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Path dependence of the Harbola-Sahni exchange potential
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It is shown that the Harbola-Sahni exchange potential w„ is not generally independent of path for
nonspherical densities. Requirements for corrections to m„are put forth.

Consider N interacting electrons in a local-
multiplicative spin-independent external potential u(r).
The Hamiltonian is

N N N

H = g —
—,
'
V, + g u (r, )+ g lr, —r, l

According to the Hohenberg-Kohn-Sham theory, ' the ex-
act ground-state energy may be obtained from

E=min T, [p]+f u(r)p(r)d r
P

+-,' f f p(ri)p(r2)lri —r21 'd rid r2

+E„[p]+E,[p] (2)

where T, [p) is the noninteracting kinetic energy, and
where E„[p]and E,[p] are the exchange and correlation
energies, respectively. The minimizing density p, in Eq.
(2) satisfies the Kohn-Sham equations' for noninteracting
fermions:

—
—,'V +u(r)+ f p(r')lr —r'l 'd r'

+u„([p];r)+u, ([p];r) P, (r)=e;P, (r),

where

5E.[pl
5p(r)

5E,[p]
u, ([p];r)=

5p r

u„([p];r)=

are, respectively, the exchange and correlation potentials.
Harbola and Sahni have proposed an orbital-

generated local exchange potential tu„(r), as an approxi-
mation to u„([p];r), and they also provide an interpreta-
tion for their potential; it is the work done in bringing an
electron from ao to r against the force of an e„(r) electric
field. They define w„(r) as a line integral

r
w„(r) = — e (r) dr, (4)

where

p„(r,r')(r —r')
e„(r}= d r' .

lr —r'l'

The Harbola-Sahni potential has yielded exciting concep-
tual and numerical results for spherical densities and
for jellium metal surfaces, and their novel ideas have at-

Vw„(r)=e„(r) . (7)

This assumption is crucial to their proof and their inter-
pretation of w„(r).

A necessary and sufficient condition that the line in-
tegral in Eq. (4) is independent of path, which guarantees
the validity of Eq. (7), is

curie„(r)—:V Xe„(r}=0 .

Conversely, if the curl of e„(r) is not equal to zero, then
(i) the line integral of iu„(r) depends upon path, which
implies that w„(r) cannot be interpreted as work, which
must be independent of path, and (ii) Eq. (7) does not
hold, and the proof in Ref. 2 is not valid in this situation.
[From the development in Ref. 2, it should be clear, how-
ever, that iu„always satisfies Eq. (6) for one-dimensional
problems. ]

Motivated by the above issues, it shall be shown that
VXe„(r)40 for a Kohn-Sham ground-state determinant
which yields a nonspherical density, but it is noted that

is the exact Kohn-Sham exchange potential for one
and two electrons, even if the density is nonspherical, so
path dependence is obviously no problem for one and two
electrons.

To give an example where V X e„(r)&0 for a nonspher-
ical p(r), consider a four-electron Kohn-Sham ground
state ls ( f, J )2p, ( l, l ) where

Z 3/2 zr—1
1 1 1/2

1

Pz 4(2 )
1/2

tracted interest. In fact, Wang et al. have recently
proved that u„ is exact in the uniform gas limit, and for
closed-subshell atoms e yields encouraging total ener-
gies and highest-occupied orbital energies that are far su-
perior to those given by the local-density approximation.

The exact exchange potential u„([p];r) satisfies the
Levy-Perdew relation

(4[p]lv„lCi[p]) —U[p]= —f p(r)r Vu„([p];r)d r,
(6)

where for arbitrary p, 4[p] is that single determinant
which is composed of the N lowest-occupied orbitals of a
local potential and U[p] is the classical electron-electron
repulsion energy [the third term in Eq. (2)]. Harbola and
Sahni have shown that w„(r) satisfies the Levy-Perdew
relation by assuming that
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p(r)=2 g ig i
=2 e '" e '"+ r cos 8

7T 32
2

y(r, r')=2 g g;(r)g, (r')
i=1

3

e
—z(r + r')/2

(10)
The curl of e (r) is

(r —r'}p, (r, r')
VX@„(r)=VXf d r'

ir —r'['

=VX fd r', Vp„(r, r'} .
1

ir —r'i
(13)

3
zfZ

2
'2

Z
e ""+"' + rr'cos8 cos8'

32

2
zr+ r 2COS2g

Z

32

Z
2

X e "+"' + rr'cos8 cos8'
32

iy(r, r') i'
p„(r,r') =

(12)

[Note that —zr ' is the noninteracting Kohn-Sham
effective potential for which the density given by Eq. (10)
is a ground-state density. This density is simultaneously
a ground-state density of some interacting Hamiltonian
with a non-Coulomb potential. ]

We assign [VX@„(r)],, [VX@„(r)]&,and [VXe„(r)]&
to represent three components of V Xe„(r). For this par-
ticular case p„{r,r'} does not depend upon ((} and P', and
it is readily obtained that [VX@„(r)].,=[VX',(r)]8=0.
Equation (13) becomes

V X a„(r)=P—gri o~ t21+1

I

f i, r' dr' Yi (8,&) f dQ'p„(r, r')YI" (O', P')
dr 0 r

—f, ,
r' dr' Yi (8,$) f dQ'p„(r, r')Yi' (O', P')

r~ 88 '
dr

In order to calculate [VXe„(r)],we first deal with the integral J dQ'p„(r, r') YI' (O', P'):

(14)

Zd'Px &, r ~im

Z3

e zr

Z
2

e + rcosO
32

e
—zr'

Z
2

e '"+ r cos8
32

f
2

d Q' e '"+"'i + rr'cos8 cos8' Yi' (O', P')Z

Z2&4ne""+".'5 5 + (cos8)rr'elo mo 16

' 1/2

51i5 o

2
2

z q, z( q8)
2 4n

' 1/2

5,~5 o+ —,'&4m.51o5 o

(15)

The first term in Eq. (14}then becomes

—4m

,&,.&,21+1

I

f I+, r' dr' YI (8,$) f dQ'p„(r, r') Yi' (O', P')
Br o r'+'

&2
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32
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Z
2

e "+ r cos0
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r '34, z2 a r'4——Z'
3 32 Br 0 r

e '"dr' a
ae

cos 8
Z

2

e "+ r cos8
32

2( —,') sin(28)e '" [e '"—(z r /32)cos 8]
+(nonzero terms) .

2r 2

r 2 e
—zr+ COS20

32

To calculate the second term in Eq. (14), we start with

YI (8,$) f dQ, 'p„(r, r')YI' (8'(t)')= —sin8
a a ~ ~ = a z'

r 7T

(cos8)e

Z
2

e '"+ r cos8
32

2 —z( r + r')/2
16rr e ll 0

z' 2' a
sin(28)

7T 32 ar
r r (cos 8)e

Z
2

e *'+ r cos8
32

12~mO )
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I=0m= I + 0 r a8 ' r

4m r &,2, .
8 a z (cos8)er' r'sin8
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32
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16
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Z
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. sin(28) 1+—e
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32

z2r2
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Subtraction of Eq. (18}[its rhs denoted by A(18)] from Eq. (16) [denoted by R(16)]yields the curl of e„(r):

—zr
2 2

.
5 sin(28)e " e "— cos 8

1
V Xa„(r}=—[%(16)—R(18)]$=

z2r2
r e "+ cos g

32

zr
1 ——P+(nonzero terms) .
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Note that the first term in Eq. (19) cannot be canceled out
by any other terms and we therefore arrive at

p(r" )
(26)

VXe„(r)%0 .

This simple example illustrates a case where
Vw„(r)Xe„(r) for a nonspherical density, and thus iv„(r)
and its interpretation should be reexamined and modified
for nonspherical densities.

Requirements for a modified Harbola-Sahni potential
w„'(r) are now asserted:

w„'(r)= —f [e„(r)+Y(r)]d,
where

(21)

V X [e„(r)+Y(r)]=0 . (22)

It is obvious, from Eqs. (8)—(10) of Harbola and Sahni,
that iv„'(r) satisfies the Levy-Perdew relation if Y(r)
satisfies

f p(r)r Y(r)d r =0 . (23)

Along with other constraints on Y(r), the solution to
Eqs. (22) and (23) yields Y(r), from which one can calcu-
late w„'(r).

It is obvious from Ref. 2 that for one and two particles,
w„(r) is the exact Kohn-Sham exchange potential v„.
This arises from the fact that m„ is U„ for a system with N
particles occupying just one orbital, as implied in Ref. 2.
If X particles are in the same orbital, the exchange hole
takes on a very simple form,

from which we can readily remove the path integral from
iv„(r ):

w„(r)= —f s„(r') d'= ——f, d r'. (27)
r, , N p(r')

N p(r)p(r') d3 di,d Td r
4 /r —r'/

for the system in which only one orbital is occupied.
Li and Krieger, Perdew, and Harbola and Sahni,

have independently already shown that in a closed atomic
subshell system V X e„(r)=0, so that it is important to
note that Eqs. (6) and (7) are satisfied in these systems.
Here we would like to provide a simple proof that the
curl of e„(r) is zero when p(r, r')=p(r, r'). In this case
Eq. (13) is simplified as follows:

VXe„(r)=VXr d r', p„(r,r')
1 8

r —r' r

8=VXr —4m p„(r r')dr' =0,
0 p)dr'

which ensures that the assumption and the proof in Ref.
2 is valid for this particular case.

p„(r'r")= ——p(r") .

Then e„(r') becomes

N p(r")(r' —r") d3
~r' —r"

~

or

(24)

(25)
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