
PHYSICAL REVIEW A VOLUME 41, NUMBER 7 1 APRIL 1990

Explicit N-soliton solution of the modified nonlinear Schrodinger equation
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By means of the technique of determinant calculation, an explicit N-soliton solution of the
modified nonlinear Schrodinger equation is obtained for arbitrary N using the method of a mero-

morphic transformation matrix. The final expression is written in a form suitable for practical
needs. Its expected asymptotic behavior is derived.

The modified nonlinear Schrodinger (MNLS) equation
has been proposed' to describe the short-pulse propaga-
tion in a long single-mode optical fiber in consideration of
the inherent property of asymmetric output pulse spec-
trum. ' The MNLS equation has been shown to be com-
pletely integrable, but it has never been solved except for
its one-soliton solution obtained by simply integrating in
a moving coordinate, so that some works have to be
based on the numerical analysis for suiting needs of prac-
tice. '

Recently, we proposed a method based on an ansatz
that the Jost solutions, and then the transformations
among them, are meromorphic and have only simple
poles. We also obtained a generalized Zakharov-Shabat
system of linear algebraic equations for determining the
E-soliton solution of the MNLS equation. From it we
have obtained an expression in terms of a determinant of
the known quantities. ' However, even in the case of a
two-soliton solution, it is tedious to obtain an explicit ex-
pression. '

In this work, we present an explicit expression of the
¹oliton solution of the MNLS equation from the gen-
eralized Zakharov-Shabat equations with the aid of pure
algebraic calculation. In addition, we introduce a new
spectral parameter to express the final expression in a
form suitable for practical needs. We also derive the ex-
pected asymptotic behavior of the N-soliton solution.

The MNLS equation can be written in the following
normalized form:
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gj and bi are complex constants.
The purpose of this paper is to give an explicit N-
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and pj and 1I'tk satisfy the following linear algebraic equa-
tions:

iu, +u„„+i(iu) u)„+2p(ui u =0,
where p is a real constant. In our previous paper, a
method based on the Darboux transformation in the form
of pole expansion has been proposed for finding its soli-
ton solutions. The ¹oliton solution can be expressed as
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(7) and (8) can be written as
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where the overbar denotes the complex conjugate, and In virtue of (15) and (16), (3) and (4) may be rewritten as
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M

det(x, .y +Z,")=det(Z;. ) 1+ g x;y (Z '); (19)

where p is simply a diagonal matrix, i.e.,
diag(p» . pN

Since we have the known formula of linear algebra,

trix of Q by remaining (j„j2,. . . , j„)th rows and
(k, , k2, . . . , k„)th columns. Q(j„j2, . . . ,j„) means a
principal minor, i.e., Q(j„j2, . . . ,j„;j&j&, . . . ,j„).

Using the known formula

det[(x, +y„) ']

which is valid for a nonsingular M XM matrix and arbi-
trary rows x and y, (17) and (18) can be expressed as j,kk«& k'

= II (x, —xj ) II (y/,
—
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Since we can rewrite (23) as
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where Q' and Q" are NX(N+1) matrices whose rows
are extended from 1 to N, columns from 0 to N,

(26)

where we have taken account of the well-known Binet-
Cauchy formula, and where Q(j, ,jz, . . . , j„;k,, k2,
..., k„) denotes a minor that is a determinant of a subma-
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j,k =1,2, . . . , N. We have also
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The summation can be obviously decomposed into two parts: one is extended to k1 =0 the other to k1 ~ 1. The latter is
just R (j„jz, . . . , j„)on account of (31). We thus obtain
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Using (27), we have
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In analogy to (28), using (27), we have
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where k, k' and j,j' satisfy (29). The complex conjugate
of (41) is obviously just (28); we thus have an explicit ex-
pression of the ¹oliton solution

i=pr '
~ (45)

Equation (44) is the MNLS equation in its practical form.
Soliton solutions of (44) can be obviously obtained from
(42) with the aid of the scale transformation (43).

%'e now introduce new spectral parameters A. ,

by substituting (26), (28), (34), and (35).
Introducing a scale transformation,

x'=-y ~x, t'=y (43)
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where r is a real constant, from (1), we have

iu, +u„„.+ir(~u~ u)„+2P~u~ u =0,
where u (x't') =u (xt), and P=+1,
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We notice that (10), (28), and (35) can be expressed in
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pj pk

k (Aj)pj p k

Q(jt, j2 ' J kf k2 . k„)

——2pI
—2 7

pI
(48)

and

=IIc &J rlc P II(PJ JtJ ) II—(p P'}'II(p—J
' —p ') 'IIp, ', (49)

i &i k &k'

Q (Ji Jz i, ;O, k„.. . , k„)Q"(A j2 . . . , J„'0 k~ . . . k )

k, k'
k &k'

j, k

(50)

In virtue of (46) and (47), we have
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By substituting (51) and (52), we obtain an explicit ex-
pression of the ¹oliton solution of the MNLS equation
(44).

We now turn to derive the expected asymptotic behav-
ior of the X-soliton solution of the MNLS equation.
From (54), we have

(f,') =exp{2i I(Imq, -)x'

+2[(Reqj ) —( Imq, ) ]t '+ P' ] )
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where
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b,'=exp[i/, '+(Req, )x,'] .

Suppose all (Req~ ) are positive, and
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In the vicinity 0, we have
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The vicinity of x'=x'+4(Imq )t' is denoted by 0, . In
the limit as t~+ ~, these vicinities must be separated
from left to right as
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From (51) and (52), taking account of (61) and (62), we
have
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We thus derive the expected asymptotic behavior of
the ¹oliton solution of the MNLS equation. The total
phase shift and the total displacement of center of the
mth peak 5 and b, can be obtained from (64)—(71)
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Similarly, when t ~—~, in the vicinity 0, we have
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This result shows that the MNLS equation has regular
soliton solutions even in the case of normal dispersion,
i.e., p= —1, provided y+0. In the case of anomalous
dispersion, i.e., p= 1, the ¹oliton solution of the MNLS
equation clearly reduces to that of the NLS equation as y
approaches zero.

We have given an explicit expression of the ¹oliton
solution of the MNLS equation in a form suitable for
practical needs. It will provide a proper basis for analyz-
ing soliton formation in the case of a single initial short
pulse and wave-packet decay and soliton interactions in
the multisoliton case.
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