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We study analytically the generation and propagation of dark-pulse solitons in nonlinear-optical
fibers in the normal dispersion regime. We demonstrate that dark-pulse solitons may be created as

pairs by an arbitrary dark pulse with equal boundary conditions without a threshold. We also pre-
dict soliton generation by a step of an input pulse phase and obtain the parameters of the generated
solitons. The case of soliton generation by a random input pulse is described, and probability of the
generation for a Gaussian random pulse is calculated. We also consider the case when dark pulses
are generated on a background of finite extent. This situation is related to experiments by Krokel
et a! [Phy.s. Rev. Lett. 60, 29 (1988)] and Weiner et al. [Phys. Rev. Lett. 61, 2445 (1988)],who pro-
duced dark pulses (e.g. , —1 psec) on the long bright pulse (e.g. , —10' psec). We demonstrate that in

this case dark pulses are not, strictly speaking, solitons, and in terms of the inverse scattering trans-
form they correspond not to bound states (discrete spectrum) but to quasistationary ones lying in a
continuous spectrum. We calculate the parameters of the pulses produced and study their dynam-
ics. It is demonstrated that propagation of these dark pulses is similar to soliton motion. We also
study the influence of small perturbations on dynamics of dark solitons, e.g. , dispersive broadening
of a background and dissipative losses.

I. INTRODUCTION

Although solitons arise in many areas of physics (e.g. ,
solid-state physics, plasmas, etc. ), the single-mode optical
fiber has been an especially convenient object for their
study. As was first shown by Hasegawa and Tappert, '
the nonlinear refractive index in glass optical fibers may
compensate for group-velocity dispersion (GVD) and
may lead to propagation of solitary waves without distor-
tion.

The propagation of short optical pulses in single-mode
optical fibers is described by the well-known nonlinear
Schrodinger (NLS) equation. ' In an appropriate system
of normalized coordinates this equation is

z, =4~(cT, )'r~D(z, ) ~X, . (1.2)

In Eq. (1.2) the parameter To is a width for the input
pulse, D(A, )=k d n/dk is the GVD in dimensionless
units, n is the refractive index of the core material, c is
the velocity of light, and A,o is the vacuum wavelength
(see, e.g. , Ref. 3).

The solutions of this equation divide into two different
regimes depending on the sign of 0. (o.=+1), i.e., the rel-
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where u is the (complex) amplitude envelope of the pulse,
x is the distance along the fiber, and the time variable t is
a retarded time measured in a frame of reference moving
along the fiber at the group velocity. The normalizing
length zo is defined by

ative sign of the fiber's GVD and the nonlinear Kerr
coeScient. In silica glass optical fiber GVD is zero at a
wavelength of about 1.3 pm, positive at larger wave-

lengths, and negative at shorter ones (see, e.g. , Ref. 4).
Optical communication systems generally operate in one
of two ways, known as coherent and incoherent. In-
coherent systems use pulses of light and detect the total
energy of the pulse at the receiver. In this case the ap-
propriate boundary condition in Eq. (1.1) is ~u~~0 at
t ~+ oo. For the negative GVD (cr =+1),Zakharov and
Shabat' showed that Eq. (1.1) with the zero "boundary"
condition possesses bright soliton solutions. Since then,
soliton propagation of bright optical pulses has been
verified in a number of elegant experiments performed in
the negative GVD region of the spectrum (see, e.g. , a
pioneer work by Mollenauer, Stolen, and Gordon ).
Most recently, transmission of 55-psec optical pulses
through 6000 km of fiber was achieved by use of a com-
bination of nonlinear soliton propagation and Raman
amplification. For the positive GVD (o = —1) there are
no bright solitons; instead the pulses undergo enhanced
broadening and chirping. '

Coherent optical systems use a modulated continuous
beam and detect the modulation by mixing with a local
oscillator at the receiver. In this case the boundary con-
dition to Eq. (1.1) becomes ~u~ ~const, at t~+~. At
cr = + 1 (the negative GVD) a monochromatic plane
wave, ~u~=const, is unstable to the formation of side-
bands (it is the so-called Benjamin-Feir instability) and, as
a result, the solutions with

~ u~ ~const at t ed+ac are un-
stable too. At a= —1 (the positive GVD) the solution
~u =const is stable, and, therefore, Eq. (1.1) may have
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Z =2vuo(t+2Kuoz), v=(1 —
A, )' (1.4)

which corresponds to the boundary conditions ~u~~uo
at t ~+~. The soliton [Eqs. (1.3) and (1.4)] has the only
parameter v which characterizes the soliton intensity.

Recently, Krokel et al. ' have observed experimentally
the formation of dark-pulse solitons on a broad bright
pulse with a rapid intensity dip stimulated by a driving
pulse. Because the sign of the self-phase modulation for
the dark pulse is reversed, it becomes possible to balance
GVD to allow the dark-pulse propagation along the
bright pulse without a distortion. Krokel et al. ' ob-
served two 0.6-psec dark pulses generated by a single
0.3-psec input dark pulse which was produced on the
much longer duration (100 psec) bright pulse. Other
researchers have also reported observations of dark soli-
tons. ' ' In particular, in the recent paper by Weiner
et al. ' the experimental observation of the fundamental
dark soliton in a 1.4-m optical fiber was presented. These
experiments utilize a specially shaped antisymmetric in-

put pulse which closely corresponds to the form of the
fundamental dark soliton, i.e. , the quiescent (hyperbolic-
tangent) dark pulse with zero intensity at its center [i.e.,
X=O in Eqs. (1.3) and (1.4)].

The paper aims to consider generation and dynamics of
dark solitons in relation to the above-mentioned real ex-
perirnental studies of dark pulses in nonlinear single-
mode optical fibers. First of all, in Sec. II of the paper we
consider the generation of the dark solitons. This prob-
lem is very important for the explanation of some experi-
mental results by Krokel et al. ' and Weiner et al. ,

'

and also for the potential use of dark solitons in optical
communication systems. As is well known, the process of
the generation of bright solitons described by the NLS
equation is threshold. Namely, the bright solitons are
created from a localized pulse if the area under its en-
velope is more than the threshold value ~/2 (see, e.g. ,
Ref. 15):

soliton solutions as localized nonlinear excitations of a cw
background. Indeed, the NLS equation with the positive
GVD is exactly integrable" and admits the so-called
dark-soliton solutions, consisting of a rapid dip in the in-

tensity of a cw background. The general form of the dark
soliton is

2iu ~z

(i+i v) +expZe
u (z, t)=uo

(1+expZ)

created dark solitons (Sec. II C).
In Sec. III we study the dark-pulse dynamics for the

cases experimentally investigated by Krokel et al. ' and
Weiner et al. ' We consider dark pulses on a back-
ground of finite extent, and demonstrate that in this case
dark pulses are not, strictly speaking, solitons. In the
terms of the inverse scattering transform these dark
pulses correspond not to the bound states of the discrete
spectrum, but to the so-called quasistationary ones. Us-

ing a simple 5-function input pulse on a large back-
ground, we calculate the parameters of such dark pulses
and also demonstrate that propagation of these soliton-
like pulses is similar to the soliton motion with a slowly
decreasing amplitude.

In Sec. IV we consider another very important problem
related to dark solitons, i.e., the decay of a random opti-
cal pulse in a nonlinear optical fiber in the positive GVD
region. We demonstrate that an input random pulse of
large duration will decay mainly into dark solitons. The
connection between the above-mentioned problem and
the well-known results of the theory of wave scattering by
a disordered system of impurities is discussed. Namely,
we demonstrate that for the optical system under con-
sideration one may introduce a so-called "localization
length, " i.e., the time scale ro, so that for T ))~0, T being
the duration of the random pulse, properties of the ran-
dom pulse will be described by localized states only, i.e.,
by dark solitons.

In Sec. V we briefly discuss the influence of real pertur-
bations on the soliton dynamics. First of all, we study
the influence of dispersive broadening of the finite back-
ground and demonstrate that the dark pulse adiabatically
maintains its soliton characteristics as the background
pulse evolves, i.e., if uo-z ' as for linear wave packets
then, according to Eqs. (1.3) and (1.4), the duration of the
dark soliton is proportional to r, =

(2vu o ) '-z '

and its intensity max(uo —
~u~ )=I, —uov, s—o that

I, r, =const. We also discuss the influence of small dissi-

pative losses on the soliton motion.
In conclusion (Sec. VI) we summarize our results and

discuss possible applications of dark-pulse solitons to op-
tics communication systems.

II. GENERATION OF DARK SOLITONS

A. An arbitrary small dark pulse

u z=0, t dt ~—
oo 2

(1.5)
1. General approach

In Sec. II A of the paper we demonstrate that, unlike the
case of bright solitons, the creation of dark solitons takes
place without a threshold. We calculate the parameters
of the solitons generated by an arbitrary small dark pulse,
and also consider more general case when the input pulse
is a random Gaussian one.

It is interesting to note that in the case of the positive
GVD the new method of soliton generation may be used.
Namely, the dark solitons may be generated by a back-
ground phase modulation. We consider the cases of a
phase step or two phase steps and calculate parameters of

Let us consider the NLS equation (1.1) at cr = —1 with
the boundary conditions

u (z, t)~uoe =const at t ~+ oo . (2. 1)

u(O, t)=uoe' —u, (t) . (2.2)

For the symmetric boundary conditions (2.1) the genera-
tion of dark solitons by a small intensive hole produced
by a driving pulse at the edge of a fiber (similar to the ex-
periments by Krokel et al. '

) may be described by the in-
itial condition at z=O,
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Here u, ( t) is a localized function, i.e., ~ u, ~

~0 at
t~+~, where uo and an initial phase shift e are real
constant parameters. In experiments by Krokel et al. ,

'

the short dark pulse u, (t) was produced on the much
longer duration bright pulse, so that, strictly speaking,
the condition ~u~ ~const at t ~+~ was not held. As
will be demonstrated in Sec. III, to study a soliton gen-
eration we may consider more simple input pulses be-
cause finite duration of a cw background will change
mainly the subsequent evolution of dark pulses.

According to the inverse scattering transform for the
NLS equation (1.1), to find which type of initial function
generates solitons one has to investigate the eigenvalue
Zakharov-Shabat (ZS) problem, "

a—4, =i A+, . iu —(0, t)42, (2.3a)

a
i A%—'2+, iu '(0, t)%', , (2.3b)

i 4—=—(A.—uo)%++a (t)4+ —ib (t)4. a
(2.4a)

i 4—+=—(A. +uo)4 —a(t)4 +ib(t)4+,
at

where we use the notation

(2.4b)

where the asterisk denotes complex conjugation. As was
shown by Zakharov and Shabat, " each real discrete ei-
genvalue

~
A,

~
& u o, A, = u 0

—w, corresponds to a dark
soliton with the amplitude w moving with the velocity 2A,

[see Eqs. (1.3) and (1.4), where v= w/uo, X=A, /uo].
First of all, we study the soliton creation by an arbi-

trary small driving pulse,
~ u, ~

&& uo. In this case the con-
dition for the soliton generation and parameters of gen-
erated solitons may be obtained in a quite general form.

After the substitution 4'2~%'2e ' we obtain the same
eigenproblem (2.3) but with an initial potential

u(0, t)=uo —e ' u, (t) .

It is also convenient to rewrite the eigenvalue problem for
the linear combinations of the functions, 4 =4, —4z,
and 4+=%,++„

r being the characteristic duration of the driving pulse
u

&
(t), we may obtain an exact result for 5 by means of the

perturbative approach.
According to the condition (2.6), from Eq. (2.4a) we

have

(t, )
—4 ( t,—) i+—+(0)J a(t)dt

6 t4 tdt=0, (2.8)

i.e., 5= —,'[f" a(t)dt] . The same result may be ob-

tained for another discrete eigenvalue A &= —uo(1 —5).
Therefore a small arbitrary pulse u, (t) always gen-

erates two eigenvalues of the discrete spectrum,

A, , 2=+10=+uo(1 —
—,'b, ),

at the condition [see Eq. (2.9)]

b, —:Re e ' | u, (t)dt &0.

(2.10)

(2.11)

As follows from the inverse scattering transform, " the
eigenvalues (2.10) correspond to a pair of dark solitons
with the equa1 amplitudes uoh and opposite velocities
+2)j.o [see Eqs. (1.3) and (1.4)]. Therefore, for b, )0, the
dark-pulse solitons may be created without a threshold,
i.e., by an infinitely small driving pulse (see Fig. 1). This
analytical result explains some experimental observations
by Krokel et a/. ' who, in particular, did not notice any
threshold power for dark-soliton generation. Our analyt-
ical results are also related to results of numerical simula-
tions of the dark-soliton generation for a special dark
pulse by Blow and Doran. '

where t „ is an arbitrary large value [t, ))r but
t„«(u05) ' ]. From Eq. (2.4b) it follows that for
t -t, u

&

=0 and, as a result, in the lowest approximation
we have 4 = —(i/2uo)(B/Bt)4+. Using the asymptot-
ic solutions (2.5), from Eq. (2.8) we obtain in the lowest
order in 5 the equation

iv'254+(0) i&—+(0)j a(t)dt [1+0(V5)]=0,
(2.9)

a (t) =Re[u, (t)e ' ], b (t) = Im[ u, (t)e ' ] .

For the small-intensity input pulse u, (t) it is natural to
present the eigen values of the discrete spectrum as
A, , 2=+uo(1 —5). Here 5 is a positive parameter because
for 5 &0 eigenvalues of the discrete spectrum are absent.
Solutions of the eigenproblem (2.4) at u

&

=0 and
A, ,

=uo(1 —5) may be presented as follows (5 & 0):

(u)= uO= const

Iu)= u&- const

(4+ )o- exp[+ l tl uo&5(2 —5)]

=exp(+
I tlu, v'25) .

For u, &0 and the conditions

u O5 « max
~ u,

(2.5)

(2.6)
)u)= u~- const

vuo6 « 1

FIG. 1. Decay of an arbitrary small pulse into two dark soli-
tons. The condition (2.11) is valid.
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It is interesting to note that our results (2.10) and (2.11)
for the eigenproblem (2.3) have an analog with the
famous Peierls problem in quantum mechanics: A one-
dimensional well always contains a discrete level of ener-

gy.

2. Small random pulses

It is interesting to consider the generation of dark soli-
tons by a random driving pulse which may be described
by the random function,

has the sense of the probability to generate two dark soli-
tons with equal amplitudes u lying in the interval
uopoln & w (uopon T. he total probability of the soliton
generation by a small random driving pulse may be found
as

p = lim P„=—,
'

In the case of nonsmall values p(t) this probability will be
more than —,

' because eigenvalues may also appear for
negative g.

p(t)=Re[u, (t)e "], (2. 12) 3. Phase-modulated pulses

so that (p(t)) =0. The angle brackets mean the averag-
ing over all realizations of p(t). According to Eqs. (2.10)
and (2.11), in the case of small-intensity pulses the soliton
generation is defined by the sign of the random value

g= f p(t)dt .

The probability density P ( g ) of the random values g may
be easily calculated in the case of the Gaussian function
p(t), i.e., (p(t)p(t')) =8(t, t'), B(0,0)=/3O and B(t, t') is
a Gaussian binary correlator.

For the Gaussian random function p(t) the probability
density P(g) may be easily connected with the charac-
teristic functional F (k),

p(t) (5 t f =)d(()dk—

k ~'kgF
2V oc

A simple, but rather important case of the soliton gen-
eration is the phase-modulated input pulse,

'uoe' Itl & r
p(~) ), ) ( (2.16)

If the initial pulse is not very large, we may consider the
driving pulse using the results (2.10) and (2.11). After
simple transformations, one can obtain, from Eq. (2.11),

b =2uo dt sin —,
' t —a (2.17)

i
It is important to note that 6 ~ 0 for any modulation pro-
cess. Therefore, according to the condition (2.11), this
type of input pulse will always produce two dark solitons
with equal amplitudes. For example, in the case
p(t) =p= const, we have a positive value

b, =4uo~ sin [(/3 —a)/2]

where (see, e.g. , Ref. 18)

F( )=Ikexp —ik f ()(t)d (

k=exp — f f8(t, t')dt dt'
oc

After simple calculations we obtain the result

P(g) = exp( g /28), —1

~/2~8

where

8:—f f8 (t, t')dt dt': , /3,'t,' . ——

(2.14)

for any difference p —a, so that the soliton amplitudes are
equal to 4u or sin [(p—a)/2]. This result is valid provid-
ed uoz(&1.

At last, let us consider a small fluctuation of the input
phase, i.e., P(t)=a+a, (t) for ItI &r, where the following
condition for smallness of the deviation must hold:
Iuo f" a, (t)dtI « l. Using the general formula (2.17),
it is easy to obtain at the above condition
6=(uo/2) f" a, (t)dt. The same result may be ob-

tained in the framework of the direct consideration used
in Sec. II A 1.

B. Boxlike dark pulse

1. General case

/30n n 1I'„= I' d =
—,
' erf ——erf

0 C C

(2.15)

where

2 X t2erfx= e ' dt .

According to Eqs. (2.10) and (2.11), the probability (2.15)

The probability density (2.14) describes all statistical
characteristics of the soliton generation by the small-
intensity random Gaussian pulse. For example, the prob-
ability P„ to find the value g in the region poln & g & pon
with an arbitrary integer n is the following:

Another important case which may be treated analyti-
cally is a boxlike dark pulse. The case is mathematically
interesting and has an exact solution. Let us consider the
case of an even-symmetry boxlike pulse, when the bound-
ary condition at z=0 has the equal asymptotic behavior
at t ~+~ (see Fig. 2),

u, e",
u(0, t)= '

uoe' u, (t)=u(—t), ItI &r, (2.18)

where u, is a complex constant,
I u, I

& uo.
The solution of the eigenproblern (2.3) with the poten-

tial (2.18) may be obtained in a closed form. In particu-
lar, the discrete spectrum is defined by the transcendent
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[u(t, o 1)

UO

FIG. 2. A boxlike dark input pulse.

uocos(2Ar) =+A, .

For small u, Eq. (2.19) has two real solutions,

g, 2=+uo[1 —2r (Reu, e '
) ],

(2.20)

(2.21)

if Re(u, e "))0. The result (2.21) corresponds to our
previous results (2.10) and (2.11). In a more general case
we have a number of dark-soliton pairs with the ampli-
tudes (uo —

A,f)', (uo —
A,z)', . . . , and velocities

+2k, +2kz, . . . , where A, „A,2, . . . are real solutions of
Eq. (2.19). In particular, for ~u

~
&&uo and uor))1 the

number N of the dark-soliton pairs may be estimated as
follows: N-2uoT/n.

equation for real values of the spectral parameter A,

(~u ~'&A, '&u', ):

(A, —uoReu)tan[2r(A, —
~u~ )' )

=[(k —
~u~ )(u —I, )]' ' (2. 19)

In the limit u=O (zero intensity inside the region ~t~ &r)
we have from Eq. (2.19) the eigenvalue problem obtained
by Zakharov and Shabat"

calculating on two edges of the effective pulse, i.e., at
t =+~. The relation may be presented in the form

4( —r;A )=T(r, u, )4(~;A), (2.22)

where T(~, u, ) has the sense of the local transfer matrix
(from t = r to t—=r). Using the standard and straight-
forward calculations of the Jost functions in the ZS eigen-
problem with the input potential shown in Fig. 3, we may
calculate the exact form of the needed transfer matrix
T(r, u, ). Therefore the limit u, ~ co, ~~0 but

~u& =y=const) 0 (2.23)

must lead to the exact definition of the 5-like potentia1.
We do not present the total transfer matrix T(r, u, } be-
cause it is described by a rather cumbersome formula, but
in the limit case we have the following result:

FIG. 3. An effective dark pulse u (0, t) for exact construction
of the 5-function approximation.

2. The 5 function -limit

The most interesting and important limit case of the
boxlike input pulse considered above is the 5-function
pulse which may be described by only one parameter re-
lated to its intensity. To obtain the 5-function limit one
needs to consider an effective boxlike pulse and in the
limit when the total square of this pulse is fixed, its dura-
tion tends to zero and the intensity tends to infinity, one
has to obtain a number of results corresponding to the 5-
function approximation, and also the exact formula for
the form of the 5-like potential. Such a definition is not
unique for the Zakharov-Shabat spectral problem (2.3)
and the amplitude of the 6 function is a functional of its
square (see, e.g. , the similar situation in Refs. 19 and 20).
In the paper we will use the approximation using a box-
like pulse.

To this end, let us consider the effective boxlike input
potential shown in Fig. 3. We must choose u = —u, &0
for

~
t~ & r because below we will use the limit u

&

~ oo (cf.
Figs. 2 and 3). To obtain the exact limit case, we will use

the relation between eigenfunctions

+(t; A. ) =

cosh(2y ) i sinh(2—y )

i sinh(2y) cosh(2y) (2.24)

In the same limit the condition 4( —0;A. ) = Ts+(+0;A, ) is
the matching condition for the 5-function potential

u (O, t) =uo —e5(t} (2.25)

with an unknown e. The direct comparison of the rnatch-
ing conditions for Eq. (2.25) with the result (2.24) leads to
the exact definition of the 5-function input dark pulse,

u (0, t) = uo —25(t)tanhy, (2.26)

where y is defined by Eq. (2.23). As a result, any dark
pulse with a small duration and the square 2y may be de-
scribed as a 5-pulse driving pulse with the intensity
2 tanhy.

The solution of the ZS direct scattering problem (2.3)
with the initial potential (2.26) demonstrates that the po-
tential corresponds to the two eigenvalues of the discrete
spectrum,
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up
~~,2=+

cosh(2y)
(2.27)

z4
(u(ty, ) ) = u~= coltst

so that two dark solitons will be created. These soli-

tons have the equal amplitudes w =(uo —A. )'

=uo~tanh(2y)~ and opposite velocities+2uosech(2y).
To conclude the section, it is interesting to note that

our result (2.27) gives a rather good approximation for

any driving pulse. For example, in the limit y && 1 from
the formula (2.27) it follows

A, , 2
—+uo(1 —2y ),

Iu(t, z)I
z~O

"rp; u(t, z)

(u(t, z}(= const

that is the same as in Eq. (2.10) because

2y = f ' u ((t )dt = b, is the square of the driving pulse.
FIG. 4. Decay of a phase step into a dark soliton, the case

P—a&n

C. Phase steps

The more general case of an odd-symmetry boxlike
pulse is the pulse with unequal phases at t =+ (x) ~ In par-
ticular, experiments by %einer et al. ' utilize a specially
shaped antisymmetric input pulse which closely corre-
sponds to the form of the fundamental dark soliton. The
pulse has a phase difference at its edges which equals m.

%e wi11 consider the simplest example of such a pulse,
i.e., a phase step on a cw background, when

u0e', t (0,
u(O, t)= ';pu0e, t)0. (2.28)

lent

u0e
(

2 g2)1/2
ea+i (u,' —X')'"

u e'~
0

(r A) C

t &0,

—t{u —
A, )'

0 t )0

Using the condition 4 (
—0;A, ) =4+(+O, A, ) we may

find the equation for the discrete spectrum and, as a re-

sult, its single real solution

The eigenfunctions of the ZS spectral problem (2.3) may
be presented as the following:

direct scattering problem (2.3) yields the equation for ei-

genvalues, i.e., the equation for q,

—i132 —iPI —2uP7 siny+2Iq&=(e ' —1)(e ' —1)e (2.30)

(2.31)

which has one or two solutions. For ~~ ~ we have two
solutions

where r —=
~ tz t, ~.

—It is interesting to note that the result
for a step obtained above follows from (2.24) at p2=0,
y= p/2. In the case uor sing &)1 Eq. (2.30) has two in-

dependent solutions which describe two independent
dark solitons. So, the condition uo~t +, t sin(p —/2)
)) 1 is the condition when from the stepwise phase
modulation with N steps the same quantity of dark soli-
tons will arise.

For special cases p2=+p, the general equation (2.30)
has simple representations. Let us consider both these
cases separately.

Case p2 =p, =p. Equation (2.30) may be transformed
into the following equation:

sin (q&
—P/2) —(2uo'sing

sin (P/2)

A, = —uocosy, cp= —,'(p —a) . (2.29)
—u p ' sin( P/2 )

y, z=P/2+sin(P/2)e

The eigenvalue (2.29) corresponds to a dark soliton
with the intensity w =u'~sing~ and the velocity
—2uocosq&. In the case p=a+~ we have a so-called
"black" soliton, i.e., the fundamental (quiescent) pulse
with zero intensity at its center. In another case this soli-
ton will be "gray" so that it has the lower-contrast inten-
sities (see Fig. 4).

To obtain a number of dark solitons by the same way,
one need to choose a cw background with a variable
phase, u (t) =uoe'~(", where, for example, P(t) =a
+ g p e(t —t ), r, &tz « tv. In this case the in-

put background will evolve into X dark solitons, if
periods between the steps ~t +&

—t
~

will be more than
some limit value. To obtain the condition, let us consider
two phase steps on a cw background as an input pulse.

Let us introduce new notation A. = —u 0cosg then
(uo —A. )'~ =uosinq&. For the two steps, when p(t)=a
+p, e(t —t, )+p 6(2t —tz), a simple consideration of the

and for ~~0 we have only one solution,

q&=P —2ucrsin (P/2), 0&P&m. ,

or

y&=P —vr+2uorsin (P/2), vr&P&2vr .

Direct analysis of Eq. (2.31) yields the threshold value at
which the second solution will arise,

r,„,=uo ' ~cotan(p/2)~ . (2.32)

Therefore, for ~ & ~,„„two equal phase steps generate only
one dark soliton corresponding to the value of the spec-
tral parameter A, , = —u 0cos+, . But for ~) v.,h, two dark
solitons will arise, and in the case v. ))~,h, they will be in-

dependent, k(=A, 2= —uocos(p/2). Above the threshold
this new solution may be presented as follows



4000 S. A. GREDESKUL, YU. S. KIVSHAR, AND M. V. YANOVSKAYA 41

yz —-2uo(r —r,„,)sin (P/2), 0&P& m. ,

or

y2 ——m
—2uo(~ —r,„,)sin (P/2), ~ &P & 2~ .

The amplitudes of created dark solitons are related to
values of y as follows: w =uo~sing~, so that the second
dark soliton appears at infinitely small amplitude.

Case P2 = —P, =P. Equation (2.30) takes the form

cos(2y) —cosP —»o«~~a=e
1 —cosP

and always has two solutions. In particular, for ~~~
we obtain y, =P/2, yz =m. —P/2 that yields k, z= —uocos(P/2), but for r~0 we may obtain the result
[(2.10) and (2.19)] directly from Eq. (2.33).

Therefore the quantity and velocities of dark solitons
produced by a step phase modulation is related to the
signs of the steps and the distance between them. In the
case when all steps are positive, the condition
~rj+&

—
rj ~

&&uo ' ~cotan(p~/2) guarantees that the quan-
tity of dark solitons will be equal to that of steps. This
result may be useful for production of dark solitons.

D. Arbitrary random pulse on a cw background

In Sec. IIA2 we have considered the dark-soliton
creation by a small random pulse. The main condition
used in that section was a smallness of the binary correla-
tor 13O of the random pulse. As a result, the small random
pulse generates only two symmetric dark solitons with the
probability density (2.14). In the case of an arbitrary ran-
dom pulse on a cw background ~u~ =uo we have to study
the more general problem and, in particular, the number
of dark solitons is changing. In according with the in-
verse scattering transform (IST) (see Sec. II A), the num-
ber of the solitons N is exactly equal to the quantity of ei-
genvalues lying on the real A, axis in the region ~A,

~

& uo.
Therefore, to find N, we have to calculate the number of
eigenvalues of the discrete spectrum stipulated by the
random pulse.

To describe the situation analytically, let us consider
the ZS eigenproblem (2.3) with the following "potential"
[random input pulse U (t) with the duration r on the cw
background uo]:

uo, t (0, t)w,

lem in our case related to the dark-soliton creation is
determination of the number N of discrete spectrum ei-
genvalues lying in the region ~A,

~
&uo. The similar prob-

lem was discussed in Ref. 21 (see also references therein).
We present the corresponding calculations related to Eqs.
(2.3) and (2.34) in Appendix A. Due to the technique de-
scribed we may obtain the value N in a general form (see
Appendix A). Simple analysis yields the following
asymptotic s:

and

N —uor(D/uo)' for D « uo,

N -D~- uow for D —uo,

(2.36)

(2.37)

N-uo~ for D))uo . (2.38)

The results have a simple physical sense. First of all, the
number of eigenvalues lying in the region ~A,

~ uo is ex-
actly proportional to the duration ~ of the random pulse
u(t) in all cases; the result is evident. For small intensi-
ties of the random pulse, when D «uo [see Eq. (2.36)],
the number of dark solitons is proportional to dimension-
less parameter (D/uo)', but for D-uo, when random
fluctuations are of the order of the intensity of the cw
background, the influence of the latter decreases. As a
result, in the limit D))uo, i.e., for strong fluctuations,
the result does not depend on D at all [see Eq. (2.38)].

III. DYNAMICS OF DARK PULSES
ON A BACKGROUND OF FINITE EXTENT

A. The shape of an input pulse

As was noted in the Introduction, Krokel et al. ' ob-
served two 0.6-psec dark pulses generated by a single
0.3-psec input dark pulse (driving pulse) which was pro-
duced on a much longer duration (100-psec) bright pulse
in the positive GVD region. To describe the experimen-
tal situation, we consider dark-pulse generation and dy-
namics on a background of finite extent. For simplicity,
we consider an even-symmetry pulse (see Fig. 5) which
may be presented as a large bright pulse with smoothed
edges and a driving even-symmetry pulse stipulated by an
external driving force (see Ref. 12) in the moment t=0

u(t)= '

Bo+U(t), 0&r &r, (2.34)

where, for simplicity, we use the real functions uo and
u (t). Here v (t) is a random Gaussian function describing
a white noise,

const

(v(t)v(0)) =2D6(t) . (2.35)

Considering the system (2.3) with the potential [(2.34)
and (2.35)] as a function of the spatial variable t yields the
problem which is similar to the well-known problem con-
sidered in the theory of one-dimensional disordered sys-
tems (see, e.g. , Ref. 21, Chap. 2, Sec. 8). The main prob-

FIG. 5. Dark input pulse on a background of finite extent.
The large background pulse {solid line) is described as a bright
pulse in the semiclassical {WKB-type) limit, the driving pulse
{dashed line) is considered in the 6-function approximation.
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According to results of Sec. IIB2, we will use for this
driving pulse the 5-function approximation. So, a realis-
tic input pulse which we wi11 consider may be presented
as a simple superposition of two pulses, e —qI = —

ikey

+iu (t)ql
a
at

(3.2)

u (0, t) = u ( t) —25( t )tanhy, (3.1) [where, for a simplicity, we suppose that u (t) in Eq. (3.1)
is a real function], which becomes (after eliminating 1p2)

where u (t) is a large bright pulse which we will describe
in the WKB-type approximation, and the last term
(-tanhy) in the right-hand side (rhs) of Eq. (3.1) is the
6-function pulse which represents an arbitrary driving
pulse with the square 2y. We suppose that u (t) is a real
function, and it is constant uo in the region ~t~ T (see
Fig. 5), where T is a large parameter. So, in the case
T~ ~ we have to obtain results for a cw background.

B. Semiclassical limit

To describe the dynamics of the long bright pulse, the
ZS scattering problem (2.3) must be solved in the so-
called semiclassical limit using WKB-type expansions. A
similar approach but for the effect of a smooth phase
modulation on the soliton generation was used in the pa-
per by Lewis for another version of the NLS equation
(in the case of an anormal dispersion).

The semiclassical limit of the ZS eigenproblem equa-
tions (2.3) is defined to be the situation where the Jost
functions %,(t, A, ) and 42(t, A, ) oscillate far more rapidly
than the envelope of the potential function u (t) [see Eq.
(3.1)]. In this case WKB-type solutions can be construct-
ed for both t&0 and t) 0 regions separately, which are
local plane waves with a wavelength determined by the
local value of the potential. According to Refs. 17 and
22, it is convenient to formalize the stated approximation
by introducing an ordering parameter, e, supposed small
with respect to all other quantities. Therefore we rescale
such that B,~eB„reversible at the end of the calcula-
tions. Hence Eq. (2.3) is rewritten in the following form:

4', (t,A)e.'"'", %2(t, A, ) 0 at t (3.4)

and the matching condition at the point t=0, where an
additional 6-function pulse is installed; see Fig. 5. The
scattering data may be obtained using the other boundary
conditions,

4,(t, A)~a ,(A, )e' '/',

%2(t, A, ) b(A, , t)e '~'" at t + ~ .
(3.5)

In the final formulas we must put @=1 to obtain the re-
sults in the previous scale. The described procedure is
the same as used in the semiclassical limit of quantum
mechanics (see more details in Ref. 17).

Omitting a number of cumbersome (but rather stan-
dard from the viewpoint of the well-known WKB tech-
nique in the quantum-mechanics approximation) formu-
las we present the results for the eigenfunctions of the ZS
scattering problem with the potential shown in Fig. 5
(solid line). For A. & u (t),

2 —ql, + —ieA. +A, +~,u~ %, =0 .
Bt2 u r)t u

(3.3)

So, at any order in e we can determine +,(t, A. ) up to a
pair of constants A o and 80, and, as a result, we can also
derive %2(t, k, ) using the first of Eqs. (3.2) in the same or-
der in e. The same procedure must be fulfilled for two re-
gions t(0 and t)0 separately, so that two sets of con-
stants arise, Ao 80 . ~ . , and Ao 80 . . . . These
constant values are then given by the boundary condi-
tions

1 Q
~ t 2 2 1/2t

2 2 1/2 2 2 1/2 1/2 g —(g2 — 2)1/2[2(A, —u ) [A, —(A, —u ) ]I u (3.6a)

1 Q
2 2 1/2+2(t ~)

2 2 1/2 2 2 1/2 1/2 g+(g2 2)1/2 P
[
—2(X —u ) [k—(k —u ) ]]

For A, & u (t),

(3.6b)

1 0 t 2 2 1/2
2 2 1/2 2 2 1/2 1/2 g+ '( 2 g2)1/2 exP dt (u —

A, )
[ 2i(u —A. ) [A, +i(u ——A. ) ]I

(3.7a)

1 t 2 2 1/2+2( ~) . 2 2 1/2 . 2 2 1/2 1/2 g ~ 2 g2)1/2 e P[2i (u —k ) [A.—i (u —
A. ) ])

(3.7b)

Therefore, in the limit t ~+~ from Eqs. (3.6) and (3.7) we have

+,(t, x)
t~+oo

1
t A. t + t re

e (3.8)
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where

4+ =— lim
f —++ oo

+ f dr'[(x' —u')'" —x]—lair.
0

to being a turning point (see Fig. 5).
Using the matching conditions at the point t =to, t = to—, and t=0 (for the additional 5-function pulse), we obtain

the result for a (A. )

exp[i(4++4 )]
a (A. ) =—

2(2(u 2 $2)1/2
z —1 z +1

i cosh(2y) +2sinh(2y) +i sinh(2y)
z z

z —1
2

+i (g /4) cosh(2y) +2i sinh(2y)
z

(3.9)

where

T
g —=exp 2 f—[u o (r ) —A, ]'izdt

0
(3.10)

term in Eq. (3.12) yields small addenda to (3.13) and
(3.14),

M, = —iguo '(uo —Ao), 5z = —zogtanh(2y),
and

z —= (A, /uo)+duo '(u —A. )'~ (3.1 1)

i.e., for zeros of a (A, ) we have the result

A. =+u osech(2y )
—iuop tanh(2y ) . (3.15)

In the formula (3.10) we put approximately to = T.
The results (3.9)—(3.11) are obtained in the WKB-type

approximation when the value g is rather small, i.e.,
T»1.

C. Quasistationary states and the inverse scattering transform

According to the IST (Refs. 23 and 24), to find which
type of initial function generates solitons, one has to find
real eigenvalues of the ZS scattering problem (2.3) which
are solutions of the equation a (A, ) =0. It is easy to prove
that real solutions of the above equation are absent, so
that solitons are absent, too. That is the well-known re-
sult in the inverse problem for the NI.S Eq. (1.1) at
0 = —1 and localized initial pulses (see, e.g. , Ref. 24).
But due to the 5-function hole in the bright pulse, our
problem has a number of features. Let us investigate the
equation a (A. ) =0 with more accuracy. In the linear ap-
proximation in g (the strong WKB limit and very large
T) the equation a (k)=0 may be rewritten as follows:

i +2tanh(2y)+igtanh(2y) =0 .
z —1 z +1

(3.12)

In the zeroth approximation in g we obtain the following
results:

a(A, )
$2

(A.RAo) +5
(3.16)

where

5—:(g/uo )(u o
—Ao) =guotanh(2y ) (3.17)

and has two maxima (see Fig. 6 for A, )0). In the limit
5«1 (g«1) the function (3.16) corresponds to two 5-
functions with intensities m5. In the points A, =+k0 the
relation la (+A,o) l

=1 is valid.
The contribution of the continuous spectrum Nd relat-

ed to the imaginary part of the zeros into the total pulse

The small additional term in Eq. (3.15) shifts the zeros
into the lower half of the complex plane k, which is why
these zeros do not exactly match the eigenvalues and do
not correspond to exact solitons. But, on the other hand,
these values in the limit (~0 go to the real axis and
strongly influence the continuous spectrum of the spec-
tral problem in the vicinities of the points k=+Ap.
Therefore we may denote that situation as appearance of
quasistationary states in the inverse scattering problem.

The Jost coefficient a (A, ) in the vicinities of the points
A, =+A,o may be presented as follows:

A. =+A.o=+uosech(2y ),
zo=i tanh(2y)+sech(2y) .

(3.13)

(3.14)

The values of the spectral parameter k the same as in the
problem considered in Sec. IIB2 [cf. Eqs. (3.13) and
(2.29)], i.e., the 5-function pulse on a cw background, be-
cause at /=0 the ends of the background tend to infinity.
Therefore the semiclassical parameter g characterizes a
deviation of zeros of a (A. ) from the real axis A, due to the
background of finite extent. Taking into account the last

FIG. 6. The function la(k)l in the vicinity of the point
A. = A,o, the part for k & 0 is symmetric.
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intensity,

N =(I/ir) f dk, in~a(A. )~

is also a small value,

Q2

Nz = ( I /n ) J d l, ln
()(,—Ao) +5

(3.18)

It means that at the points l=+)(,o in the limit 5~0 the
exact eigenvalues of the discrete spectrum will appear,
and the input pulse mill generate tmo dark solitons. But
for 5%0 these dark pulses are not exact dark solitons,
and for very large time they will decay into wave trains
according to the formula of IST (Ref. 24),

~u(z, t)~'= »~a(~)~2, ~= —t/4. .2 1

4mz
(3.19)

The exact investigation of the asymptotic
~
u (z, t) for

large z in the case of two sharp peaks of ~a(k)~ is a
very difficult problem. The corresponding calculations
must demonstrate a relation between nonsoliton and soli-
ton wave packets when the paraineter g tends to zero.

For 5%0 the generated dark pulses evolve slowly due
to a broadening of the background. Numerical study of
the problem was given by Tomlinson et al. An approx-
imate analytical description of the same effect is present-
ed below in Sec. VA.

IV. RANDOM PULSE

A very interesting situation arises when the input pulse
u (O, t) in an optical fiber is a stochastic pulse without a
background. In this case we will consider a model input
pulse when the "initial" potential u (0, t) may be present-
ed as a piecewise function,

0, t(0, t&T,
u(t), 0&t & T, (4.1)

where u (t) is, for simplicity, a real random function with
a zero mean value and the correlator,

B(t)=(u(t+t')u(t')) . (4.2)

As a result, we have the ZS eigenproblem with a random
input pulse for zero "boundary" conditions at t ~+~.

Spectral properties of the ZS scattering problem (2.3)
with a Markov random potential [(4.1) and (4.2)] defined
for ~)t) & ~ and the properties of the corresponding
scattering data for the same pulse are similar to those of
the (linear) Schrodinger equation used in quantum
mechanics. ' The latter equation is used in the theory of
one-dimensional disordered solids, and the general results
and technique for the investigations are described in Ref.
21. To this end, we do not present in the section detailed
calculations for the ZS scattering problem, and will for-
mulate only our main results related to the optical prob-
lem under consideration. The major part of the results is
based on the effective Fokker-Planck (FP) equation; its
derivation is presented in Appendix B.

The spectrum of the scattering problein (2.3) with the
Markov random potential [(4.1) and (4.2)] is a pure point,

and all eigenstates are exponentially localized with the lo-
calization time ro(A, ). That is reflected in the behavior of
scattering characteristics. Let us introduce the transmit-
ted, t, , and reflected, r, amplitudes by the relations [cf.
Eq. (B1)]

%(t &0)= %(t &0)=
tie

re I k, t

tk, te

Then the transmission coefficient ~t(~ of a very large
pulse [T&)~0(A, )] is exponentially small in T/~0 with a
probability exponentially close to unity:

~)t) ~

=1—
~r~ -exp[ —T/1.0(A, )] . (4.3)

Let up and ~, be characteristic scales of the correlation
function 8(t). In respect to slowly varying (with time
scales which much more than r, ) functions, the function
u (t) is a 5-correlated one,

8 (t) =2D5(t), D -u02r, . (4.4)

More exactly, in the case up7 (&1 we may always con-
sider u (t) as a Gaussian white noise in the spectral region

~
A. ~r, && l. If, additionally, the condition (k~ &)D is valid

(the region of large "energy" in the white-noise approxi-
mation), then the localization time ro(A, ) does not depend
on the spectral parameter and may be presented as fol-
lows (see Appendix B):

1
ro(A, ) =

2D
(4.5)

Taking into account the above-mentioned results (based
on Appendix B) we will demonstrate that the spectrum of
the ZS scattering problem (2.3) with the potential (4.1),
(4.2), and (4.4) under the conditions u o~, && 1 and
DT )) 1 has quasistationary states in the region

D «A,
~

&&,r', (4.6)

1 —r("() )r(2)(z) =0,
the transmission and reflection coefficients tend to
inanity. These states have no incident waves, and have
the sense of decomposing states which outside of the seg-
ment [O, T] are described only as leaving waves. If the
values Imk. „are small in comparison with ReA, „,then the
states are quasistationary ones.

For the problem under consideration, in the case

and find their characteristics. (It is important to note
that in the case of the linear Schrodinger equation the
similar states were found in Ref. 26.)

The transmission coefficient ~t, ~
for the segment [O,T]

may be presented as follows:

(1) (2) i2
1 1

r(1)r(2) [2

where t", ' and r" ' are corresponding amplitudes of
half segments [O,T/2] and [T/2, T], respectively, for
wave propagation to the left and to the right. At com-
plex values A,„of the spectral parameter which are solu-
tions of the equation
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FIG. 7. The even function ~a(k}~ ' for a random input pulse
without a background. Peaks correspond to quasistationary
states which in the limit T~ ~ yields exactly eigenvalues of the
discrete spectrum. The axis k) 0 is presented only.

T))ro(k) the product r'"r I due to the estimation (4.3)
is exponentially close to unity. As a result, the complex
values of the spectral parameter corresponding to the
quasistationary states are near the real axis A, , but at

lead to new terms in the NLS equation. If amplitudes of
the terms may be considered as small parameters (this is
usually valid for optical fibers), their influence on soliton
dynamics may be considered in the framework of pertur-
bative approaches. The most effective and elaborated
method to study soliton dynamics under perturbations is
the perturbation theory for solitons based on the IST.
Due to a general outline of the method we may obtain
equations for evolution of soliton parameters and a radia-
tion generated by solitons in the case of the NLS equation
with the positive GVD when the solitons are dark ones.
But the most sufficient assumption of the theory is un-
changing of boundary conditions, that is not valid for
real systems. Indeed, according to optical experi-
ments, ' ' dark-pulse solitons were observed as holes on
a background of finite extent. That is why the sufficient
effect in the dark-soliton dynamics is the influence of
dispersive broadening of the finite-extent background on
the parameters of dark solitons.

arg[r'"(l, „ lr' '(A,„))=27m . (4.7)
A. Broadening of a finite-extent background

A more detailed analysis, which is based on the study
of the phase P of the reflection amplitude [see Eq. (B6)] as
a function of A, , allows us to obtain the following results:

Rek, „= (4.&)

Imk, „—exp( DT/2) —. (4.9)

As a result, the function ~a(k) =~t, (X)~ which de-
scribes the spectral density of the pulse intensity [see,
e.g. , Eq. (3.18)] has in the region (4.6) a set of equidistant,

6A,„=Re(A, „—A,„,) = rr/T, —

In experiments by Krokel et al. ' and Weiner et al. '

dark pulses were produced on a background of finite ex-
tent; the latter had the form of a large bright pulse.
Therefore the influence of the broadening background on
dynamics of dark solitons is the very important effect in
real experiments. Some results related to the problem
were obtained by numerical calculations in Ref. 25. In
this section we consider the effects analytically.

As was demonstrated by the inverse scattering trans-
form, a bright pulse (nonlinear wave packet) in the re-
gion of the positive GVD will broaden in accordance
with the asymptotic formula [cf. (3.19)]

and exponentially narrow,

5A, -(2T) 'exp( DT/2), —
~
u (z, t)

~

' = 1n
~
a ( t /4z) ~', z, —t » 1,1

4mz
(5.1)

peaks (see Fig. 7). Those peaks in the limit T))ro are
similar to those for dark pulses. In the case T~ ~ all
the states will be localized, so the random pulse decays
into dark solitons only. That situation is similar to the
case considered in Secs. II D and III: the role of the cw
background is played by the parameter (D/r, )'~; the pa-
rameter T is the duration of the effective background.

To conclude the section, we note that the considered
quasistationary states must play an important role in the
study of optical pulses in the normal dispersion region.
Characteristics of such pulses with randomly varying pa-
rameters must demonstrate dependences related to prop-
erties of dark solitons. We are sure that the same situa-
tion was observed in Ref. 27 where a decay of a large
bright pulse with a randomly changing envelope demon-
strated in the normal GVD region creation of dark pulses
which had properties of dark solitons.

V. DARK SOLITONS UNDER PERTURBATIONS

where a(A, ) is the Jost coefficient for the total potential
used in the inverse scattering transformations (e.g. , the
pulse shown in Fig. 5). The result (5.1) is the "nonlinear
generalization" of the well-known formula for a broaden-
ing linear wave packet under a dispersion. Indeed, let us
consider the case of a small-amplitude input pulse u (0, t)
in the ZS eigenproblem (2.3). In the case max~u~ ((1,
solutions of the ZS eigenproblem may be found by means
of perturbation theory. Simple calculations yield the gen-
eral perturbative expansions in u (0, t),

+,(t, k)=C, e"'—iC3e' 'f dt'u (0, t')e ' ', (5.2a)

%2(t, A, ) =C~e '"+iC4e '"f dt'u *(O, t')e ' '

(5.2b)

To define the constants we use asymptotic relations at
t ~+ ac [see, e.g. , Ref. 24). After simple and straightfor-
ward calcu1ations, we obtain the following result for the
Jost coefficient b (k) to first order in u (0, t):

In the previous sections we studied the soliton dynam-
ics and soliton creation in the framework of the exactly
integrable NLS equation (1.1). But in real optical fibers
there is a number of additional effects which, as a rule,

~b (A. )
~

= f dt'u (O, t')e (5.3)

Using the relation of the IST, ~a~ =1+~b~, we obtain
from Eq. (5.3) the asymptotic representation for ~u (z, t) ~,
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a) 2
dt lu ( O t I )e itt'/2z

4mz
(5.4)

2.0

It is easy to verify that (5.4) is exactly the result of the
linear theory. Indeed, let us find the asymptotic expan-
sion of the general solution 1.5

u (z, t) = dk U(k) ikt+ik z
~ ~ 2

277
(5.5)

W l'&. 76

of the linearized NLS equation iu, —u« =0 correspond-
ing to the positive GVD, here U(k) being the Fourier
transformation of the input pulse u(O, t). In the limit
t, z )) I and t//z fixed, we may obtain from Eq. (5.5) the
well-known result,

1.0

p 5

u (z, t)= 1
U eit /4Z&i7I/42

2i/nz 2z
(5.6)

10
l

15
I

20

const
u (t,z) = —,const-1

V'z
(5.7)

for large z. As a result, in the problem of dark-pulse soli-
ton generation we may simply take uo-z ' in the gen-
eral formulas obtained for the case of a cw background.
Our estimations will be valid for a very large (but finite)
background.

Therefore, in accordance with Eqs. (1.3) and (1.4), the
duration of the dark soliton is proportional to

(u )
1 z l/2

and its intensity defined as

I, =max(uo —iui )

is proportional to

r, —u'v'-z

(5.8)

(5.9)

(5.10)

In the result, the value IH, is not dependent on z. The
latter was obtained as an approximate numerical result in
Ref. 25 for the case of odd and even dark pulses produced
on a background of finite extent. Our results (5.8) and
(5.9) estimate analytically the changing of the soliton pa-
rameters along a fiber for the broadening background.

It is interesting to compare our analytical results and
numerical data obtained in Ref. 25. Let us choose the
dependences of the soliton parameters in the form

Taking into account that

U(k)= I dt'u(O, t')e

we obtain directly the result (5.4).
So, in the general case of an arbitrary bright (nonsoli-

ton) pulse u (z, t) the following estimation is valid:

FIG. 8. The comparison of analytical [formulas (5.11) with

ct =0.79 and ci =4.5] (solid lines) and numerical (circles from
Ref. 25) results for the dark-soliton duration ~, and its intensity
I, vs the normalized distance along a fiber. The constants c]
and c2 are calculated at z=15.

data. Thus, in the presence of dispersive broadening of
the finite-extent background dark pulses adiabatically
maintain their main soliton characteristics as the back-
ground intensity decreases along a fiber.

B. Dissipative losses

i — +2iui u =eR (u),Q

Bz
(5.12)

eR (u) being a perturbation with a small e Using s.imple
transformations we may obtain the following integral re-
lation:

In real experiments there are additional dissipative
losses acting on pulses in fibers. As is well known, due to
the dissipative losses the amplitude of the bright soliton
decreases as -exp( —2yz) along a fiber, y being a dissi-

pative coefficient (see, e.g. , Ref. 28). In the case of a dark
soliton along with a changing of soliton parameters there
is a dissipation-induced decay of a background. That is
why the general solution of the problem with the evolving
background of finite extent is difficult. We briefly discuss
the problem assuming the changing background in the
presence of the dissipation (without a discussion of its
origin).

In the case of a perturbation the NLS equation may be
presented in the form [cf. (1.1)]

w, =c)&z, I, =c2/z, (5.1 1)

where c, and c2 are unknown constants. Using the nu-
merical data for z= 15 (Fig. 7 in Ref. 25), we have calcu-
lated the following values: c, =0.79 and c2=4.5. The
values allow us to present analytical dependences (5.11)
on the figure (Fig. 8) together with numerical points (cir-
cles on Fig. 8). As a result, there is a rather good agree-
ment between analytical formulas (5.11) and numerical

ie J dt—u*R (u)+ie* f dt uR "(U) .

(5.13)

If we assume that the background uo is changed only,
then in the case of dissipative losses, eR (u) = —yu, it is
easy to obtain directly from Eqs. (1.3), (1.4), and (5.13)



S. A. GREDESKUL, YU. S. KIVSHAR, AND M. V. YANOVSKAYA 41

the simple equation

(5.14)

which describes a dissipation-induced decay of the dark
soliton r, =r, (0)exp(yz). When the soliton intensity I,
decreases as I(0)exp( —2yz), the soliton accelerates be-
cause the velocity 2A. =2(uQ —v )'~ tends to the limit
value. The situation qualitatively differs from the case of
a bright optical soliton; in the latter case the soliton ve-
locity is constant.

dark solitons with the probability p ~
—,'. The latter, prob-

ably, will make impossible the effective use of dark soli-
tons in optical communication systems directly. On the
other hand, the creation of dark solitons without a
threshold stipulates their importance in dynamics of opti-
cal pulses in the normal GVD region of single-mode opti-
cal fibers: For rather long irregular pulses without a
background most of the "dark" intensity (the deviation
from a mean intensity of the pulse) is related to dark soli-
tons.

VI. CONCLUSIONS

In conclusion, we briefly summarize our results. In the
framework of the NLS equation that describes the propa-
gation of short optical pulses in single-mode optical fibers
in the normal GVD region, we considered the problem of
dark-soliton creation by a driving input pulse on a cw
background. We demonstrated that dark solitons may be
created as pairs by an arbitrary dark pulse without a
power threshold (see also Ref. 29). Additionally, the
driving pulse may be approximately presented with a
good accuracy by the effective 5-function dark pulse on a
cw background. As a result of the above conclusion, a
long stochastic pulse decays into a set of dark pulses
which are similar to dark solitons in the limit of infinite
extension of the input random pulse.

Besides, we proposed a new (and rather simple) way to
generate dark solitons in optical fibers. Using the inverse
scattering transform, we demonstrated that dark solitons
will always be produced by changing of a cw background
phase only (the so-called phase modulation of the input
pulse). In the case of a phase step we obtained both
"black" and "gray" dark solitons; the former, i.e., the
fundamental dark soliton with the zero intensity in its
center, will arise when the step is exactly equal to m. As
it seems for us, this way may be more simple than the
preparation of a special input pulse as in Ref. 14.

The mentioned experiments' ' produced dark solitons
from a driving dark pulse on a background of finite ex-
tent. We studied an effective input pulse of similar shape
and demonstrated that in terms of the inverse scattering
transform the generated dark pulses correspond not to
the bound states, but to the quasistationary states, and
their motion is similar to the motion of the NLS equation
solitons with slowly decreasing amplitudes. The pulses
adiabatically maintain their soliton characteristics as the
background evolves, in particular, if the background un-
dergoes a dispersive broadening, the duration of the dark
soliton ~, is proportional to z' along a fiber, so that the
value I,~, is approximately equal to a constant, I, being
the dark-soliton intensity.

Thus the above results for dark-soliton generation and
dynamics in optical fibers lead to important conclusions.
One can easily create dark solitons in optical fibers by a
small driving pulse or a phase modulation of a back-
ground in the form of a rather long bright pulse, but, on
the other hand, small (random or systematic) fluctuations
acting on dark pulses will create additional secondary
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APPENDIX A: THE NUMBER OF DARK SOLITONS
GENERATED BY A RANDOM PULSE

(v(t)v(0)) =2D5(t), (A2)

where r is the pulse duration and v (t) is the white noise.
In our consideration we use the technique presented in
Ref. 21.

For a rather long pulse the number of the eigenvalues
is approximately equal to '

%=7JV(uQ uQ)

where JV(uQ, —uQ) is the quantity of the eigenvalues in
the region for a unit "length. " For simplicity, we consid-
er the Gaussian white noise, in the case the latter relation
has the form

X=—2''(uQ, O) . (A3)

For localized eigenvalues of the ZS eigenproblem it is
convenient to present the eigenfunctions in the form
%z=O&e '+, then the phase g evolves according to the
equation

dg = —
A, +[uQ+v(t)]cos(2g) .

dt

The phase y has this important property: its derivation
in respect to the spectral parameter A, in each point of t
has a constant sign.

Following the general theory (Ref. 21, Chap. 2, Secs.
6.1 and 6.2), the number of eigenvalues on the unit length
may be rewritten as follows:

In this appendix we estimate the number of dark soli-
tons produced by a random pulse on a cw background
~u~ =uQ. The value is exactly equal to the number of ei-
genvalues of the discrete spectrum lying in the region
~A.

~

& uQ of the ZS eigenproblem (2.3) with the "potential"
[cf. (2.34) and (2.35)]:

uo, t &0, t)w,
(A 1)
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p (y) =p (y+~),
and then, using the normalized condition

p qdy=1,

(A5)

we obtain the flux J(A, ), and, as a result, the number of
eigenvalues JV(A, , O}.

The general problem for calculation of JV(X, O) in the
case of systems which are similar to the ZS eigenproblem
(2.3) was solved in Refs. 30—32 (see also Ref. 21, Chap. 2,
Sec. 8). In this appendix we calculate the value JV(u0, 0)
which describes the total number of the eigenvalues.

If A. =uo in Eq. (A4), then the solution of the corre-
sponding equation, which has the property (A5), may be
presented in the form

p(g)=- J("0} m exp[R (y) R(y')]—
2 dcp

2D —~14 cos~( 2p' )
(A6)

W(x, o)=
I J(x)I,

where J (A. ) is the stationary flux of the probability densi-
ty (PD) p(y). The Fokker-Planck equation for the PD
p (t, p) has the form (cf. Ref. 21)

ap(rq) a+ [[ X—+uocos(2qr)]p(t, cp)I
Bt

=2D cos(2y) [p (t, tp)cos(2g&)]
a a

a/& ap

and the flux J(A, ) is equal to the following:

J(A)=[ —
A, +uocos(2tp)]p 2D c—os(2(p) [p cos(2p)] .

a

ag

(A4)

The relation (A4) is the equation for the stationary PD
p (y). We have to find its n.-periodic solution,

APPENDIX B: DERIVATION
OF THE FOKKER-PLANCK EQUATION

In this appendix we present an exact derivation of the
effective FP equation related to the ZS eigenproblem with
the random input pulse (4.1) to (4.3). The calculations
described below allow us to obtain the FP equation in the
form which is known in the theory of disordered systems
(see Ref. 21); that is why we may directly use those re-
sults.

To describe statistical properties of the problem under
consideration, we seek the solution of Eq. (2.3) in the
form

4(r, i, }= t &0, (B1a)

and

+(i, A, )=
e Ikt

e
(Blb)

+,(t, 7 )

q'(tA)= q, t A
0&t&T (B2)

Then, using the invariant imbedding method' we may
obtain from the set of equations for 4', and %2 defined
above in (B2) the equation for the ratio

[see (2.36)]. At last, for D »uo the integral has the am-

plitude of the order of D/uv and its width —l. As a re-

sult, we have the formula

N uo7 D ))uo

which coincides with (A8). The latter has the simple
physical explanation. For D -uo fluctuations strongly
change a gap in the initial spectrum [at v (t) =0], and for
more large intensities the situation is the same.

for n/4 & (p &—n. /.4, and a similar formula for
m/4&p&3m. /4 after replacing n/4 by —m/. 4 in (A6).
Here

r(r) =4,(t, A, )/%, (t, 1, )

in the following form (see also Refs. 32 and 33):

(B3)

R (q&)=—

d =D/uo . —

tan(2y) —ln
1+tang
1 —tang

»Icos(2p) I

=2i Aiu (t)r ,
—iu (t)r—1 dr

r dt

with the initial condition

(B4)

I
J(u o ) I

—uo(D /uo }' (A7)

Straightforward but rather cumbersome analysis yields
that in the limit d «1 the integral in Eq. (A6) is a spike
function of g with the amplitude and width of the order
of d' . The latter lead to the estimation

r(t =0)=0 . (B5)

The stochastic Eq. (B4) is the fundamental equation for
the study of the stochastic properties of the input pulse.

Let us introduce the notation

&.e.,

N-uo~(D/uo)' ', D «uo

r (t) =exp[ —w (t)+i/(t)]
and then Eq. (B4) takes the form

(B6)

N —D~-uo~, D —uo (A8)

[see (2.35)]. In the case D —uo the integral in (A6) has no
parameters and may be estimated as follows:

=sinhw( —iue' +iue ' ),
dt

dP =2k. +coshw( —ue'~ —ue '~) .
dt

(B7a)

(B7b)
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The first term in Eq. (87b) is a regular addendum to the
phase P. Taking into account standard approaches, we

may average the equations on the fast phase variable 2A, t.
If we substitute

sponding to Eq. (4.9) with the potential (812),

ro
' = [sinh wP(w, t)] .

aI (w t) a'
BN

(813)

$=2r(.t +9, (88) Here the time parameter

0 being a slowly varying value, after averaging we may
obtain a single stochastic equation for N,

IN =2D sinhw coshw + V(t)sinhw,
dt

(89)

and

V(t)= iu,—(t)e' +iu i (t)e

u (O, t) =u ~(t)e ' '+ u
&

(t)e

(810)

(811)

As a result,

( V(t) V(t')) =4D5(t t') . — (812)

where the effective potential V(t) is related to the ran-
dom pulse u (t) as follows:

so= 1/2D (814)

has the sense of the localization "length, "which does not
depend on the spectral parameter A.. The FP equation
(813) with the localization length of another form is well
known in the theory of disordered systems, ' and we may
use directly the general results of that theory.

It is important to note once again that the FP equation
(813} is valid for a number of conditions. If we denote
D = u or, (the same estimation is always valid), then those
conditions may be presented as follows.

(i) r, «D, the condition for parameters of the ran-
dom pulse: it must be 6 correlated.

(ii) D « ~r(, ~, the condition for the averaging of Eq.
(87}. As a result, the FP equation [(813) and (814)] is
valid for [cf. (4.6}]

At last, we may directly obtain the FP equation corre- D « r(,
~

&& r, ' . (815)
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