also evaluated the third-order contribu-
tion. The analytic expressions being lengthy are not
reproduced here. However, the curves shown in Fig. 2
include the third-order contribution.

Figure 2 shows the absorption spectrum of the two
atoms contained inside the cavity for 6= —1.0g. Split-
ting of the spectrum is observed for the good-cavity case.
It is caused by the vacuum-field Rabi oscillations. As we
increase the value of ~, splitting begins to disappear. For
example, for tc=5g (bad cavity), the spectrum has only a
single peak. A comparison with the one-atom case re-
veals some similarities but quantitative differences arise
in the heights and widths of the peaks and their locations.
These differences are to be attributed to the cooperative
effects.

1 ~ 0

To determine the corresponding contribution to &S ),
we proceed as follows. Define

p(t) =(I/v 2)e '[S+,p(0)],
so that we may write

P(t)=e 'lO, i)&O,gl

=a(t)lO, i ) &O,gl+p(t)l l,g &&0,gl .

Fvidently a and p satisfy the equations of motion
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a(t) = i cuoa(t) i v'2g p(—t), —

p(t) = iv'2ga(t) (in—)+lc)p(t) . —
(17)

(18)

Since a(0) = 1 and P(0) =0, their Laplace transforms are

FIG. 2. Absorption spectrum as a function of co —v for
5= —1 and different values of ~. Curve (a) ~=0.1; curve (b)
x.=1.; curve (c) ~=5.
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It is instructive to compare the present work with
Agarwal's in Ref. 5(b), where he discusses the ¹tom
case. In his work the cavity decay term is not calculated
explicitly and the use of the limit g&N ))~ and the secu-
lar approximation eliminates explicit reference to ~, so

that the dependence of the absorption spectrum on ~ can-
not be studied. The present work does not suffer from
such constraints and the change in the absorption spec-
trum with cavity damping is computed and manifested in
Fig. 2.
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