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The distributions, in parameter space, of subcritical Hopf bifurcations and the various attractors
of time-dependent motions of optical bistable systems are investigated systematically. The main em-
phasis is placed on the influence of the variations of the control parameters on the distributions.
We have observed the tristability of large-amplitude regular or chaotic motions, periodic pulsations,
and the stationary state for the parameters where no instability of the stationary solution exists at
all over the complete range of the external field. The problem of how to find the various attractors
and how to reveal chaotic motions by adjusting the control parameters is discussed according to the

numerical results.

I. INTRODUCTION

Since the first observation of optical bistabilityl (OB),
the study of OB systems has become one of the most ac-
tive fields in nonlinear optics.>”> In recent decades,
much attention has been attracted by the instabilities and
chaotic motions manifested in the OB systems.” !> The
interest is due to both practical and theoretical reasons.
Practically, it is of crucial importance to understand the
instabilities and various erratic motions of OB in order to
design optical bistable devices possessing required func-
tions. Theoretically, the OB systems are used as a good
example to show the rich characteristic behaviors of non-
linear dynamic systems.

In this paper we focus on a simplified OB system which
contains an optical unidirectional ring cavity filled with a
passive medium, consisting of homogeneously broadened
two-level atoms, and driven by an external coherent opti-
cal signal. We consider only the single-mode case. With
the plane-wave approximation, and the mean-field limit,'?
we can reduce the Maxwell-Bloch equations to

%=—k[(l+i0)x—y+2€p],

D _p 1+

7 xD —(1+iA)p , (1.1
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where x and p are the normalized slowly varying complex
output field and the atomic polarization, respectively. D
is the normalized real population difference of the two-
level atoms. The parameter C is the bistability parameter
and y and k are the longitudinal decay rate and the cavi-
ty linewidth, respectively, scaled by the transverse relaxa-
tion rate y,. The frequencies of the external field, the
cavity, and the atoms are denoted by w,, @,., and w,, re-
spectively. The two detuning parameters are defined as
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0=(w.—wy)/(ky,),

A=(w, =wo) /v, -

The normalized amplitude of the external field y is as-
sumed to be real and positive.
Equations (1.1) possess the stationary solution

y=Ix{[1+2C/ 1+ A%+ [x, M)
+[6—2CA/(1+A%+[x, )]},

Dy=(1+A%)/(1+A%+[x,[*),

ps=(1—iM)x, /(1+A+|x?) .

As Cis larger than some critical value, which depends on
A and 6 and is equal to 4 as A=6=0, the solution curve
on the y-|x | plane is S shaped. The negative-slope part
of the stationary solution curve is unstable. Thus one
may obtain bistability for the given parameters.

The model specified by Egs. (1.1) was first derived and
formulated by Bonifacio and Lugiato.'® Since then these
equations have been extensively studied in a number of
publications. On the one hand, they are simple enough,
for instance, in comparison with hydrodynamic systems,
to allow systematic theoretical investigation. On the oth-
er hand, it is interesting enough to show many kinds of
complexity of nonlinear dynamic systems, and relatively
realistic to permit a comparison with experimental results
in certain important circumstances. For example, Egs.
(1.1) predict absorptive as well as dispersive bistability as
C exceeds a certain critical value (as we stated previous-
ly). That can be used to clarify the mechanism of the ex-
perimental observation of optical bistability. In fact, by
studying Egs. (1.1), Lugiato, Narducci, and co-workers
obtained the instability boundary in the control parame-
ter space that is qualitatively and semiquantitatively in
agreement with the experimental observations.'*!7-18
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It has been shown that as the bistability parameter C is
large enough, the oscillation arising from the instability
of the stationary solution may undergo further period-
doubling bifurcations and result in chaos. However, ex-
periments have not yet confirmed the existence of chaotic
motion predicted by (1.1) while the parameter values in
experiments are well within the required domain. Lugia-
to and Narducci imputed the apparent discrepancy to the
invalidity of the plane-wave approximation.!”!® It has
been shown that by incorporating a Gaussian transverse
electric field the period-doubling bifurcations as well as
chaos arising in Egs. (1.1) can be ruled out, and the
theoretical results are in good agreement with the experi-
mental observations.'>!”1® It is, then, expected18 that the
more complicated as well as interesting behaviors includ-
ing various higher-order bifurcations and chaos predicted
by (1.1) may be realized by improving the experimental
setting, therefore better fulfilling the uniform-field condi-
tion in the transverse direction.

But, as a matter of fact, Egs. (1.1) are far from being
fully understood. Actually, they have been investigated
in detail only in various limiting cases and in a few sets of
selected parameters. A number of problems of substan-
tial importance remain to be answered. One of them is
the structure of attracting basins of (1.1). Which attrac-
tors does the system approach when the positive-slope
stationary solution loses its stability? Furthermore, are
there any attractors as the positive-slope solution remains
stable? Which kinds of attractors are they if there are?
How are these unknown attractors affected by adjusting
the control parameters? The answer to these questions

ox —k(1+i6) 0 —2Ck
J 8x* 0 —k(1—i6) 0
o 8p |= D 0 —(1+iA)
5p* 0 D 0
8D —mpX/2 =, /2 —rx* /2
where

6x=x—x,, ép=p—p,, 8D=D —D, .

The corresponding eigenvalue equation is given by

AM4a M +a, M +al2+ah+as=0. (1.4)
In the following we will simply use X instead of |x|. All
the coefficients in (1.4) can be expressed in terms of the
external control parameters C, y, k, A, 6, and X. The
concrete forms of a; —as are explicitly given in Refs. 19
and 21. In Ref. 19, an analytic function

f=(a,a,—a3)a;a,—a,as)—(a,a,—as)* (1.5)

was defined. It has been proved that, starting from a
stable region, the necessary and sufficient condition for
the instability of the stationary solution is that one of the
following two surfaces
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will, of course, shed new light on the understanding of
the global structure of the dynamics of the OB systems.

In Refs. 19 and 20, together with Yang, one of us (Hu)
has analyzed the instability regions of (1.1) in detail, and
provided an intuitive picture about the distribution of the
instability regions in the control parameter space. In
Ref. 21, we specified the condition for super- and subcrit-
ical Hopf bifurcations. For a few concrete combinations
of parameters we have distinguished sub- and supercriti-
cal bifurcations and plotted some new related attractors.

This paper is an essential continuation of Ref. 21. We
will focus on the global distribution of subcritical bifurca-
tion and the distribution of the attractors of time-
dependent motion and study how to modify the attrac-
tors and to find higher-order temporal structures and
chaotic motion by adjusting the control parameters. In
the latter part of this section we will briefly review the
general formulations presented in Refs. 19 and 21. In the
central part of the presentation, Secs. II-1V, we will
present numerical results, based on the analytic achieve-
ments in Refs. 19 and 21. In Sec. II distribution of the in-
stability boundary and the subcritical bifurcation on the
boundary will be clearly shown. In Sec. III we exhibit
three kinds of attractors and reveal how the domains of
the existence of the attractors can be modified by chang-
ing the control parameters. In Sec. V we focus on chaot-
ic motion and try to discuss the problem in which param-
eter regions chaos may probably be found in the OB sys-
tems. Section VI will give some brief discussions.

About the stationary solution (1.2), Egs. (1.1) can be
linearized as

0 0 ox
—2Ck 0 | |6x*
0 X op |, (1.3)
—(1—iA) x, | |6p*
—rx, /2  —r 8D
as=0, (1.6a)
=0 (1.6b)

is crossed transversely, for the first time (the two critical
surfaces will be called surface 4 and B respectively; for
an exact definition, see Ref. 21). Based on (1.6) the insta-
bility boundary of OB can be predicted systematically in
the control parameter space.

The Hopf bifurcation may be supercritical or subcriti-
cal. different types of bifurcations may lead to substan-
tially different behaviors. To distinguish them, the linear-
ized equations (1.3) are not sufficient. One should take
into account both linear and nonlinear terms in Egs. (1.1).
At the Hopf bifurcation point the normal form of Egs.
(1.1) can be written as??

r=G;r’+Gsr’+ -,
6=Q+0(r?),
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where ¢ is the phase angle, r is the radial coordinate, and
Q is the characteristic frequency at the bifurcation point.
In Ref. 21, applying the slaving principle,*?* we reduced
the five-dimensional Egs. (1.1) to two-dimensional order-
parameter equations and gave an analytic form of G; in
terms of the control parameters. We do not intend to use
much space to write down the concrete forms of a; —as;
and G; (G, refers to the G, at the exact critical point) ex-
plicitly. Instead, we directly use them in our numerical
simulations and refer the readers to Refs. 19 and 21 for
the exact formulas. It is obvious that in the case of

G;>0 (1.8)
the Hopf bifurcation is subcritical, and that in the oppo-
site case

G, <0 (1.9)
the bifurcation is supercritical. A small-amplitude limit
cycle arises for the case of (1.9) while an oscillation with
finite amplitude might arise in the case of (1.8).

II. DISTRIBUTION OF INSTABILITY REGIONS
AND SUB- AND SUPERCRITICAL BIFURCATIONS

A. Instability regions of OB

In this section, we will first present several figures of
the instability regions. In Ref. 20, the Hopf unstable re-
gion on the x axis was lacking which is very important
for distinguishing sub- and supercritical bifurcations and
for studying various attractors. Hence, we will give some
results about this matter in this section.

In Fig. 1, we fix C =200, 6=—10, k =0.5, y=1, and
have A and X varied. The dotted line indicates surface
A, while the solid line surface B. At the intersections of
both surfaces we have codimension-2 bifurcations of type
IIIB (see Ref. 21) at which the linear part of the normal
form of Egs. (1.1) reads

0 Q0
-0 00
0 00

(see Ref. 22). Henceworth we will denote the instability
region surrounded by boundary A4 the N region
(negative-slope region) and that by boundary B the H re-
gion (Hopf instability region). Both regions contain
closed areas. In Fig. 1 the NN area is not closed. Howev-
er, it would be closed as we consider smaller A, which we
are not interested in because no Hopf instability exists
there. The numbers 1-4 mark the four intersections of
A and Bj; each one can be distinguished from the others
according to the topological structure of the intersections
of two closed curves. [The simplest way to recognize
each intersection is the following: 1, the intersection of
the right boundary of the N region with the upper bound-
ary of the H region; 2, that of the left N region and the
upper H region; 3, that of the left N region and the lower
H (or the left H) region; 4, the right N region and the
lower H region.] In the part of the H region left (right) to
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FIG. 1. Instability regions and subcritical segments of OB.
The parameter values are C =200, k =0.5, y=1, and 6= —10.
In region N surrounded by the dashed line, the stationary solu-
tion curve has negative slope and is unstable. In region H sur-
rounded by the solid curve, the stationary solution is destabi-
lized by the Hopf bifurcation. In segments sbl and sb2 the
Hopf bifurcation is subcritical, while it is supercritical on the
remained positive-slope instability boundary. The dashed and
solid curves have four intersections marked 1-4, respectively.

the N region, a segment of the lower (the upper) branch
of the stationary solution is destabilized by Hopf bifurca-
tion. Above the N region, no S-shaped solution exists.
The stationary solution is single valued there.

An interesting problem is how the H region can be
modified by changing the control parameters. In Figs.
2(a)-2(d), we provide a series of plots for varied parame-
ters. From all the figures it is noticed that the H region is
always a single closed area. It can be expanded or con-
tracted, even contracted to nothing, by altering the con-
trol parameters.

By decreasing the decay rate of the atomic population
difference y the lower boundary of the H region may be
shifted up, and the H area is contracted. Moreover, the
whole H region may be pushed to the direction of larger
X. Thus, first intersections 2 and 3 and then those of 1
and 4 disappear successively by continuously reducing y.
(Remember, the N region is not affected by changing ei-
ther ¥ or k.) In Fig. 2(a), we take ¥ =0.05 and have all
the other parameters unvaried from Fig. 1. The H area is
apparently much smaller than that in Fig. 1 and no inter-
section of 4 and B exists at all. It is worth noting that a
completely isolated region, i.e., a positive-slope instability
island, occurs in Fig. 2(a). Increasing y, we may find
things to be just the opposite.

The influence of varying k on the H region is clearly
exposed in Figs. 2(b) and 2(c). In Fig. 2(b), the other pa-
rameters are the same as in Fig. 1 while k is decreased to
0.1. The upper boundary of the H region may withdraw
considerably. That is just in contrast with what happens
by decreasing Y. Now the whole H area is contracted as
in Fig. 2(a). The intersections of 4 and B disappear in
the same way as that of decreasing y. As k is increased,
the upper boundary of the H region shifts to the direction
of larger X, and the whole H region expands. Intersec-
tions 1 and 2 may get closer, merge, and finally disappear
because the upper boundary of H goes up. The above
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FIG. 2. (a) The parameter values are the same as in Fig. | ex-
cept that ¥ is reduced to ¥ =0.05. The H region is considerably
contracted, and the intersection of the dashed and the solid lines
disappears because the H region is pushed to the right. On the
entire boundary of the H region the Hopf bifurcation is super-
critical. (b) kK =0.1; and all the other parameters are given in
Fig. 1. The Hopf instability region is very much contracted,
compared with that in Fig. 1. The subcritical bifurcation seg-
ment sb2 covers a major portion of the upper instability bound-
ary of the H region. (c) kK =1; the other parameters are given in
Fig. 1. The Hopf instability region is enlarged. Intersections 1
and 2 disappear because the upper boundary of the H region is
up. In contrast to (b), now sb2 disappears while sbl enlarges.
(d) C =75; the other parameters are given in Fig. 1. The H re-
gion is considerably contracted. Segments sb2 are reduced to
nothing.
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phenomena can be seen in Fig. 2(c) where we take k =1.
By further increasing k, the H region is pushed to the
right and up; intersections 3 and 4 disappear eventually
at large k.

Both the N and H regions can be altered by varying C.
In Fig. 2(d), we reduce C to C =75, and maintain the oth-
er parameters unchanged from Fig. 1. Intersections 1
and 2 disappear because the N region is pushed down and
left. The H region is considerably contracted in compar-
ison with that in Fig. 1. As C is further reduced, inter-
sections 3 and 4 disappear and even the entire N and H
regions themselves will eventually vanish for very small
C.

In the previous statements we take some space to de-
scribe the presence of the codimension-2 bifurcation set
(the intersections of curves 4 and B) because it has been
found, numerically, that this set has some relation with
the subcritical Hopf bifurcation of Egs. (1.1). This fact
will be described in Sec. II B.

To display the influence of varying 6 on the H and N
regions, it is better to consider the bifurcation phase dia-
gram in the X-0 plane. In Figs. 3(a)-3(c), we take C, v,
and k to be the same as in Fig. 1, and fix A=0, 1.5, and 4,
respectively. In Fig. 3(a) both the N and H regions are
symmetrical with respect to the x axis. In contrast with
the figure on the X-A plane, now the H region contains
two unclosed parts. In Fig. 3(b), the symmetry is broken
by a nonzero A. Then, the H region in the half plane
AB >0 becomes a closed region. Meanwhile in the other
half plane A6 <0, the H region is still open and its area
enlarges as A increases. Increasing A, we may more and
more reduce the area of the H region in the half plane
A6 >0. Finally, this domain vanishes for relatively large
A. In Fig. 3(c), at A=4, we can no longer find the H re-
gion in the upper half of the X-6 plane.

B. Subcritical bifurcation of OB

Having specified the instability boundary B, we may be
able to distinguish subcritical and supercritical bifurca-
tion by calculating G;. The concrete form of G; was
given in Ref. 21. The calculation leads to the results
shown in Figs. 1-3. In all the segments sbl and sb2, the
Hopf bifurcation is subcritical. It is supercritical other-
wise (of course, only the positive-slope Hopf instability
needs to be taken into account). In respect to the distri-
bution of subcritical Hopf bifurcation, the following com-
ments can be made from the figures.

(i) Whenever intersection 3 appears we always find a
subcritical bifurcation segment immediately following the
intersection. This segment is denoted by sbl in Figs.
1-3. sbl covers almost the entire left part of the
positive-slope instability boundary. Therefore, in most
cases the Hopf instability of the lower branch is subcriti-
cal. This observation is in good agreement with Ref. 15,
where it was found that for large C the Hopf bifurcation
in the lower branch is subcritical. sbl may persist even as
intersection 3 disappears. sbl always vanishes after the
disappearance of intersection 3.

(ii) On the lower boundary of the H region in the X —A
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FIG. 3. (a) The instability region in the X-0 plane. C, k, and y are given in Fig. . A=0. There are two H regions located symme-
trically with respect to the x axis. Only the sb2 subcritical bifurcation segment is found. (b) A is raised to 1.5; all the other parame-
ters are the same as in (a). Now the H region in the upper half plane becomes a closed area. Subcritical bifurcation does not exist in
this half plane. In the lower half plane, the length of segment sb2 is reduced and segment sbl appears. (c) A=4. The other parame-
ters remain unchanged from (a). The H region no longer exists in the upper half plane. In the lower half plane, segment sb2 disap-

pears while that of sb1 considerably enlarges.

plane the positive-slope Hopf bifurcation is always super-
critical. This means that the Hopf bifurcation on the
upper branch of the S-shaped curve must be supercritical
if the bifurcation arises on the side of the H region with
smaller |A|. This observation is partially in agreement
with the findings in Ref. 15.

(ii)) On the upper boundary of the H region there may
exist a subcritical bifurcation island between supercritical
bifurcation segments that is denoted by sb2. Thus, on the
upper boundary of the H region, the Hopf bifurcation in
the upper branch of the stationary solution may be super-
critical or subcritical according to the particular com-
bination of the parameters. This conclusion is a comple-
ment of the statement in Ref. 15.

(iv) For the Hopf instability domain in the X —6 plane,
larger |A| always favors sbl, while relatively smaller |A|
favors sb2. This fact is exhibited more clearly in Fig. 3.
Moreover, in the Y-X plane, the subcritical bifurcation on
the border of smaller X of the unstable segment belongs
to sbl, while that on the border of larger X belongs to
sb2.

The subcritical bifurcation segments can be varied by
changing the control parameters. The change is partially
shown in Figs. 1-3.

Decreasing C or y, we may reduce the sizes of both sbl

and sb2, and eventually rule out the subcritical bifurca-
tion segments. For instance, in Fig. 2(a) (y =0.05), only
a supercritical bifurcation exists on the entire positive-
slope bifurcation boundary. In Fig. 2(d), as C is de-
creased to C =75, sb2 disappears. We have observed
that at C =30 with k, y, and 0 being given in Fig. 1, the
H region still exists (though its area is considerably re-
duced) while the Hopf bifurcation is purely supercritical;
neither sbl (as well as intersection 3) nor sb2 remains.

The influence of changing k on the subcritical bifurca-
tion segments is worthwhile noting. It seems that in-
creasing k favors sbl while decreasing k favors sb2. In
Fig. 2(b), at kK =0.1 the H region has been contracted to a
very small area and the segment sbl completely disap-
pears. However, the subcritical segment sb2 grows to
cover the major portion of the upper boundary of the H
region. On the contrary, in Fig. 2(c) sb2 disappears and
sbl considerably enlarges at k =1.

From Fig. 3 where sbl and sb2 have the same meaning
as in Figs. 1 and 2, one may get an impression of how the
subcritical bifurcation segments are affected by changing
A and 0. It is observed that at small enough |A| [in Fig.
2(a)] sbl does not exist. As |A| increases, sb2 contracts,
while sbl occurs and enlarges in the half plane A6 <O0.
(One can never find sbl in the part A6>0.) For large
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enough |A| [for instance, in Fig. 3(c) we have A=4] sb2
disappears completely; the subcritical bifurcation com-
pletely belongs to sbl. It is also noted from Fig. 3 that,
given A, the Hopf bifurcation is definitely supercritical
for a very large |6|.

In the above discussion we specified subcritical bifurca-
tion by sbl and sb2. On the one hand, they are indeed
distinguished from each other by the location in the pa-
rameter space as well as the variable space as stated in (i),
(iii), and (iv). On the other hand, this distinction leads to
an essential consequence in the dynamics of the system.
It will be found in Sec. III that, after the instability of
sb2, the system may be led to an attractor different from
that of sbl.

With Figs. 1-3 and the related comments in mind, we
already have a clear picture of the global structure of the
instability regions of OB and the distribution of the sub-
critical bifurcation segments on the instability boundary.
We may be able to control the instability regions or to re-
veal subcritical Hopf bifurcation segments by adjusting
various parameters. It should be emphasized that the
preceding comments have been verified not only for the
particular sets of parameters taken in Figs. 1-3, but also
for a wide range of parameter domains. In fact, we have
varied C from 10 to 10%, y from 1072 to 2, k from 10~ % to
10, and A and 6 from O to tens that covers almost the en-
tire physically interesting domain of OB, and all observa-
tions coincide with our statements. Moreover, the distri-
bution of the instability regions and the classification of
subcritical and supercritical bifurcations are also justified
by directly integrating Eqgs. (1.1).

III. ATTRACTORS OF TIME-DEPENDENT MOTION

After the specification of the distribution of the insta-
bility regions and the classification of supercritical and
subcritical bifurcations, further problems naturally arise:
Which attractors does the system approach after the in-
stability of its stationary solution, and are there any other
attractors even if the stationary solution is entirely
stable? The central task in this section is to reveal the ex-
istence of new attractors of time-dependent motion and
to find out how these attractors can be modified by ad-
justing the control parameters.

A. Three attractors of time-dependent motion

First we present Fig. 4 to give an intuitive picture
about the attractors. In Fig. 4, we take C =200,
6=—20,A=7,y=2,and k =0.5. To draw the curves in
the figure, we numerically solve Egs. (1.1) for a given Y
and a set of the initial variables x;, p;, and D;, for long
enough time to ensure that the evolution is well after the
transient process, and then plot the X which is maximal
in a final time interval that is much larger than the
characteristic period [for instance, 27 /Q with Q being
given in Eq. (1.7)]. The curves are plotted by taking pos-
sible Y and the initial variables. The curves so plotted
will be called M curves afterwards. It is obvious that
each M curve represents an independent attractor.

After a careful searching in a wide region in the vari-
able space by taking possible combinations of x;, p;, and
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FIG. 4. M curve in the X-Y plane. C =200, kK =0.5, r =2,
6= —20,and A=7. After the transient process of Egs. (1.1), the
maximum X in the trajectory is plotted against Y. Different M
curves indicate different attractors. We mark the three attrac-
tors, apart from the attractor of the stationary solution, as Al,
A2, and A3, in the order of increasing heights of the M curves.

D;, we obtain four M curves in Fig. 4. The lowest curve
represents the stationary solution in which the dashed
curve LR indicates the unstable segment that, of course,
cannot be found in the above manner. For the parame-
ters given in Fig. 4 no S-shaped segment exists. The in-
stability is purely due to Hopf bifurcation. At point L,
the lower boundary of the unstable segment, the Hopf bi-
furcation is subcritical (in fact, L is exactly on the sbl re-
gion), while at R, the upper boundary, it is supercritical.
The arrows on the curves denote the possible direction on
which the system may go by continuously varying the
external field Y. It is a great surprise that one may find
three attractors apart from that of the stationary solu-
tion. In Fig. 4 we denote the three by Al, A2, and A3,
respectively. [H(A3)>H(A2)>H (A1), H(Aj) is the
height of the curve Aj.] It seems that the attractor Al
has a closer relationship with the stationary solution. It
can be reached by starting from the stable stationary
solution and adjusting the external field continuously
from both sides of the Hopf instability boundaries. From
the lower side, the system jumps discontinuously to Al
immediately after the subcritical bifurcation point L is
exceeded. From the upper side, the system goes into Al
continuously by reducing Y lower than Y. On the con-
trary, the basins of A2 and A3 are far away from the sta-
tionary solution. One cannot feel the presence of A2 and
A3, starting from a stationary solution and continuously
varying Y. To reach A2 or A3, one should carefully
choose certain initial values of the variables. When we
have reached A2 or A3, we may stay there by continu-
ously varying Y till the border of the M curves is reached.
Over the border, the system will jump down either to the
lower M curve or to the stable stationary solution.

An interesting point is that, though the stationary solu-
tion curve is not S shaped at the present parameters,
there exists a bistability between the stable stationary
solution and the periodic solution A1 in Fig. 4.

The sizes of the M curves may be modified by changing
the control parameters. In Figs. 5(a)-5(e), we take
different combinations of the parameters. In Fig. 5(a), we
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FIG. 5. (a) C =180; the other parameters are the same as in Fig. 4. The M curve A3 is considerably shortened. (b) C is reduced to
130; the other parameters are given in Fig. 4. A3 completely disappears. (c) C is further reduced to 90; the other parameters remain
unchanged from Fig. 4. Al and A2 are much reduced and separated from each other. (d) kK =0.7; all the other parameters are the
same as in (c). A2 completely disappears. (e) k =0.4; all the other parameters are kept the same as in Fig. 4. No instability of the
stationary solution occurs, and consequently, the M curve Al disappears. On the contrary, A2 and A3 exist, and even the length of

the curve A3 enlarges in comparison with that of Fig. 4.

lower the bistability parameter C to C =180, and the size
of the M curve A3 becomes much smaller. In Fig. 5(b) C
is reduced to C =130, and A3 completely disappears. As
we further decrease C to C =90, both A1 and A2 are
contracted and they are separated from each other on the
y axis. In Fig. 5(d), we increase k to 0.7 while keeping all
other parameters the same as in Fig. 5(c); A2 eventually
disappears, while the size of A1 enlarges.

Nevertheless, one should not be led to the impression
that the attractors of oscillation with larger amplitude al-
ways disappear earlier than those with smaller amplitude.
In Fig. 5(e) we take all parameters the same as in Fig. 1

but k£ =0.4. It is found that the entire stationary solution
is stable; there is neither Hopf bifurcation nor the M
curve Al. However, the attractors A2 and A3 do exist,
and even the size of A3 enlarges. Therefore, we would
like to emphasize a striking property of the system;
namely, a stable pulsation can exist in the system (1.1)
even if no instability of the stationary solution occurs.

There are seemingly some regularities on modifying the
various attractors by varying the control parameters.
With much experience of the numerical solution of the
system, we are led to the following conclusions.

(i) The attractor A1 is closely related to the Hopf insta-
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bility of the stationary solution. By controlling the
positive-slope instability segment one may roughly con-
trol the size of Al.

(ii) Decreasing (increasing) the bistability parameter C,
one may reduce (enlarge) the size of each M curve of
time-dependent motion. For small enough C, all the M
curves other than the stationary solution curve may even-
tually disappear. (We have found A2 at C =75, and Al
as well as the Hopf instability of the stationary solution
at C =12, which is much lower than the known threshold
for the Hopf bifurcation to take place.)

(iii) Decreasing ¥ may definitely reduce the sizes of all
Al, A2, and A3, and eventually make them disappear at
sufficiently small y.

(iv) The influence on the M curves by changing k is
more delicate. It seems that for a given set of C, v, A,
and y, increasing k favors the attractor A1 while decreas-
ing k favors the asymptotic oscillation with larger ampli-
tude. This fact is found in Figs. 5(d) and 5(e), and is
justified by several integrations for other parameters.

(v) A definite statement for the influence on A2 and A3
of changing A and 6 is difficult. Nevertheless, it is found
that, for given A, C, 7, and k, A2 and A3 can be made
smaller and then disappear by sufficiently increasing or
decreasing |6]. A2 and A3 can be found only on the mid-
dle range of 8. Given C, k, y, and 6, a similar behavior
can also be observed for changing A.

B. Relationships between attractors

In Figs. 4 and 5, both the subcritical bifurcation at L
and the supercritical bifurcation at R lead to an oscilla-
tion in A1l. The other attractors seem not to be related to
the stationary solution. This situation can be essentially
changed in several ways.

(i) The bifurcation on the upper boundary may become
subcritical (on the segment sb2 in Figs. 1-3). In this
case, the system often jumps directly to a large-amplitude
oscillation from the stationary state. In Fig. 6, the sys-

Q - - -
300 350 400 450 500 550 600 650 700

Y

FIG. 6. C =400, k =0.4, y=1.76, A=—4, and 6=20. The
Hopf bifurcation at the upper branch R is subcritical. The sys-
tem jumps from the stationary solution to A2 after Y is slightly
lower than Y. Moreover, certain segments of both A1 and A2
are unstable, and the system may jump up from Al and A2 to
A3. Increasing Y slightly over Y, the system can jump from
the lower branch of the stationary solution to A2 and A3, ac-
cording to the initial conditions.
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tem jumps from the upper branch directly to the attrac-
tor A2 immediately after Y is reduced over R. This ob-
servation has been justified by all our numerical results
for C >100. Thus, as the Hopf bifurcation at the upper
border R becomes subcritical, one may be able to reach
the attractors A2 or A3 by starting from the stable sta-
tionary state and continuously decreasing the external
force Y.

(ii) The time-dependent states on the various attractors
may undergo further instability, and then the system may
jump not only from upper M curves to lower ones, as
what happens in Figs. 4 and 5, but also from lower to
upper. The latter case can be found in Fig. 6 where it is
shown that the system is able to jump from Al to A3 as a
segment of Al turns to be unstable and can also jump
from A2 to A3 before jumping down to the lower attrac-
tors. In Fig. 6, the system can even jump from the lower
branch of the stationary solution directly to A2 or A3 as
L is exceeded. This happens in the case where Al is al-
ready unstable for the given Y. In all those cases, one
may again be able to reach the attractors of larger-
amplitude oscillation from the stationary solution by con-
tinuously varying the control parameters. The question
of whether a state of time-dependent solution can be
reached by continuously varying the control parameters
from the stationary state or not is of importance because
in experiments one usually realizes the pulsation in this
way. Figure 6 is typical because it gathers various transi-
tions between various attractors in a single diagram.
Those transitions can also be found, but, in general, only
separately, in other figures.

To conclude this section we would like to remark upon
the hysteresis structure of the time-dependent asymptotic
motions. In Fig. 6, we can easily identify three hysteresis
loops. The bistability, or rather, multistability structure
of the OB systems is much more complicated than what
has been known before, as the time-dependent asymptotic
motions are taken into account.

In most of the numerical solutions we observe three or
less attractors of time-dependent motion. The coex-
istence of more attractors cannot be excluded. In fact,
we have found the coexistence of four time-dependent
motions. Nevertheless, this phenomenon is seldom ob-
served.

IV. PERIOD-DOUBLING BIFURCATIONS AND CHAOS

Revealing and clarifying chaotic motion is one of the
interesting tasks in displaying the rich nonlinear dynamic
behaviors in the OB systems. Nevertheless, to date,
chaotic motion in OB has been found only occasionally.
It is not clear how chaotic motions can be found or con-
trolled by adjusting the control parameters. In this pa-
per, we do not intend to analyze in detail the various
characteristic features of chaotic motion or the fine bifur-
cation sequences leading to chaos. We only try to give a
suggestion, based on the numerical observations, as to
where chaotic motion can more probably be found and
how its existence is affected by changing the control pa-
rameters. Our suggestion may be of help in numerically
or, possibly, experimentally searching for chaos.
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FIG. 7. A= —17.5; all the other parameters are given in Fig.
6. No instability of the stationary solution arises. However,
chaos can be found in the segment of A3 where the M curve
behaves erratically.

After C exceeds 300 (or even lower), the routes to
chaos via period-doubling bifurcations as well as inter-
mittency can be observed. In Figs. 4 and 5 the M curves
are smooth. Correspondingly, the asymptotic solution is
found to be stationary or periodic with the basic period.
The same behavior is verified in all the curves in Figs.
6-9 when the M curves are smooth. Whenever certain
discontinuity, for instance, the discontinuity of the first
derivative of the M curve occurs, one always finds that
the motion undergoes a characteristic change, e.g., period
doubling. In the segments where the M curve varies
violently, one can find chaotic motion. In fact, we nu-
merically observe the route to chaos via period-doubling
bifurcations for parameters corresponding to the segment
of A3 in Fig. 7 where the M curve behaves erratically.
At Y =580, the motion of the system is chaotic. The
chaotic motion is justified not only by the aperiodic tra-
jectory in the phase space but also by the positive
Lyapunov exponent of Egs. (1.1) for the given parame-
ters.

There seems to be a regularity in finding parameter re-
gions where chaotic motion can be observed. For rela-
tively large |A| chaos often first appears near the lower

50 -

45
L\\As
40 —~
15 \A2 |
\ i
30 N
< 25 I v
20 |

300 350 400 450 500 550 600 65C 70¢

Y

FIG. 8. A= —5.2; the other parameters are kept the same as
in Fig. 6. Chaos occurs on A3 which cannot be reached by con-
tinuously varying the external field Y, starting from the station-
ary state.
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FIG. 9. A= —1; the other parameters are given in Fig. 6.
For this small |A|, chaos can be observed in the lower M curve
(A1). A hysteresis loop between Al and A2 occurs. Period-
doubling bifurcations can be observed on both M curves A1l and
A2.

boundary of the M curve A3, as indicated in Figs. 6-38.
As |A| decreases, the chaotic region may appear in other
lower M curves (see Fig. 9).

In Fig. 9, we take the parameter values which have
been used in Ref. 17 where a period-doubling bifurcation
sequence leading to chaos was reported. The predicted
motions are verified in our case. We would like to stress
that there is more complicated bifurcation structure
around the given parameter region. In fact, on both M
curves Al and A2, period-doubling bifurcations can be
observed. The entire bifurcation structure in this multi-
basin system is similar to that in Ref. 25 (see Fig. 4 there),
where a laser system with an injected signal (LIS) was
studied. An important difference between the OB and
the LIS is that we have not yet found quasiperiodicity in
the OB that was found indeed in the LIS.

Usually, the way one proceeds to detect chaotic motion
is the following. First one finds an instability of the sta-
tionary state, and then one searches for chaotic motion in
the unstable parameter regions. This way is not always
successful.

By our detection, chaotic motion extensively exists in
the system (1.1) for relatively large (still realizable) C.
But in most of cases, it cannot be revealed in the above
way. For instance, in Fig. 7 the entire stationary solution
is stable, and it can be destabilized neither by Hopf bifur-
cation nor by saddle-node bifurcation. However, chaotic
motion does exist if one takes a suitable Y and starts
away from the corresponding stationary solution. More-
over, even if the positive-slope instability occurs, it is still
possible that one cannot find chaos by continuously ad-
justing the external fields from a stable stationary state
even though chaotic motion exists for the given parame-
ters. This is the case in Fig. 8. Only under the parameter
conditions stated in Sec. III B, can the attractors where
chaotic motion takes place be reached from the station-
ary state by continuously varying the control parameters.
This situation is displayed in Figs. 6 and 9.

The awareness that periodic pulsation and chaotic
motion may exist in the absence of the instability of the
stationary solution in OB is one of the interesting
discoveries of the present paper. A similar fact, as an in-
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teresting point, has been revealed for the laser Lorenz
model.?®

V. DISCUSSIONS

Based on the specification of instability regions and
classification of subcritical and supercritical bifurcations,
we have succeeded in finding, in a systematical way, three
attractors of time-dependent motion of the OB systems
described in Eqgs. (1.1), and possible chaotic motion on
the attractors. There is a crucial problem to compare the
theoretical finding with experimental results. It was re-
ported!” that no chaotic motion has been observed in the
parameter values where a theoretical study of Egs. (1.1)
predicts chaos. In regard to this matter, we make the fol-
lowing remarks.

(i) In order to observe chaotic motion and the other re-
lated complex behaviors, predicted by (1.1), it is neces-
sary to realize experimental settings fulfilling the approxi-
mations used in (1.1). Especially, the uniform-field condi-
tion in the transverse direction seems to be important in
this aspect, as Ref. 18 suggested.

(ii) For the present experimental condition, the reason
for the difficulty in finding chaos in experiments may be
due to two possible reasons: either no chaotic motion ex-
ists at all in the presently realized pure OB systems, or
the chaotic region cannot be reached from the stationary
state by continuously adjusting the control parameters, as
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we argued in Sec. IV. In the latter case, instead of con-
tinuously varying parameters, one should design certain
mechanisms (for instance, a quick switch of the external
field, or a sudden impact of pump, and so on) to push the
system far away from the basin of the stationary solution.
It might open up a new way of studying the interesting
structure of attractors and the possible chaotic motions
on the attractors in the OB systems.

(iii) All the behavior found in the presentation can be
changed if one takes into account some more realistic sys-
tems, for instance, the system with Gaussian transverse
field, which has been shown to meet the experimental
data better than Egs. (1.1).!7"18 Nevertheless, we believe
that some characteristic features of (1.1) will be kept in
the modified systems. It is interesting to extend the
present study to those more realistic and more complex
systems. In that study, the understanding of the ideal
model (1.1) will be helpful.

Another remarkable point is that the attracting basins
of coexisting attractors may be very complicated. It hap-
pens that a slight change in the initial variables may lead
the system from one attractor to another. For instance,
in Fig. 6, the system may jump to A2 or A3, according
to fine differences of order 10~ 2 in the initial values of the
variables. It is interesting to investigate the attracting
domains of the various attractors to study the relation be-
tween the onset of chaos with the fractal boundary of the
attracting basins in the OB systems. It will be our future
work.

*Permanent address: Physics Department, Beijing Normal Uni-
versity, Beijing, People’s Republic of China.
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