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We show via (1) an approximate, analytical technique, (2) a formally exact matrix continued-

fraction analysis, and (3) an analog simulation of the classical Langevin equation of a correlated
spontaneous-emission laser (CEL) that noise of nonzero correlation time leads to an enhancement of
the characteristic CEL noise quenching.

I. INTRODUCTION

Quantum noise determines the ultimate accuracy of ac-
tive interferometers in applications such as gravitational
wave detection' or in a ring-laser gyroscope. ' This
discovery has motivated the investigation of laser systems
with reduced spontaneous-emission noise such as the
correlated (spontaneous) emission laser (CEL). Under
appropriate conditions the relative phase angle P be-
tween two electromagnetic waves in a CEL can be freed
completely from the effect of spontaneous-emission noise.
This noise quenching can be related to the fact that the
phase fluctuations in a CEL enter into the phase
Langevin equation as multiplicative' rather than addi-
tive noise as, for example, in the standard phase-locked
laser. " Moreover, in a laser consisting of long-lived
atoms, the spontaneous-emission noise is colored' in-
stead of white. ' ' Noise quenching as a result of multi-
plicative noise and the role of noise color' ' are the
themes that provide the stimulus for the present study of
the influence of noise color on the CEL noise quenching
via the classical Langevin equation, ' derived in Ref. 9.

In this paper we do not intend to present a theory of
the CEL with long-lived atoms. Rather, we pursue the
following strategies: First, we perform an approximate
analysis of the classical Langevin equation governing the
phase difference P by linearization within the physically
relevant range of parameters. With the help of some
standard techniques of noise theory, ' we find the (ap-
proximate) width tr = ( P ) —( P ) of the steady-state
probability distribution Pss=Pss(P) for the relative
phase tb, to be reduced by a factor (1+y~, )

' compared
to the white-noise case. Here v, is the noise correlation
time and y =(b a)', where b—and a denote the laser
gain and the detuning between the two waves, respective-
ly. Thus the CEL noise quenching is not only preserved
in the case of colored noise but is even enhanced. '

Moreover, the multiplicative noise causes a noise-induced
drift ( b, ), as well as a separation between the maximum

P,„ofthe steady-state solution Pss and (P ), that is, a
noise-induced asymmetry, 5:—((b) —tb,„,as discussed
for the case of white noise in Ref. 9. We here show that
for weak noise, that is, for D/b « 1, these white-noise re-
sults for (P) and for 5 are both reduced by the factor
(1+y~, )

In the second approach, we express the steady-state
solution of the corresponding Fokker-Planck equation in
terms of infinite matrix continued fractions. In work' '
related to the present one we have always cast the re-
currence relation obtained from the relevant Fokker-
Planck equation into a three-term vector-recurrence rela-
tion in the index m of the Hermite functions. ' The di-
mension of the matrices determines then the number n of
Fourier coefficients taken into account in the numerical
evaluation of Pss. Due to the sharpness of the present
distribution, however, many Fourier components are
needed and hence the dimension of the matrices to be in-
verted has to be large in order to obtain convergence. It
is therefore more convenient to use a new vector re-
currence in n. In order to demonstrate this advantage,
we compare and contrast the two methods by presenting
the detailed equations. Moreover, we calculate the cru-
cial quantities o and 5 confirming the noise-color-
induced noise quenching found via the approximate
Langevin treatment.

We conclude by simulating the Langevin equation of
the CEL with an electronic circuit using a circuit and
techniques similar to those previously described. ' The
simulator provides immediately the steady-state distribu-
tions Pss. We find qualitative agreement between the
measured and calculated results and, in particular, we are
able to confirm the predicted enhancement of the CEL
noise quenching by color. Moreover, the analog simula-
tion demonstrates another surprising effect caused by
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multiplicative noise: a second maximum in Pss, located
approximately at the maximum of the potential V of the
noise-free problem. The origin of this additional max-
imum is a time-dependent, noise-induced inversion of the
effective potential V," '. This is also confirmed by the
matrix continued-fraction treatment.

The paper is organized as follows: In Sec. II we
present the Langevin and the corresponding Fokker-
Planck equations for a CEL model of long-lived atoms.
Section III is devoted to an approximate analysis of these
equations. Moreover, we present the matrix continued-
fraction treatment of the Fokker-Planck equation along
with an outline of the electronic circuit. In Sec. IV we
discuss the main results of the three approaches. Section
V is a summary and conclusion.

III. STEADY-STATE DISTRIBUTIONS

In this section we discuss the three approaches used in
the present paper to obtain the steady-state distributions
Pss(P) of the colored-noise CEL. In order to gain deeper
insight into the dependence of Pss on the various param-
eters of interest such as the correlation time, we first
present a linearized treatment of the Langevin equation
(2.3). We then solve for the steady-state distribution Pss
of Eq. (2.4) and conclude by introducing an analog simu-
lation of Eq. (2.3).

A. Approximate treatment

For small noise intensity, that is, for D/b ((1 and for
small detuning ~a

~
/b && 1, we can try the ansatz

II. LANGEVIN AND FOKKER-PLANCK EQUATIONS

The natural extension of the CEL Langevin equation
for the relative phase difference between the two modes
in the presence of Gaussian noise, '

P(t) —=n. +arcsin(a/b)+5(t),

where ~b,
~
&&1. Thus Eq. (2.3) reduces to

b, = —[y+ (y /b)e(t) ]6 (a /b—)e(t),

with the obvious solution

(3.1)

(e(t)e(s) ) = D

+e

t —si
exp

TC

(2. 1)
5(t)=boexp yt — —f dt'e(t')

b o

of noise intensity D and correlation time v, with zero
mean, a dt'e(t') exp y(t t')——

b o

is

(e(t) ) =0, (2.2)

J dt "e(t") (3.2)

/=a +b sinP+e(t) sing .

When we introduce

1 e+F(t),
7

C

where

(F(t)F(s)) = 5(t —s),2D

(2.3) Here, we have defined y:(b a—)'~ a—nd Ao=b, (t =0).
From Eq. (3.2) it is straightforward to evaluate the mo-
ments (b, ) for j =1 and 2.

With the help of Eqs. (2.1) and (2.2) we can find from
Eqs. (3.1) and (3.2) the center of gravity (P) for the sta-
tionary distribution, at

(P) —=m+arcsin — + (b, )
b

the two-dimensional Fokker-Planck equation correspond-
ing to Eq. (2.3) reads

—=m+arcsin — +(1+yr )
a a
b c b

D
b

(3.3)

aP
C}t

[ [a + (b + e)sing]P )
a

1 B(eP)
'

D B'P

Be
(2.4)

and the approximate width of Pss is governed by
'2

.'„=(y') —(y)'—=(1+y., )-' —',

The Gaussian,

(3.4)

P (/+2~, e) =P (P, e), (2.5a)

where we impose periodic boundary conditions for P,
Pg" (q) = — exp

1 1

&2~o- 20' (3.5)

and natural boundary conditions for e,

(P$, ~e+ca)=0 . (2.5b)

The Langevin equation (2.3) and the corresponding
Fokker-Planck equation (2.4) are the starting points for
the present paper.

with (P) and cr given by Eqs. (3.3) and (3.4), thus
represents the simplest approximation to the exact distri-
bution Pss calculated in Sec. III B.

From Eqs. (3.3), (3.4), and (3.5), we recognize that the
noise color modifies the white noise (w, =0) moments by
the prefactor (1+y~, ),which signifies an enhancement
of the noise-quenching characteristic of the CEL. We
emphasize that this noise-color-enhanced quenching is an
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entirely classical effect which may have applications to
other systems. Nor does the quenching stem from the
multiplicative nature of the noise in this particular appli-
cation. For example, a similar result has been obtained'
for the standard phase-locked ring-laser Langevin equa-
tion"

and the noise-induced asymmetry 5, from Eqs. (3.3) and
(3.8), reads

2 a D5=
(1+yr) b b

P =a +b sing+ e(t ) . (3.6)
This asymmetry is obviously not contained in the Gauss-
ian approximation, Eq. (3.5).

For this case, the width for the stationary distribution in
the phase-locked region is approximately given' by

o„„s)„,„=—(1+yr, ) '(D/y), (3.7)

which shows that the width, for this simpler case of addi-
tive noise, is governed by the same color prefactor.

The noise source e(t) is multiplicative' and so gives
rise to a noise-induced asymmetry 5, which manifests it-
self as a separation of the center of gravity of Pss and the
location of its maximum P,„,that is,

(3 8)

B. Exact treatment

We now turn to a formally exact solution of the
Fokker-Planck equation (2.4) in steady state, in terms of
infinite matrix continued fractions. The phase distribu-
tion as well as its lowest moments are discussed in this
subsection.

1. Steady-state distribution

We start from the ansatz' '
oo 00

P(t, g, e)= —Ao(e) g g 4 „(t)%(e)e'"~,
v'2n.

The expression for P,„canbe found by first deriving the
corresponding expression for the white-noise case from
the steady-state Fokker-Planck equation

a+b sin)I)+ —sin(2$) Pss
D

where A is given by

E'

4(D/r, )
™

(3.12)

d 2D (sin NPss ) (3.9)

0= Pss D
a +b sing, „——sin(2$,„)Pss .

2

It is easy to verify that this equation is satisfied by

,„(r,=0)=n.+ rcsai ( n/ba) —(a lb)(D/b) . (3.10)

We find the corresponding colored-noise expression in
the limit of small noise strength by replacing D by the
effective diffusion constant of Hanggi,

D v, ) —=D))—7, (a +b sing))
d

According to Eqs. (3.4) and (3.5), the distribution Pss is
well localized for small noise D/y «1 and for small de-
tuning (a/b) «1. Hence, we can replace the periodic
boundary conditions in P with natural ones, that is, van-
ishing probability current. We thus find from Eq. (3.9)
and the condition for an extremurn of Pss,

m, —n m, n (3.13)

only the coeScients 4
„

for n &0 must be determined.
The ansatz Eq. (3.12) automatically satisfies the boundary
conditions specified by Eqs. (2.5a) and (2.5b). We substi-
tute Eq. (3.12) into Eq. (2.4) and project onto the
coefficient 4 „bymaking use of the orthogonality rela-
tions of the Hermite functions and the trigonometric
functions. This procedure yields the following recurrence
relation:

nb
(ina +—m /r, )0' „+

+ QD/7 ( m +1/ +~ +~+v m eV
~ +~)2

nb n QD/r, ( m +—1A'~+&
„

The normalization factors JV are chosen to be
JV =[m!2 +2m(D/v, )] ', and the quantities H are
the familiar Hermite polynomials. Since the probability
density P is real, that is,

When we make use of Eq. (3.1) and neglect the noise-
induced drift b, we find

+&m 4,„,),
(3.14)

D(r, )=D(1+y~, )

which reduces Eq. (3.10) to

P,„(r,) =—m. +arcsin ——(1+y r, )
a a D

b

which can be cast into a three-term, vector-recurrence re-
lation in two different ways as discussed in the next two
subsections.

a. Vector-recurrence relation in n. When we define the
mth component of the nth vector, S„,via

(S„)
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and

(A „) —= —(ina+m/r, )5

(B„),—= 5 + QD—/~, (&m 5

the recurrence relation, Eq. (3.14), now reads

S„=A „S„+B„(S„+,—S„,),
where we have introduced the matrices

(3.16)

(3.17a)

that is, the influence of noise color. Figure 1(a) displays
the probability curve Pss($) obtained by this method for
a =0.3, D =1, ~, '=0.3, and b =1.

b. Vector-recurrence relation in m. The recurrence re-
lation Eq. (3.14) may be cast into a three-term vector-
recurrence relation different from Eq. (3.16) by defining a
new vector S . In this case the nth component of the
mth vector S follows from

+&m+15 +, ) .

(3.17b)

In the steady state, the coefficients Si"„'=—S „(t~ ~ ),
that is, the vector S'„"'can be obtained from the iteration

(S )„=—4

The resulting vector-recurrence relation reads

S = 3 S +8 S +]+C S

(3.22)

(3.23)

S'-'=R S'"'
n —n n —1

where R
„

is the infinite matrix continued fraction

R „=(A„+B„R„+i)'B„.
From Eq. (3.14) we find for n =0 in the steady state,

(3.18)

(3.19)

where the matrices 3,8, and C are given by

{a)
0= —(m/r, )S "',

and hence 1' "o=0 for m %0. The coefficient $0 0 follows
from the normalization of the probability distribution Eq.
(3.12)

3-

Pss

1.5-

a = 0.3
0 =1
'Kc, = 0.33

1=
&
—f de f dg&0(e)

=&z~z„.

X g g 4' „&(e)e'"~
m =On= —oc

Hence, the start vector So of the recurrence relation Eq.
(3.18) reads

0
0

I

2K

(b)

(So) =4""o= —5 0 .m m, O y~ m, o (3.20)

1
oc

(S'" )oe (3.21)

H ence in this approach Pss is governed by the zeroth
component of the nth vector S„.For a numerical eval sa-
tion of R „,Eq. (3.19), on the computer the infinite ma-
trices A „and8 „have to be truncated. We note that
their dimension m determines via Eqs. (3.15) and (3.18)
the number of Hermite functions included in Eq. (3.12),

We now briefly outline the procedure for calculating the
coefficients 1'"„'.Substituting the matrices A „andB

„

into Eq. (3.19) and using downward iteration' yields the
matrices R „and, in particular, R, . The start vector So
defined via Eq. (3.20) is then substituted into Eq. (3.18)
together with R

&
and we arrive at S,. Continuing the

iteration yields S„. The steady-state distribution
Pss =Pss(P) that follows froin Eq. (3.12) then reads

oc

P (y) — y g(~) ein$s ~& on e
n = —oo

FIG. 1. Steady-state distributions Pss=Pss(P) for the phase
P of a correlated emission laser governed by the Langevin equa-
tion (2.3) for the parameters a =0.3, D = 1, v., ' =0.3, and b = 1.
The distribution displayed in (a) is obtained from the solution of
the recurrence relation Eq. (3.16) for the vector S„.In contrast,
the probability curve shown in (b) is the result of the three-term
recurrence relation [Eq. (3.23)] for the vector S . Here the
number of Fourier coefficients, no, taken into account in Pss
[Eq. (3.27)] is determined by the dimension of the matrix R
[Eq. (3.26)]. It is too small and gives rise to the nonphysical os-
cillations shown in (b). In contrast, the more efficient method of
(a) determines no as the number of matrix inversions as indicat-
ed by Eqs. (3.18) and (3.19). Here the dimension of the matrix
R „[Eq.(3.19)], denoted by mo, is governed by the number of
Hermite functions, that is, by the amount of noise color, taken
into account in Eq. (3.12). In (a) it suffices to have ma=40 Her-
mite functions and no =200 Fourier coefficients, whereas for (b)
we use no =49 and mo =48.
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(A )„„.:—— ina+
C

5 „.+ (5„+)„—5„)„,), and

(3.28b)

(8 )„„=Q—D/r, v m +1(6„+)„—6„)„),

(C )„„.:— QD—/~, m (5„+,„—5„,„).

{3.24a)

(3.24b)

(3.24c)

using the periodic steady-state distribution, Eq. (3.21), de-
pend on the starting point Po of the integration region.
Since the distributions Pss=Pss(P) are strongly peaked
in the neighborhood of P =a and since the maximum of
Pss should be in the middle of the region, we choose
go=0. When we substitute Eq. (3.21) into Eq. (3.28a) and
use the relations

In steady state, this new vector-recurrence relation [Eq.
(3.23)] can be solved in a way analogous to that of Eq.
(3.16). The iteration

(3.25)

with the matrix continued fraction

and

J dPPe'"~= . for nWO,
0 ln

R = —(A +8 R +i) C (3.26) together with Eqs. (3.13) and (3.20), we arrive for the
choice of $0=0 at

is then a solution of Eq. (3.23) in the steady state. Here
the start vector So is determined by {A o+B OR &)So=0
and S~ 0=(2m ) '~, as described in detail in Refs. 18 and
19. The expression for the steady-state distribution then
reads

- 2Im(S'„"I),
&y&=~+&a

nn=1

For the second moment, Eq. (3.28b), we find, from

(3.29)

Pss($)= — g (S "')„e'"
v'2m. „= (3.27)

and

yacc

2 (2~)3
0 3

2. Exact moments ofPss

We conclude this subsection by evaluating the mo-
ments ( P ) and ( P ) in steady state. The functions P and

are nonperiodic. Hence the averages

(P) —= I dPPPss($) (3.28a)

In contrast to Eq. (3.21), it is now given by the n com-
ponents of the m =0 vector 8 0" '.

This method has been used to evaluate again Pss for
parameters identical to those used in Fig. 1(a). The so-
calculated distribution shown in Fig. 1(b) exhibits non-
physical oscillations. Although both approaches are
mathematically equivalent in the limits m and ~n ~~ ac,
the approach presented in Sec. III81 a is more suitable
for the problem at hand. As a result of the noise quench-
ing in the CEL, the steady-state distribution is highly
peaked at a particular phase value. In order to obtain
this property, many Fourier coefficients So"„'must be in-
cluded in the sum [Eq. (3.21) or (3.27)]. In the second ap-
proach, the number of Fourier coefficients, n0 taken into
account, that is, the number of components of the vector
So"', is determined via Eq. (3.25) by the dimensions of
the matrix R, that is, via Eq. (3.26) by the dimension of
the matrices A, B, and C . Hence, in order to ob-
tain good convergence for the sum in Eq. (3.27), huge ma-
trices must be inverted over and over again. By contrast,
the dimension of the matrices A „andB

„

to be inverted
in the first approach is given by the number m0 of Her-
mite functions to be included, as is apparent from Eq.
(3.19). The number no of Fourier coefficients then
governs the number of iterations in Eq. (3.18).

f (2 2

dP(() e'"~= + for nAO
0 ln

the following expression:

- 2Im(S'„"'),
&(()'= +(2~)'" y3 „& n

4 Re(S'„"')o
+&a~ y

n
(3.30)

Equations (3.29) and (3.30) together allow us to evaluate
the exact variance

(3.31)

The location of the maximum, P,„,of the exact steady-
state distribution Pss can be found from the condition

0= dPss OO

in (S~ "')„e'"t'
v'2~

„
&=~max

(3.32)

In Sec. IV we compare and contrast these expressions to
the corresponding approximations of Sec. III A.

C. Electronic simulation

%'e now turn to the last of the three methods of obtain-
ing the steady-state solution: the electronic simulation of
the Langevin equation (2.3). The techniques for simulat-
ing periodic potentials with analog circuits have been
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previously discussed, ' and here we use the same ap-
proach except for the following simple alterations: First,
the hybrid analog-digital system for producing the spa-
tially periodic force was replaced with an analog chip
which accomplishes the same task; and, second, an addi-
tional multiplier was used to implement the multiplica-
tive noise. The voltages representing P(t) were digitized
into time series of approximately 4000000 points from
which the stationary probability densities were assem-
bled. In contrast to the simulation of the same system
with additive noise described in Ref. 19, in the present
case only the one-dimensional densities were measured.
Our purpose is simply to demonstrate the phenomenon of
noise quenching and the noise-color effects in this purely
classical multiplicative system in accord with the predic-
tions of Secs. III A and III B.

IV. DISCUSSION OF RESULTS

Pss

0—,
"K

I

2-

Pss

a =025
0
xg = 0.1

0

csQ

(b)

In this section we discuss the results obtained by the
analog simulation of the Langevin equation (2.3), and the
formally exact matrix continued-fraction treatment.
Moreover, we compare the findings of the latter to the
ones of the linearization scheme of Sec. III A.

The investigations of Ref. 9 concerned with the white-
noise version of the central Langevin equation [Eq. (2.3}]
have shown essentially three striking features of the
steady-state distribution Pss resulting from the multipli-
cative nature of the spontaneous-emission fluctuations of
a CEL: (1) Within the locked region, that is, for ~a

~
&b,

the width of the distribution is dramatically reduced
compared to the case of additive noise; (2) the probability
density Pss is highly asymmetric; and (3) the center of
gravity of the distribution is shifted by the noise-induced
drift.

These white-noise features prevail in the presence of
noise color as shown by Figs. 2 —8. Moreover, the analog
simulation technique of Sec. III C reveals a novel effect
shown in Fig. 2(a): The so-obtained steady-state proba-
bility density Pss exhibits for a =0.25, D =b = 1, and a
correlation time ~, =0.1, that is, for almost white noise, a
long plateau in its right tail and a sharp break-off for
small but positive values of the phase P. When we in-
crease the noise strength D, this plateau even develops
into a second maximum of this distribution as is apparent
from Fig. 3(d). This peak, located approximately at the
unstable steady-state solution

Fig. 3 for a = 1.0 and D = 1.5 ) b = 1. Equation (4.1) de-
scribes the overdamped motion of a particle of coordinate
P in the potential.

V(P) = aP+b co—sP (4.2)

depicted in Fig. 3(a) for a =b =1, that is, at the border
between locked and unlocked solutions. "' In the pres-
ence of noise the qualitative steady-state probability P,
depicted here by the dashed curve, exhibits a maximum
at the minimum of V. The noise unlocks the system and
P shows wings reaching into the regions outside of the
potential minimum. The noise e is Gaussian. Hence the
quantity e is distributed according to the function

FIG. 2. Steady-state distribution Pss =Pss($ } of the phase of
a CEL for a =0.25, D =b =1, and ~, =0. 1 (quasiwhite noise)
obtained from an analog simulation of the Langevin equation
(2.3). The plateau in the long tail of Pss and its sudden break-off
at zero phase angle shown in (a) are confirmed by the matrix
continued-fraction result of (b) made for the same values of pa-
rarneters as in (a) except v, =0. The vertical axis in (a) is in ar-
bitrary units.

a
Pss =arcsin

1 p2
P(e) = exp

4~D 4D
(4.3)

of the deterministic equation of motion

/=a+6 sing,

is not present in the case of additive noise. ' ' ' Hence
its origin lies in the multiplicative nature of the noise.
This intriguing phenomenon, making its appearance for
large diffusion constants D) b and small correlation
times ~, && 1/b, is confirmed by the exact matrix
continued-fraction treatment and can easily be under-
stood by the following qualitative argument displayed in

V'+~' = a/+ (b +e)cosP,— (4.4)

shown in Fig. 3(b) by the solid line, has a deeper
minimum than the one of Eq. (4.2) and additional proba-
bility P„depicted qualitatively by a dashed curve, piles
up at this coordinate. Due to the symmetry of the distri-
bution (4.3), negative values of e such that b +E &0 also

as shown in the insets of Figs. 3(b) and 3(c). According to
Eq. (4.3), there exists a significant probability P for e
values such that ~e~ &b provided 2v'D )b As a result, .
the effective potential for Eq. (2.3},
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v(e) o

a = 0.5

p 0 = l
55

0.5—

c=O

0

p (4)
05-

c=2

Ps; (t[t)

FIG. 4. Influence of noise color, that is, correlation time r,
on the steady-state distribution Pss [Eq. (3.21)], for a =0.5,
D =1.0, and b =1. White noise, that is, r, =0, shown in (a),
displays a strong noise-induced asymmetry as well as the wide

plateau reaching up to phase values of 2m. A correlation time of
r, =2, shown in (b), sharpens the phase distribution and thus
reduces the asymmetry, while at the same time eliminating the
plateau.

occur with the same probability leading to the potential

VI', ' = —aP —
/ fe [ b/cosqS, — (4.5)

FIG. 3. Qualitative explanation of the second maximum in
the steady-state distribution, P», of the multiplicative noise
process [Eq. (2.3)] for a = 1.0, D = l. 5, b = 1, and r, =0. In the
presence of additioe noise the steady-state distribution, shown

qualitatively in (a) by the dashed line, exhibits a maximum at
the location of the minimum of the potential, V(P)

aP+bcos—P, depicted by the solid line. The presence of
noise allows for running solutions and gives rise to the wings of
the distribution in (a). The multiplicative noise e, as defined via

Eq. (2.1), obeys a Gaussian distribution of width D [Eq. (4.3)],
shown by the insets of (b) and (c). Hence for D ~ b there exists a
significant probability for having a value of e& b. This creates
an effective potential V'+, '(P)= a/+(b+e)cosP —of depth
b+e& b, as indicated by the solid curve in (b). As a result, ad-
ditional probability piles up at the location of the potential
minimum. On the other hand, negative values of e such that
e+b &0 are equally probable as indicated by the inset of {c).
Consequently, the potential minimum of (b) turns into a max-
imum and the maximum into a minimum. Hence probability is
collected at the location of the original potential maxima of (a)
and (b) as indicated in (c) by the qualitative dashed curves. The
exact steady-state distribution P» obtained from the
continued-fraction treatment and shown in (d) is hence the
modification of the distribution (a) due to the weighted average
of the cases (b) and (c). Thus the noise-induced inuersion of the
potential is the origin of the second maximum in P».

as shown in Fig. 3(c). In this case the potential maxima
of Figs. 3(a) and 3(b) turn into minima with accumulated
probability P, . The total probability distribution Pss,
as given by the matrix continued-fraction treatment and
shown in Fig. 3(d), is hence the sum of the curve shown
in 3(a) and the distributions of 3(b) and 3(c) weighted ac-
cording to the Gaussian distribution (4.3). The additional
maximum at (()ss of Eq. (4.1) arising from the noise-
induced inversion of the potential V",' [Eq. (4.5)] sur-
vives this averaging procedure.

The long-ranging plateau also appears within the
locked region, that is, for ~a ~

(b as shown in Fig. 4(a) for
the case of a =0.5, D =1, and b =1. It is, however, very
sensitive to the correlation time r, . In Fig. 4(b) the value

~, =2 has made the plateau disappear as a result of the
narrowing of Pss. In addition, an increase in the correla-
tion time tends to decrease the noise-induced asymmetry
defined by the separation of the location of the maximum
of the distribution, P,„,and its center of gravity (P)
[Eqs. (3.29) and (3.32)]. This is confirmed in more detail
by Figs. 5(a) and 5(b) in which we show for parameters
identical to the ones of Fig. 4 the noise-color-induced de-
crease of the asymmetry and the narrowing of the width
of the distribution described by the second moment o.

[Eq. (3.31)], respectively. This noise-color-induced shar-
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good qualitative and quantitative description of the
steady-state distribution of a CEL with colored noise.

V. SUMMARY AND CONCLUSIONS

In the present article we have investigated the
influence of noise color on the steady-state distribution of
the phase of the electromagnetic field in the CEL model
of Eq. (2.3). In such a CEL device the spontaneous-
emission noise enters in a multiplicative way giving rise
to the celebrated noise quenching. We are therefore
confronted with the topic of multiplicative colored noise
in a periodic potential. We have approached this prob-
lem from three different directions: (1) By linearizing the
non1inear equation of motion, we find approximate and
analytical expressions for Pss and its moments, (2) an
infinite matrix continued-fraction treatment allows a for-
mally exact expressions for Pss, and (3) an analog simula-
tion of the underlying Langevin equation provides direct-
ly Pss

We have shown that only one of the two possible ma-
trix continued-fraction solutions of the recurrence rela-
tion (3.14) corresponding to the Fokker-Planck equation,
Eq. (2.4), reproduces in a most economical way the sharp
peaks of the phase distribution, Pss. With the help of

this technique we have extended the results of Ref. 9,
which so far have dealt with weak white noise, to the case
of large values of the diffusion constant D, as well as
noise color. In the course of this work the analog simula-
tion has brought to light another novel, noise-induced
effect: an additional maximum of Pss located approxi-
mately in the neighborhood of the unstable noise-free
steady-state solution and caused by the multiplicative
noise. This phenomenon is explained via a time-
dependent, noise-induced inversion of the effective poten-
tial V", '. Moreover, we have demonstrated that the
quenching of spontaneous-emission fluctuations found in
the white noise case is not only preserved in the case of
colored noise but is even enhanced by an additional shar-
pening of the phase probability distribution.
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