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Correlations in nondegenerate parametric oscillation. II. Below threshold results
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We develop the quantum theory of a driven, damped intracavity parametric oscillator in the case
of nondegenerate signal and idler modes. An analysis of the results of different types of local-
oscillator measurements on the outgoing modes is presented. The frequency-domain squeezing is
calculated below threshold including the effect of detunings and nonequal decay rates. We also cal-
culate a nonclassical correlation in the quadrature amplitudes of the output beams. The existence of
an Einstein-Podolsky-Rosen paradox is demonstrated through violations of the inferred Heisenberg
uncertainty principle at causally unrelated locations in the output field. This provides a way of
maintaining the commutation relations of the measured operators in the exact form envisaged origi-
nally by Einstein, Podolsky, and Rosen.

I. INTRODUCTION

Squeezing is the noise reduction that can occur in a
quantum field when the quantum fluctuations in one of
the field quadrature phases are reduced below the usual
vacuum level. ' In the case of the observed squeezing in
electromagnetic traveling-wave fields, this feature is evi-
denced by the reduction of the noise in a photodetector
below the shot-noise level.

As squeezing is phase sensitive, this is generally
achieved by means of a local-oscillator experiment, where
an intense local oscillator is mixed with the squeezed field
prior to photodetection. The local-oscillator phase is
then varied, and a cyclic variation in the apparent noise
level is observed. Owing to technical noise that predom-
inates at low frequencies, it is usual to Fourier analyze
the spectrum. Squeezing is said to occur when the inten-
sity correlation spectrum is reduced below the shot-noise
level at any frequency, given an appropriate phase angle
between the input and the local oscillator.

This type of noise reduction has numerous potential
applications ranging from gravity-wave detection to ul-
trasensitive interferometry. Following the landmark ex-
periments of Slusher et al. , squeezing has now been ob-
served in several laboratories. One of the more success-
ful techniques to data is practiced by Wu et al. , who use
degenerate parametric oscillation or subharmonic genera-
tion in an interferometer. ' However, it is also possi-
ble, and often simpler in practice, to operate a parametric
oscillator in a nondegenerate mode of operation. '

Heidrnann et al. ' have recently reported an experirnen-
tal reduction of intensity difference fiuctuations in the
nondegenerate parametric oscillator. In this paper, we
analyze the intracavity nondegenerate parametric oscilla-
tor below threshold and determine the extent of noise
reduction in this situation. We include detunings, pump
depletion, and damping. The above threshold results
were presented in an earlier paper. ' Related calculations

for squeezing were recently presented by Collett and
Loudon, ' Reynaud et al. ,

' and Bjork and Yamamoto. '

We also present a detailed analysis of the types of
local-oscillator measurements that can be utilized in this
twin-beam case. The usual single-beam measurements in-
volve the intensity spectrum' and the local-oscillator (or
"squeezing") spectrum. ' ' In addition, there are now
correlations between the two output beams. These can be
observed as direct intensity correlation using two detec-
tors, ' ' as "two-mode" squeezing with one local oscilla-
tor and one detector, or by measurements of twin
local-oscillator quadrature correlations ("four-mode
squeezing"). Experiments showing strong quadrature
correlations were recently undertaken for nondegenerate
four-wave mixing in an optical fiber. We therefore wish
to analyze the quadrature correlation experiments for the
nondegenerate parametric oscillator. The single-local-
oscillator and dual-local-oscillator measurements are dis-
cussed and a "squeezing spectrum" is defined in each
case.

The application of nondegenerate correlation is most
evident in the dual-detector experiments. Proposed ap-
plications include ultrasensitive spectroscopy' and quan-
tum nondernolition measurement schemes. ' In these
applications, information about the signal is gained by
performing measurements on the idler. There is a corre-
lation between particular quadrature phase amplitudes of
the signal and idler: the quantum noise of each is corre-
lated. We calculate this correlation, first in terms of a
Cauchy-Schwarz inequality, and secondly in terms of the
variance of an appropriately normalized signal and idler
quadrature amplitude difference. This last quantity,
defined originally by Levenson and Shelby, tells us the
average error in inferring the signal amplitude for a given
value of the idler amplitude. These correlation rneasure-
ments are directly related to the dual-local-oscillator
squeezing spectrum.

There has also been recent interest in the nondegen-
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II. HAMILTONIAN
AND STOCHASTIC EQUATIONS

We shall use a standard procedure for analyzing the
optical parametric oscillator. The nonlinear medium is
treated as providing a nonlinear term in the Hamiltonian
of the electromagnetic field in the interferometer, provid-
ed that the nonlinear absorption is small. This technique
is successful in predicting the results of other parametric
oscillator experiments. Accordingly, it clearly is a good
approximation for the analysis of this type of nonlinear
medium. After quantizing the Hamiltonian, ' the non-
linear medium can be shown to generate cubic terms in
the mode operators in the rotating-wave approximation.

All the modes of the problem are fully quantized, but
only the relevant, near-resonant, intracavity modes need
to be included. A reservoir of extracavity modes is neces-
sary to allow for the damping of the oscillator modes to
the environment and to the detectors. An intense,
coherent input driving field is included at a pump fre-
quency defined as 2e0. Hence, in the rotating-wave ap-
prpximatipn, the Hamiltpnian is given by

rev + irrev

where

H„,=%co]Q ]a&+Aco28 2a&+Aco3a 3a3

+iong(tt, a ~a3 —a, a2a, )

+i fi[Ea,exp( —2i coot ) E*a 3exp(2ico—ot) ],
A P f tA A f tA A f fA
H;„,„=a ]l ]+a,I,+a 2I 2+a 2I 2+a 3I 3+a 3I 3

(2.1)

Here co], co2, and co3 are the signal, idler, and pump
mode frequencies, respectively. The term g describes the
nonlinear coupling term due to the medium, and E is pro-
portional to the input amplitude at frequency 2coo. We
assume that the modes have the wave-vector-matching
condition of co3=co, +co, . The input frequency 2coo can,
however, be off resonant with co„so in principle all of
these four frequencies could be independent. The opera-
tors a,- and a,- are the boson annihilation and creation
operations for the signal, idler, and pump modes. With
no loss of generality, the quantum phases of the states
can always be chosen so that g is real and positive. We
assume that other cavity modes do not couple strongly to
the modes of interest.

The decay of the cavity to the external modes of the
electromagnetic field is described by the reservoir opera-
tors, I, and I,:, which are sums over the external field

crate oscillator (or amplifier) from the viewpoint of pro-
viding tests of classical theores versus quantum theory.
These tests have been concerned with photon counting
and intensity correlations between signal and idler. We
point out that our study extends beyond intensity correla-
tions to include correlations in phase. We discuss how
sufficient correlation between signai and idler for two
noncommuting quadrature amplitudes is an example of
the original Einstein-Podolsky-Rosen (EPR) paradox.
This has been discussed in part in a previous publica-
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(2.2)

The frequencies co, =coo+t. are the characteristic oscilla-
tions frequencies of the signal and idler modes when
driven externally by the pump at 2coo. Here coo is the cen-
tral frequency which can be used as a local-oscillator fre-
quency during detection of squeezing. The frequency
offset e will be chosen later. We note that any detunings
of the cavity modes,

6„=(co„—co„), (2.3)

must then be relatively small compared to the mode spac-
ings in order for the single-mode description to be valid.
The resulting master equation ' in the Markovian ap-
proximation for the reduced density operator p in the in-
teraction picture is

where

+ g t~, (2a~p8, —a a,p
—pa, a, )

J

+2 g ir n'"[[a,p], a ],
J

(2.4)

Here Kg are the damping constants (amplitude decay
rates) of the modes, and n'" are the thermal photon occu-
pation numbers of the external reservoirs. These can also
approximately describe any wideband background radia-
tipn due to nonthermal sources. The term H „,is the re-
versible part of the interaction picture Hamiltpnian. Ow-
ing to the frequency matching with coo used tp define the
interaction picture, this is given by

H„,=gfih a a +ifig(a, a za 3
—a,a za 3)

J

+i'(Ea 3 E*a3) . — (2.5)

operators in a standard notation. These will give rise to
cavity damping rates K], K2, K3, respectively, which are as-
sumed to be small compared to the resonant frequencies
and the intracavity mode spacings. In the special case of
co, =co2, it is necessary that the signal and idler modes
have orthogonal polarizations, since we assume that all
modes decay to distinct, uncorrelated reservoirs. As is
usual, the equations of motion for the density matrix can
be readily transformed to a master equation on tracing
over the external reservoirs. This is most readily accom-
plished in an interaction picture relative to the input fre-
quency coo, and two frequencies, co, and co&, for the signal
and idler modes, respectively. These are defined so that
the free Hamiltonian Ho, which determines the interac-
tion picture operator evolution, is

Ho=iii g co,a, a, ,
J

where

~0+ e0
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We note that all operators a,Q, without time argu-

ments, are in the Schrodinger picture and do not evolve
in time. Thus the interaction picture operators have a
time evolution given by

derivatives of a, a appear. While this equation has a
nonpositive-definite diffusion coefficient, there is an
equivalent form with a positive-definite diffusion. This
corresponds to six stochastic differential equations in the
variables (a,a ):

it ( t) =0 exp( —i td t ),
[a (t)] =a exp(i' t) .

(2.6)

O
—i(9

~, =so+I, a=~oe (2.7)

As the choice of co&, co& is arbitrary, it is always possible
to choose the detunings to be equal relative to the decay
time, so that ~&~z can always be chosen to be real. This is
obtained by choosing e so that

Owing to the choice of interaction picture defined rela-
tive to the input frequency coo, there is no explicit time
dependence in the reversible part of the interaction pic-
ture Hamiltonian, which greatly simplifies the solution of
the master equation. For later use, a complex decay and
detuning parameter ~, is defined for each mode:

a, a, = —K&a&+ga3a2+(ga3) g, (t),
B,a2 = —Kza2+ga3a, + (ga3) ' gz(t),

~,+3=E—~3a, —ga, e2,

B,a& = —
K~ a&+ga3a2+(ga3t)'~2(t(t),

B,a2= —Kza&~+ga3a&+(g a&3)'~ 2g t2(t),

CI, +3=E —~3 +3 g~ &uz

where

(g, (t)(2(t')) =&(t —t'),

(g, (t)g, (t') ) =lit t') . —

(2.11)

(Cd~ Cdo)K2 (Cd~ Cdo)K~

K +K2 1

(2.8)

a:—(a ),a2, a3)

(
t 1' t)

(2.9)

With this representation, it is easily shown that
P(a, a ) must satisfy a Fokker-Planck equation for its
time development which has only second-order derivative
terms in (a, a ). In the limit of n'"~0, which is ap-
propriate for optical laser experiments, the Fokker-
Planck equation can be directly obtained to be'

B,P(a, a ) = [B,(K,a, —ga2a, )+Bz(K2a2 —ga, a3)

+a3(K3a3 —~+ga&a2)

where

+8', 2(ga3)+H. c. ]P(a,a ), (2.10)

Here H.c. indicates terms obtained by interchanging ~;
with ~,* and a; with a, . In this equation only analytic

We shall prove in the following sections that this is in
fact the optimal choice of interaction picture, in the sense
that it leads to semiclassical behavior that is time invari-
ant above the oscillation theshold.

A systematic treatment of the master equation (2.4) is

most simply obtained in an operator representation of p.
In this representation, p is expanded in a basis of
coherent state' projection operators. Here a coherent
state is denoted Ia„a2,a3) for modes 1, 2, and 3, respec-
tively. The expansion coefficient or P function is not
unique. However, it is always possible to choose it as a
positive function P(a), so that

p= f [Ia&&a Il((a Ia))]P(a,a )d ad at,
where

(:Q,(t)a, (t'):)= ( a, (t)a, (t') )e

( &; (t)a~(t') ) = (a;(t)a (t') )e
(2.12)

Thus there is a direct correspondence between time-
ordered, normally ordered operator moments and sto-
chastic moments. This correspondence also extends to
time-ordered, normally ordered products with larger
numbers of arguments which occur (for example) in in-

tensity correlation functions. We denote these products
with ordering symbols: (::). Here annihilation operators
are ordered with earlier times to the right and creation
operators with earlier times to the left. In Sec. III we re-
late these internal operator correlations to a set of inter-
nal intensity and correlation spectra, denoted s(co) and
c(cd). These in turn are used to obtain the observed
correlations and spectra in external measurements. We
use the notation 6'"'(t, , . . . , t„) as usual for external
photon-counting correlations. We also use the notation
V(co) to denote an observed normalized spectral variance

All other correlation functions of the noise vanish, ex-

cept those specified. It should be noted that the correla-
tions of the fluctuating quantities a and a correspond
directly to normally ordered, time-ordered correlation
functions of operators. Since these are the quantities
directly measured in photon correlation experiments, the
stochastic equations generate directly the observed mo-
ments. However, this correspondence is only true for
ensemble-averaged correlation functions. The continuous
stochastic trajectories should not be regarded as having a
one-to-one correspondence with experimental observa-
tions of discrete photon counts, since these are not con-
tinuous events.

The choice of a normally ordered representation as uti-
lized here results in an extremely simple nonlinear set of
equations. These enable us to directly calculate time-
ordered, normally ordered correlations or moments of
the intracavity operators. It is easily shown that ordered
correlations of Heisenberg picture operators &;(t) are
given by
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in the heterodyne detected current. S(co) is used to
denote the squeezing spectrum, or departure from classi-
cal statistics. Finally, we introduce b, (co) to indicate an
inference spectrum in an EPR-type experiment.

LO(1)

P(1)

III. CORRELATIONS AND SQUEEZING:
TYPES OF MEASUREMENT

Before proceeding to solve Eqs. (2.11), we first analyze
the results of measurements on the fields produced by the
parametric amplifier. In practice, measurements of the
external fields of a cavity are simpler to achieve than the
intracavity measurements that our stochastic variables
describe most directly. This relationship is discussed by
Yurke" and by Collett and Gardiner, ' who have demon-
strated how the output fields of a cavity can be described
precisely in terms of the internal fields. The measure-
ments of most interest here are those obtained with local
oscillators. There can be either one or two local oscilla-
tors in nondegenerate parametric amplifier experiments,
as the output field can be split up into its independent
components prior to detection. This is shown in Figs. 1

and 2. The simplest case is that of the single local oscilla-
tor, with two identically polarized output beams. The
case of orthogonally polarized output beams will be re-
garded as a twin-local-oscillator experiment, because here
the local oscillator must be treated as having two orthog-
onal components also. The single- and twin-local-
oscillator cases will be treated individually.

2(Op

MI MO

LO(2)

P(2)

L (where we shall take the limit of L ~ ~):

4'"'(t x)=

4'"(t x)=I'

where

1/2 k, +5k
ftk(t}e'"",

k =k —hk
t

1/2 k 0+gk

k= —k —b, k
t

81,(t}e'",
(3.1)

FIG. 2. In the twin-detector case, a similar output is pro-
duced to that in Fig. 1, but is incident on two detectors using

two local oscillators.

A. Single-local-oscillator case

In this case we divide up the input fields of the cavity
into orthogonal modes denoted Qk. These are transverse-
ly phase matched to the internal modes with which they
are nearly resonant. We define these Heisenberg picture
input and output fields 4 ';" and 4 ',

"' so that
([4;"'(t,x)]~4;"'(t,x)) for x )0 is the photon flux out
of the ith mode integrated over the mode cross section.
We note that in a one-dimensional treatment of the exter-
nal field, 4';" and 4', "' can be readily expanded in the
external-field mode operators &k quantized over a length

20)p

It is clear from this that 4, is restricted to a range of
wave numbers near the ith mode resonance.

In the three-dimensional case, we use the paraxial ap-
proximation to treat jiropagation. The forward-
propagating electric field E at location x in the external
field is given by extending the ith internal mode function
into a phase-matched external transverse mode u„ for
x)0

scotE'"'(t, x)= Q 2E'pc

1/2

u;(x)4;"'(t,x), (3.2)

where

J ~u;(x) d r= 1, x=(x, r) .

Thus, 4', "' can be directly related to the internal opera-
tor for the mode with internal mode function u;, through
boundary conditions on the electric field E at the cavity
output mirror. These imply that

MI MO

LO

a, (t)=(2N,') ' [4',"(t,x =0)+4;"'(t,x =0)],
where

(3.3)

FIG. 1 ~ Typical experiment for correlations in nondegenerate
parametric oscillation. An input pump at 2~0 produces outputs
at co&, co&. The input mirror, MI, is highly reflective at the signal
and idler frequencies. The output mirror MO is relatively more
transmissive. The beam splitter is highly reflecting, or could be
replaced by dual-homodyne detectors. The local oscillator at coo

combines with the signal and idler to produce an interference
signal at the photodiode, in the simplest case.

Here (z,') '~ is proportional to the output coupler
transmissivity, while K; describes all the lumped losses in-
cluding those due to losses through other mirrors, as well
as absorption and scattering in the intracavity medium.
In the absence of these losses, K, =K;, which gives the op-
timal squeezing in the external field.
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and

G "(t,t') = (:I(t)I(t'):} .

(3.4)

In the case of a squeezing measurement, a coherent lo-
cal oscillator is present at the detector in addition to the
output fields. Measurements of this type were originally
discussed using a non-normally ordered theory of the
measurement process. However, it is more useful, espe-
cially when calculating the shot-noise component, to use
the more standard normally ordered photodetection
theory. ' This has been recently used to treat single-
local-oscillator measurements. ' For completeness, we
now summarize the single-local-oscillator results in our
notation. Our results give the observed current spectra in
terms of the relevant intracavity mode correlation spec-
tra, which will be calculated in the following sections.

As the squeezing occurs in a quadrature which com-
bines the signal and idler fields, it is necessary that these
fields should be combined at the detector. The detector is
then illuminated with an intense local oscillator with
coherent amplitude 4p=(4p) at the central frequency
coo. The overall one-time and two-time correlation func-
tions for photodetection with perfect mode matching at
the detector location x =xd are given by time-ordered,
normally ordered correlation functions

6("(t)=I (t)= (I(t) )

lator with the signal fields, so that

lvpl'+ lv, I'~ 1, j=1,2 . (3.6)

As we will find that the local-oscillator measurements
only depend on the total phase 0, +82, it is useful to
define an overall phase, 8= (8, +82) /2.

The quantity most often measured in experiment is the
output current correlation function. %e suppose each
current pulse is i p(t —t ) for a photon arriving at t The.
total output current for photons arriving at times t. is
i (t), with a current correlation function of 6, where

For simplicity, we suppose that a beam splitter is used
with lvpl ((1 and v is near lv l

=1. This results in op-
timal squeezing, while predicting similar behavior to
more complicated balanced homodyne schemes. The
symbols (::)indicate that the two-time correlation func-
tion is time ordered and normally ordered. This implies
that no contributions occur from the other modes in the
vacuum state, which in any case could not be phase
matched to the local oscillator over the entire detector
area.

The phase angle between the local oscillator and the

output field is defined by

v, lvp@pl'8 =1 (3.7)
~o4o

I(t)= vp4(~)e '+ Q v4)i(t)
J

X vpkpe '+ g v 4~(t)
J

(3.5)

Here, we define I(t) as the local photon flux operator
at the detector, in the Heisenberg picture: i(t)= gi, (t t, ), —

J

G'(t, t') = g i,(t t, )i,(t' t,—)—
J

+ g pi, (r (()(,(( —(, )) .
' —

k
jwk

(3.8)

where

C,(t):4;"(t,x,—) .

The comp1ex factors vo, v„v2 allow for the detector
efficiency and the amplitude of combining the local oscil-

I

This has contributions both from the one-time correla-
tion function (when j= k) and from the two-time correla-
tion function (when jAk). We note that G' '(t, t') is
defined as the probability density of observing two pho-
tons, one at t and one at t'. Hence, combining these,

6 (t, t')= f I(ti)[ip(t ti)t p(t ti)]d'ti+ f f 6 "(t„t,)[ip(t —t, )ip(t' ti)]dt, dti . — (3.9)

This expression is generally true for arbitrary current pulse shapes. For simplicity, we will suppose that
ip(t)=Ze5(t). This implies the current pulses are short coinpared to the time scales (cp ) of interest and produce Z
electrons in total. The first term is often called a shot-noise term, and is related to Poissonian number fluctuations. The
observed low-frequency steady-state current correlation spectrum is therefore

6'(cp)=(Ze) (I(0))+f 'e"'(:I(0)I( )r:) dr (3.10)

where we have defined

G (pi)= — e' " "G (t, t')dt'dt .
1

T
(3.1 1)

Expanding and keeping terms to order I = ( lvpl~k p~kp), we find that for a local oscillator uncorrelated with the signal,

6 (tp)=(Ze) I 1+2m5(tp)(I +2I')+ f e' '([4,(w)4, (0)+4,(0)4,(r)]}dr

+ f e' '(:[e '4, ( 0)4, ( r) +H. .c]: }dr
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X (t)= g ~v, ~e ' '~4, (t)+H. c. (3.14)

Thus G (co) can be reexpressed in terms of the quadra-
gture operators X (t). Normalizing by the shot-noise

background, which equals (Ze ) I,
G (co) =2mo(co)(I +2I')+1

(Ze) I
+ f & X'(O)X (r) )e""'dr. (3.15)

where

I'=—&4', (0)e,(0)) =—&4,'(t}4,(t)) .

Here we have defined &4,(t)4, (t)) to correspond to
the total detected signal photon Aux, so that

e, (t):—y ~v ~e '4 (t) . (3.13)
J

Since the signal and idler can interfere coherently, it is
useful to define a total quadrature field that includes both
modes together with the relevant efficiency factors, i.e.,

respond directly to a normally ordered operator product
of external fields. It is clear from Eq. (3.16) that S(O, co)

which gives a normally ordered variance, indicates the
extent of nonclassical statistical behavior:

V(O, co) =1+S(O,co} . (3.17b)

c, (co)=2(~;x. )' f &:a, (0)a (r):)e'"'dr .

This can be readily simplified to an expectation value
of Fourier transforms, in a generalized Wiener-
Khintchine theorem. In terms of stochastic variables

Using this normally ordered form, which is valid even
for ~v ~&1, V(O, co) can now be related directly to sto-
chastic correlation functions of the internal variables
a, a

We first define a generalized spectrum s,~(co) and
cross-correlation spectrum c; {co). These only refer to in-

tracavity correlations, but include the damping rates ~&

for purposes of normalization:

s; (co)=2(K K))' f &:a;( 0)a, ( r):)e'"'d r,
(3.18)

The last two terms comprise the shot-noise plus a term
due to coherent interference between the local oscillator
and the signal. This combination is called the squeezing
variance V(O, co), which is defined for an integration time
T as

4m(lc ~~)"
s„(co)= '

& a, (
—co)ai(~) ),

4n(~ ~ )'
c„(co)= ' -&a, (

—co)a, (co)) .

(3.19)

V(O, co)=1+2m&:[X (co)] X (co):)/T {3.16a)

where

X (co)=— —f e'"'X (t)dt .
v'P~

Using the free-field commutation relations of the 4, (t)
field in the case

~ vj ~

=1, V(O, co) can be rewritten as

V(O, co)=2m. &[X (co)] X (co))/T, ~v, ~=l . (3.16b)

Next we use the input-output relationships [Eq. (3.3)]
to relate s (co) and c (co) to the external modes:

s, (co)=—
I

x f f &[4;"'{t}]"4;"'(t+~))

Xexp[ i(co+co, )—t

We see that V(O, co) is an expectation value of a
positive-definite operator, with a lower bound of zero,
and a value of unity for a normal vacuum or coherent in-

put, in the case of perfect efficiency (~v~~=1}. Here we

use the fact that for perfect efficiency

[4,(co),4, (co')] =5(co+co').
It is useful now to utilize Eqs. (2.12) and (3.3) to define

stochastic quadrature variables X (co), with a spectrum of
S(O, co):

+i (co+co )(t +r)]dt dr,

c, (co)=-
K JC

I /

X f f &4;"'(t)4;"'(t+ ))r

X exp[ —i (co —co, ) t

+i(co+co )(t +r)]dt dr . (3.20)

S(O,co)= &X {—co)X (co)), (3.17a)

+a,"(co—coo+co, )e '],

where we include the output coupler transmissivity ~' so
that

X (co)= g ~v~ !21c')' [a (co+coo —co )e

As we will calculate the intracavity correlation func-
tions and s(co) and c{co), in the following sections, it is
useful to reexpress the squeezing variance V(O, co) in
terms of these quantities. Keeping only the terms of the
form & a, (

—co)a, (u}) (for i%j) and &a, (
—co)a (co) ) {for

i =j)—since we will find later that other terms all vanish
identically —the variance is calculated to be

V(O, co) = 1+ti, [s „(co—e)+s „{—co+ e)]

a,(co)=, f e' 'a, (t)dt .1

(2~)'

Provided the input fields to the relevant mode are in

the vacuum state, the stochastic variable correlations cor- where

+ g2 [s ~ 2 ( ci) +e ) +s p2 ( cd E)]'
+2+g, g~Re( e ' [c,z(co+e)+cz, (co —e)]I,
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We have not included terms such as s33 and c33 involving
the pump mode a3 since these are significant only near
zero frequency, co=0. The expression V(H, co) is thus
similar to the "two-mode squeezing" spectrum con-
sidered originally by Caves and Schumaker. The fac-
tors g, are overall efficiency factors that account for both
intracavity and extracavity absorption or losses, as well

as for the photodetector efficiency.
We see here that the phase dependence occurs only

through 8=—,'(8, +82). This is a general expression that

principally assumes a time-invariant steady state in the
two modes. It also implicitly assumes that the two modes
are nonoverlapping in frequency, so that the spectral
width of each of s (co) and c(co) are much less than e, and
that (as is the case throughout this paper)
s,2(co)=s»(co)=c»(co)=c22(co)=0. In the equal-

efficiency case of g&=g2=g, we can also write

V(H, co)=1+[S'"(H,co —e)+S'"(8,—co —e)], (3.22)

where [noting that c,2(co) =cz, ( —co) identically] we have
divided S(H, co) into two symmetric parts, with

SI "(H,a)) =r(Is„(co)+s22( —co)

distinct and independent polarizations of the local oscilla-
tor. In the general case there are two photon cruxes, I&
and I2. A number of cross correlations can be calculated,
together with their corresponding current spectra, i.e.,

(3.24)

The corresponding current cross-correlation spectum is

G; (co)=Z;Z e 5, (I (0}&+J e' 'GI '(O, r)dr . (3.25)

Here the current correlation function is calculated fol-
lowing precisely the arguments of (3.8)—(3.12). The local
oscillators can in general now have arbitrary frequencies.
However, we will use the optimal choice, which is that
the local-oscillator frequencies correspond to the two
mode frequencies co, and co&.

We can now calculate the cross-spectral current corre-
lations directly in terms of quadrature correlations, as be-
fore. In the limit of intense local oscillators

G;, (co)
=5;J5(co)(I; +I )

Z;Z)e

+(I,'I,')'" 5 + (:X,'( —co)X,'(c0): &

+2 Re[e" c„(co)] ) . (3.23)
(3.26)

The quantity S'"(H, co) is a direct indicator of the ex-
tent of squeezing. When S"' has negative values, the
field is nonclassical, and squeezing has occurred. The
largest degree of squeezing is for S'"=—1 ~ We note that
the total measured variance V is symmetric in frequency
around co=0. On the other hand, S "may not be exactly
symmetric around co=0. The observed variance V can
only reach its rninimurn value of V=0 at the spectral lo-
cations where S = —1. As the two modes are nonover-(1)—

lapping, the two spectral terms in Eq. (3.22) cannot both
equal —1 simultaneously. Thus V =0 can only occur for
perfect overall efficiency, i.e., g= 1. Of course, in the lim-
it of complete noise reduction, the other quadrature will
have infinitely large fluctuations.

We note that in experiments it is sometimes useful to
arrange the detection apparatus differently from that
shown in Fig. 1. It is common to use a 50-50 beam split-
ter, and to detect the difference current between the two
resulting output beams. This is known as balanced
homodyne detection. For simplicity, we do not treat this
case in detail. The result of the balanced homodyne
scheme is the complete suppression of the coherent term
proportional to 5(co}, provided that two arms of the
beam-splitter output are exactly matched.

B. Twin-local-oscillator case

Next we shall consider the class of squeezing experi-
ments in which the two output beams have distinct local
oscillators, as shown in Fig. 2. In this category are in-
cluded experiments with modes of orthogonal polariza-
tion, since the signal and idler beams then interfere with

where

where (3.27)

S,,(8,,8„)= (:X,'( —co)X', '(co): & .

Once again, as in the earlier case, for perfect efficiency
this reduces to a non-normally ordered operator product:

VJ(8„82,co)= ([X,'(co)] [X '(co)]& . (3.28)

The normally ordered spectral covariance S;,(8,, 82, co)

can be regarded as the measure of the departure from
classical statistics, since the normally ordered expectation
values behave as classical averages when the fields have
classical statistics.

It is useful to express the normally ordered spectral co-
variance in terms of the spectral matrices s(cu) and c(co),
as in the earlier case. We find that

i(0(+ 0~)
S„(H,, H~, co) = Is„(co)+s,, ( —co)+c„(c0)e

(3.29)

In the case of the parametric oscillator, we have

This leads to the obvious definition of the normalized
cross-spectral variance:

V; (8),82, co}=5J+S~(8),82, co),
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s, 2(co) =sz, (co) =c»(co)=cz2(co) =0, so that

S, (0,0„co)=s,(co)+s (
—co),

t (01+92) —i(01+(92)
S&2(0&,0&, co)=c&&(co)e ' ' +[c&&(~)]*e

(3.30)

GI+I(r, r')=G, ', (t, r')+(Z, /Z, )'G,",'(r, t')

+(Z, /Z, )[G",,I(r, r')+G,",'(t, r')],
GI",(r, t') =G",, '(r, r')+(Z, /Z, )'G,",'(r, t')

—(Z, /Z, )[G'",,'(r, r')+ G,",I(r, r')] .

(3.31)

Of most interest in the present paper will be the
current-fluctuation spectrum in the two current combina-
tions: i+=i, +i2. It is useful to define additional two-
time correlation functions in terms of 6; that can be
written

It is clear from Eq. (3.26) that the shot-noise contribu-
tion to the current spectrum is (ZfI, +Z~Iz)e . Hence
the combination photocurrent spectra will be, after
Fourier transforming and dropping terms in the shot
noise of order I',

G+(co) =I, +I,(Z, /Z )'+ f e'~'{G"'( 0~) +( Z, /Z )'G"'(O, r)+(Z, /Z, )[G" (O, r)+G'"(O, r)]Id' .
Z, e

The result for the photocurrent spectra is then

(3.32)

G' ~ =[Io+I', +(Zz/Z, )(I2+I'2)] 5(co)+II '(1+g')+I, f e' '(:[X,'( 0)+gX'z'(0)][~ &'(r)+gX q'(&)]:)«,
(Z, e)'

(3.33)

where

g =(Z, /Z, )(I', /I', )'" .

where

=1+S+(0„0~,cu), (3.34)

S+(0,, 02co) = (:X+(—co)X+(+co):),

X+(co)=[X,'(co)+gX, '(co)]/(1+g )' '

Here we have utilized the vanishing of s,2(co), s»(co),
czar(co), and c, , (co), and assumed that g, =g~ to simplify
the expression for later applications. The detector
efficiency g is defined as in Eq. (3.21).

The following equalities are easily obtained in the case
g =1, providing s -(co)=s (

—cu) and c; (~)=c;.( —co):

S+ (0,, 0,, co) =S'' (0, +0,, co),

S (O, , O, , ~)=S'"(~+O,+e, , ~) .
(3.35)

Thus in the special case treated here, there is a direct

Here g can be thought of as the relative gain of the
channel-two detector compared to the channel-one detec-
tor.

Just as before, it is appropriate to define a squeezing
variance that is positive definite and equal to unity in the
vacuum or coherent signal case. This is given, after sub-
tracting the coherent (5-function) component, by normal-
izing with the shot-noise power spectrum:

V+(0), 02, co)=1+2' Re(s))(co)+g s22(co)

+g [ exp[i ( 0, +02) ] I

X [c,2(co)+c2, (co)])/(1+g )

relationship between the single-oscillator variances and
the double-oscillator variances characteristic of twin-
output experiments. We shall calculate V(0, co) explicitly
in Sec. VI. A discussion of the physical implications of
the two-mode experiments is given in Sec. VII and VIII.

We note that there is a clear physical distinction be-
tween the single-local oscillator and the double-local-
oscillator types of squeezing measurement. The single-
local-oscillator measurement, which is applicable to a
nondegenerate signal-idler frequency, produces a twin
spectrum with no squeezing near zero frequency. The
double-local-oscillator measurement is best made with lo-
cal oscillators individually resonant with the relevant
modes, thus producing a spectrum near zero frequency.
If nonresonant local oscillators are used in the double-
local-oscillator experiment —or, equivalently, if orthogo-
nal polarizations with nondegenerate frequencies are used
in a single-local-oscillator experiment —a twin spectrum
is predicted, but with a maximum squeezing of only 50%.

We finally comment on the types of nonclassical behav-
ior that can be found in these twin-beam experiments. It
is useful to define rigorously what we mean by classical
statistical behavior. The simplest definition is that a clas-
sical field is one generated by a classical macroscopic
current source. This corresponds to a coherent state in
quantum field theory. Of course, this must be generalized
to include classical statistical mixtures, which are
represented by the use of a positive, diagonal P distribu-
tion. Thus, classical behavior in a correlation measure-
ment corresponds to a field either in a coherent state or
having a positive Glauber-Sudarshan' ' P representa-
tion. This implies that all normally ordered variances are
positive. In single-mode experiments the criteria that are
most commonly used for classical statistics are that there
is neither photon antibunching nor squeezing. In our no-
tation, this implies that, for all phase angles 0,
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S(8,co) ~0 . (3.36)

We note that in the case of an experiment without a local
oscillator, the corresponding inequality for classical pho-
ton statistics is

G' '(co) +0 . (3.37}

Violation of this inequality corresponds to photon anti-
bunching. For an experiment with two local oscillators, a
larger number of conditions can occur. The most obvi-
ous of these is the counterpart to the antibunching cri-
terion, i.e., for classical photon statistics,

G'+'(co) ~ 0 . (3.38)

Rearranging and choosing:

Ig I

=
I & &;( —~)&,(~) & I II & &, (

—~)&,(~) & I, (3.41)

we have the general result that

&X', ( —co)X', (co) &&XJ( —co)XJ(co)» I&X, ( —co)XJ(co) &I'.

(3.42)

This results in a quantum Cauchy-Schwarz inequality.
For perfectly efficient detectors, using the earlier nota-
tion, we obtain a relationship between the observed vari-
ances:

V;;(8„co)V)J(82, co}~
I V,"(8„82,co)I

where

(3.43)

However, similar classical arguments can be utilized
for the case of a classical field with a Glauber-Sudarshan
positive P distribution. In this case, we use the stochastic
representation of X' and note that for the case of diagonal
coherent state expansion, one must have X( —co) =X(co)
for each stochastic path. The corresponding operator
correlations are, of course, the normally ordered correla-
tions. Hence we obtain, for classical fields,

&:X;(—co)+;(co):& &+, ( —co)+, (co): &

(3.44)

which implies that

We can now obtain some relationships that are unique
to the two-mode experiment. First of all, we note that
since XJ ( —co) = [X (co)), we must have, for any complext

gain g,

& [X', (
—co)+g 'X', (

—co)][X',(co)+gJ,(co)] & ~0 . (3.39)

Here we drop the angular argument [8, ] for simplicity.
The term g has arbitrary phase and will be chosen so that

&g 'X, (
—co)X;(co)+gX;(—co)X' (co) &

= —21g&f, (
—co)2, (co) & I

. (3.40)

V,;(8;,co) = 1+S;;(8;,co)

V, (8;,8,co)=S; (8;,8,co), i' (3.46)

Hence, the normalized cross-correlation function S,2 is
strictly bounded by

IS)q(8), 82, co)I [1+S))(8), co)][1 +ST( 8q, co)] .

(3.47)

In all the cases treated in this paper, we have the iden-
tities s,2(co)=s~, (co)=c22(co)=e„(co)=0. Thus the re-
sults of Eq. (3.30) can be utilized to give the classical
Cauchy-Schwarz inequality as

2
~ g[s ( )+s (

—co)] . (3.48)

Violation of this inequality is a situation where there is
a greater than classical correlation between quadrature
phases, and it is clear that this violation of classical statis-
tics is permitted by the strict quantum-theoretic bound of
Eq. (3.47).

The violation of this inequality is a generalized type of
squeezing. This can lead to situations of the type en-
visaged by Einstein, Podolsky, and Rosen in their work
on the EPR paradox. These situations will be treated in
more detail in Sec. VIII.

IV. SEMICLASSICAL RESULTS

We now proceed to analyze and to solve the stochastic
equations (2.11) describing the parametric oscillator. The
semiclassical properties of the above equations are dis-
cussed in detail in some earlier papers. ' ' These well-
known results are reproduced here in our notation, for
completeness. In contrast to most earlier works, howev-
er, we keep the results quite general by allowing for non-
equal decay rates ~ and nonzero detuning 6 .

It is clear that the steady-state amplitudes of a, are ob-
tained on setting c),a; =0=(;(t) in Eq. (2.11). Solving for
the signal and idler modes,

a', ——ga', az«, ,

and (4.1)

a2=ga3a] /~2 .

This implies that either

~0—
( 0)t 0

( 0)t 0

SJ (8;,8),co) = &:X,( —co)gq(co): & .
T

This inequality can be violated by fields with quantum
correlations, even though the earlier inequality is
satisfied. The extent of violation of the classical inequali-
ty is maximized for perfect detectors. We use the obvious
relations that

S;;(8„co}S,(82, co) ~ IS;,(8,, 82, co)I

where, just as before,

(3.45) or

g cc3(&3) =K)Kp

(4.2)
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a', =0,
a3 =E/ir3,

(4.3)

In the above-threshold case, the condition (a )'=(a )

implies that K1K2 must be real. Thus any detuning
present in the signal and idler modes is necessarily pro-
portional to the cavity decay rates, or else only limit-
cycle-type behavior can occur in the above-threshold
solutions. This symmetric choice is always possible since
co, —co& is arbitrary, as stated earlier. The field ampli-
tudes can be written in terms of their phase and intensity
as follows:

a~=(a )'=I~' exp( iP —),
E=~E~exp( —i/0) .

It is clear from Eq. (2.11) that for the steady state

(4.4)

(4.5)

But Eq. (4.1) gives a relationship between a~~ and az;
hence, for the steady state

(KiKz )
and e

-I(y, +y )

(4.6)

Upon inserting the phase relation into (4.5), the result-
ing complex equation allows us to solve for the steady-
state, above-threshold values of P3

—
$0 and I=~a, ~~a&~.

We find from the imaginary part of Eq. (4.5) that

&,(I~,~f )'"/g —gI~)/l~) I

tan(I93 —00) =
1~,(x.

,
a.

z
)' /g+gIx, /~~, ~

(4.7)

Substitution back into the real part of (4.5) and exam-
ination of the limit I~0 allow us to deduce the existence
of at least one above-threshold solution (requiring I )0)
as the driving field amplitude E increases in magnitude
above a threshold amplitude E&. The threshold ampli-
tude is given by E7 = ~a3~(~, irz )' /g. In the present pa-
per we restrict our attention to the below-threshold solu-
tions, tE) &Er. The above-threshold solutions and fluc-
tuations were examined in the earlier paper. '

V. LINEARIZED EQUATIONS
AND SOLUTIONS BELOW THRESHOLD

We now analyze the below-threshold behavior with
E~ &Er, by linearizing the equations (2.11) about the

steady-state semiclassical result: a, =a&=0, a3=E/K&.
Below-threshold solutions have been obtained in previous
works' ' in the limit of equal decay rates and zero de-
tunings. We will show that the steady-state solutions are

In the semiclassical limit, we will only consider
steady-state solutions in which (a3)' =(a3), as these cor-
respond to classical fields. Thus the solutions fall into
two categories at all input powers. The first solution is
immediate, and gives the below-threshold behavior:

a', =0,

stable. Hence we may solve Eqs. (2.11) below threshold
to a good approximation by the linearization procedure,
which assumes small fluctuations Aa =a —a about the
steady state. The linearized equations are

B,ba&= —a, ba&+ga3baz+F&(t),

8(5az — Kzkaz+ga3ba, +Fz(t)

B,Aa3= —K3Aa3,

a, ~at] K——
l
~—al+ga03"b, azt+F1 (t),

&z~az+ga3 ~at+Fz(t)

B,Aa3= —K,*Aa3 .

(5.1)

The nonzero steady-state noise correlations in this
small-noise approximation are

(F, (t)F,(t') ) =g &(t —t'),E
K3

(F, (t)Ftz(t')) =g 5(t t') . —
K3

(5.2)

~3,4 ~1,2 ~

where

x =[+c/2+ —,'(c'+d')' ']' '

and

c =(a, —az) —(b. , +b,z) +4g IE~ /ta3 ',
d =2(i~, —a.", )(6, + hz) .

The linearized equations (and hence the steady-state
solution) are stable where the real parts of all the eigen-
values are positive. Thus for stability we require
K1 +K2 0 x + ~ A little algebra reveals that the steady-
state, below-threshold solutions (4.3) are stable where
~E~ &Ez. Thus, fluctuations from t.he steady-state deter-
ministic solution are damped before becoming too large
(provided we are not too close to threshold) and the
linearization procedure is valid. Above threshold

We note immediately that below threshold the pump
fluctuations Aa3, Aa3 always decouple from the signal
and idler fluctuations. In fact, Aa3=0 in the steady state,
indicating that in this linearization procedure the
coherent input field produces a coherent pump mode in
the cavity. The signal and idler modes have quantum
fluctuations, which we shall calculate in the remainder of
this section. We use the notation a instead of Aa for
j =1,2 from now on for simplicity, because a =Aa in
these cases. We note that the linearization procedure is
valid for small fluctuations and does not hold in the criti-
cal region near E =E~.

We write the deterministic signal and idler equations of
Eq. (5.1) as B,a = —A a, where a = (a, , az, a, , az ). The
eigenvalues of the deterministic part of the signal and
idler equations are readily found to be

K1+K2
0 0

~1 2 2
+i +—,'(x+ +ix ),

2
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a (co) = e' 'a (t)dt,

a (co) = — e' 'a (t)dt,
&2n.

F (co) = f e' 'F (t)dt,v'z~

(5.3)

(lEl & ET) the solutions (4.3) are unstable.
Since we are primarily interested in spectra, Eqs. (5.1)

are most conveniently solved by transformation into fre-

quency space. We define the following Fourier-
transformed variables: a2(co) =

a2(cd) =

ga3F2(co) —(ico —
K2 )Fl(co)

(lcd —Kf )(lcd K—
l

) g—la31

ga3 F, (co) —(ico —
Kl )F2(co)

(tcd K—
l ){lcd —

K2 )
—g la3l

ga3F, (co) (i—co K—
l )F2(co)

(&co —
Kl )(cco—K2) —g la3l

ga3 F2(co) —(i co K2)F—1(co)

(ico K2—)(i co K*,—)
—g a3l

(5.5)

F (cd ) = — e' 'F (t)dt .

The nonzero noise correlations in frequency space are
readily calculated from these definitions, as

{F
1 (co )F2(co') = (gE/K3)6(co+ cd' ),

(F
1
(cd)F2(cd') =(gE/K3 )5(co+co') .

oo

a (t)= a (co)e '"'dco
&2m

(5.6)

and the properties of the 5 function, it is straightforward
to show that

We are particularly interested in the steady-state quan-
tities s J(co) and c; (co) defined by Eq. (3.19). Using the
definition of the inverse Fourier transform,

On converting Eqs. (5.1) into frequency space, we ob-
tain the following set of algebraic equations which are
then readily solved:

0=(ico K, )a—,(co)+ga3a2(cd)+F, (co),o

(a, (cd')a, (cd) ) =

(a, (cd')a, (co) ) =

c,i(co)

2( 0 0)1 /2
l J

s; (co)

2(K K )'
l J

5(co+co'),

5(cd+co'),

(5.7)

0=(icd K2)a2(cd)+ga3ai(cd)+F2(co)O

0=(l~ —Kl )atl(m)+g(a03)*a2(M)+F 1(~),
0=(i co K2 )a2(co—)+g(a, )*a,(cd)+F2(co) .

The solutions are

(5.4)

c
1 1 ( cd ) =c 2 2 ( co ) =s 21 ( co ) = s 12 ( co ) =0 . (5.8)

Our central theoretical result is for the nonzero elements,
which are

in accordance with Eq. (3.20). Hence the spectra are
readily calculated from (5.5). We find that

4K', K',g'l a0, l2

s„(co)=s22( —co) =
l(ico Kz )(ico —

K,)—
2(K1K2) ga3[g a3l +(ico K2 )( —i—co K~ )]-

C21(CO 1 =C12(CO) =
1 (i Co K2 )(lcd Kl ) —g'la031'I'

(5.9)

The solutions are a function of the following scaled
variables:

The cross-correlation spectra then are given by

lEl
(KK)' E K KK)K2 T I 1

(5.10)

c„(co)=c„(co)=P 1 1

(1 P) +co (1+—P) +cd

(5.12)

s „(co)=s (co) =P 1 1

(1 P) +co (1+P) —+co

(5.11)

For the case of symmetric decay rates (K] =K2 K ) and
zero detunings, the solutions may be written for the in-
tensity spectra as

The direct intensity spectrum s»(cd) associated with
mode a

&
is the sum of two Lorentzians, centered at co=0

and with widths 2K {1 P) and 2K (1+P)—. We note the
divergence in the first Lorentzian as threshold is ap-
proached (P~ 1).

One may now calculate the various squeezing spectra
discussed in Sec. III. The results obtained in this section
relate to the intracavity correlations s,"(co) and c,"{co). In
the following sections, we relate these to the external
correlation spectra observed using different types of mea-
surements.
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VI. SQUEEZING WITH SINGLE
LOCAL OSCILLATORS

The case of a single local oscillator gives results that
are applicable for a single polarization direction and non-
degenerate frequencies. This has been termed "two-
mode" squeezing. The "two-mode" squeezing spectrum
measured with a single local oscillator takes the form
given by (3.22) where (e=co, —~a=co0 —

co&)

V(O, co) =1+[S"'(O,co e)—+S"'(8,—co —e)],
where

(6.1)

S"'(O,co)=g[s&~(co)+s22( —co)+2Re[e ' cz&(co)]] .

For 8=n /2, chosen to minimize the noise level
V(O, co), we have

)3

c:E
V)

(a)
I

4

/

/

l, /
1L /

/ /

/

/
/

/

S"'(m./2, co) =- 4P
(1+P) +ro

(6.2)

QQ--

Thus the observed spectral variance, normalized by the
shot noise, will be

—4P
V(8, io) = 1+g

(1—P) +(ro —F)

Q)3 Q--
CV

—E

Q--

where

—4P+
(1+P) +( io+)e

(6.3) (b)

E' =E/K

This gives two minima at co=+@ in the observed spec-
trum. It is necessary that e &&1+P for the analysis given
here to be valid, as we suppose that the two modes decay
into uncorrelated reservoirs. For this reason, the two
Lorentzian minima are nonoverlapping. As discussed
earlier, the case of orthogonal polarizations is treated as
having independent local oscillators.

The spectrum localized about each cavity frequency
(cu, or /o2) is thus a negative Lorentzian with width

2x (1+P) (see Fig. 3). Approaching threshold (P~l),
the noise level V(O, co) decreases. Total cancellation of
shot noise ("perfect squeezing") is obtainable at co=+e
for g=1. We point out that this linearization procedure
will break down near threshold where the fluctuations be-
come larger [one of the eigenvalues (5.2) becomes zero].
We also note as P~1, the linearized fluctuations in the
associated quadrature 0=0 apparently become infinite,
though with a narrowing width. In a realistic situation
where there is some phase jitter and 0 cannot be precisely
m/2, the large fluctuations due to this narrow Lorentzian
will tend to reduce squeezing at low frequencies. The op-
timal squeezing spectrum (6.3) below threshold has an
identical shape to that of the degenerate parametric oscil-
lator derived by Collett and Gardiner' below threshold,
and has been derived by Reynaud et al. ' and Collett and
Loudon. '

We next consider the effect of asymmetrical decay
rates in the absence of detunings (6=0) on the squeezing

spectrum. This is of importance because with nondegen-
erate modes well separated in frequency it could be

FIG. 3. Squeezing S"'(O, co) vs frequency, on resonance, for a
range of input powers and equal relaxation times:
P =0.3,0.5,0.7,0.9. Plotted are minimal fluctuations
S"'(m'/2, co) in (a) (P=0.9 gives lowest fluctuations); maximal
fluctuations S"'(O,co) in (b) (P =0.9 gives greatest fluctuations
in this case). Here, g=1.

difficult to obtain K&
=K2. First, we point out that the

zero frequency (co=0) result is independent of the ratios
of decay rates. Thus excellent squeezing still occurs near
threshold at co=0 for the quadrature phase O=n/2 In. .
order to examine the case of nonzero co, we note that the
optimal squeezing [minimum S"'(O,co)] is given in gen-
eral as

[S'"(O,ro)], , =s„(a))+s22( —co) —2ic2, (co)i, (6.4)

where

Re[c»(~)] 1m[cd, (co)]cos20�- =sin20
C]2 67 C]2 CO

and Re and Irn denote the real and imaginary parts, re-
spectively. Figure 4 plots this optimal squeezing spec-
trum for various ratios K2/K, of decay rates in the ab-
sence of detunings. We see a still significant squeezing as-
sociated with a broad component near threshold. The
bandwidth of squeezing, however, is reduced compared
to the case K] K2. The optimal phase angle is now fre-
quency dependent, indicating that less squeezing would
be observed in an integrated measurement of the total
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As the driving field increases, the side peaks move closer
together, finally coalescing. For driving fields E such
that ~E~/ET ) b, /(1+5 ), the spectral components are
both centered at co=0, but are characterized by different
widths. As threshold is approached, one component nar-
rows and diverges, while the other component remains
broadband. Figures 5 and 6 plot the optimal squeezing
spectrum for the case of symmetric decay rates and for a
range of detunings. The spectrum becomes double
peaked for sufficiently large detunings, even at higher
pump intensities. This corresponds to resonance with the
true cavity mode frequency. We note that significant
noise reduction is possible at these side peaks, particular-
ly at higher pump intensities. The effective of the detun-
ings is to increase the bandwidth over which significant
squeezing is available. Also, however, the actual pump
power needed to obtain a certain amount of squeezing is
increased (since ET increases).

Figures 7 and 8 plot squeezing spectra for the situation
of asymmetrical decay rates (K, +K2) with nonzero detun-

ings. A clear asymmetry in the spectra is apparent. Plot-
ted in the figures is S"'(O,co), which is the half of the
squeezing spectrum [Eq. (6.1)] centered at the frequency
c00+ E (the other half of the spectrum centered at c00 t 1s

(b)

FIG. 4. Squeezing S"'(O,co) vs frequency, on resonance, for
varoius ratios of decay rates in the absence of detunings. Plot-
ted are ~2/v& =1,2,4, 8. (a) gives the minimum fluctuations and
(b) gives the largest fluctuations, as the phase angle is varied.
Here P=0.9, g=1.

A. 1/2=A3/4= —K +—,'(x+ +ix ) . (6.5)

Here x+ and x are defined for P (1+6, ) (b, as

x+ =0,

broadband field.
The next case we consider is that of equal cavity decay

rates (K1 K2 —K ), but with nonzero detuning
Even for 53=0, we allow for a nonzero h. This accounts
for dispersion effects which could mean the matching
condition co, +co2 —co3 is only approximate. Where
co1 + co2 co3 we have b = b,3/2. We note from the solu-
tion (5.9) that b, 3 enters explicitly only in u3 and hence
simply rotates the optimal phase angle L9. The eigenvalue
solutions in this case are

l3

X
CJ

= E
V)

{b)

—4
I

—2

2KO[g 2 p2(1+g 2)1/2]
(6.6)

while &f P (1+6 ) )5, they are defined as

2KO[p2(1++ 2) 141 2]1/2

x =0. (6.7)

For low driving fields E, the eigenvalues are complex
and the spectrum comprises two Lorentzian side peaks.

FIG. 5. Squeezing vs frequency off resonance, for a range of
input detunings and equal relaxation times. Here 5=0, 1,3,4;
P=0.5. Plotted are minimal fluctuations in (a); maximal fluc-

tuations in {b). In each case, 6=0 is the narrowest and 5=4 is

the broadest graph. Here, g=1.
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FIG. 6. As in Fig. 5, but with P =0.9, nearer the critical
point.

the mirror image). The increasing co corresponds to fre-
quencies greater than coo+a. Thus we note a reduction of
squeezing for quadrature components whose frequencies
are nearest the frequency of the cavity mode which is
more heavily damped. There is a corresponding increase
in squeezing for the frequencies closer to the other cavity
mode frequency.

VII. SQUEEZING WITH TWIN
LQCAL QSCILLATQRS

FIG. 7. Squeezing S'"(O,co) vs frequency off resonance, for a
range of detunings and unequal relaxation times. Here
6=0, 1,2, 4; xz/K& =2, P =0.5. Plotted are minimal fluctuations
in (a); maximal fluctuations in (b). In each case, 5=0 is the nar-
rowest and 6=4 is the broadest graph. Here, g=1.

a2. The photocurrents i, (t} contain information about
the detected quadrature phase amplitude. The individual
photocurrents may be amplified by a factor of Z; as
defined in Sec. III, and then combined to yield a total
current of

We now focus attention on the dual-local-oscillator
and detector measurements discussed in Sec. III. Mea-
surements of this type have been performed by Levenson
et al. and Schumaker et al. , and similar intensity-
correlation measurements by Heidmann et al. ' The use
of two local oscillators means one can detect individually
a particular quadrature phase amplitude of each of the
signal and idler fields. The quadrature amplitudes for
each field are defined, in the case of perfect detectors, as

I(O+ 't)
X, '(r) =4, (r)e ' ' +[C,(r)] e ' ' . (7 1)

Here i =1 denotes the signal field associated with mode
a, , and i =2 denotes the idler field associated with mode

ir(t) i, (t)+i2(-t) . (7.2)

This total current contains information about the corre-
sponding combined quadrature phase amplitude opera-
tors. The squeezing in a combined amplitude of this type
has been studied recently by Schumaker et al. ' and
has been called "four-mode squeezing. "

The total current is also useful in treating the case of a
single detector with orthogonally polarized beams. In
this case, the two independent polarizations of the local
oscillator, with intensities I, and Iz, are regarded as the
two local oscillators. The output current of the detector
is then the sum of the two terms arising from the photo-
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detector response to the two orthogonal polarizations.
This is physically different from the earlier cases, as the
two input beams have no coherent interference term,
which would occur if they had parallel polarizations.

It is shown in Sec. III that the normalized power spec-
I

trum of such a combined current is given by

V+(8„82,co). This spectrum may be reexpressed for per-

fect efficiency (g=1), in terms of non-normally ordered
moments. Thus, in the case of the difference current
spectrum,

V+(8I, 82, ILI) = f e ' '([X', '(0)+gX z'(0)][X', '(r)+gJ z'(r)])dr,
1 +g2

and the solution is, from Eq. (3.34) with 7)= 1,

2 2g t(0, +0, j

V+(8„82,co)=1+ [s„(co)+g s2~(~)]+ Ref e
' ' [eI2(co)+c2I(co)]I .

1+g 1+g

(7.3)

(7.4)

If we consider the case of zero detunings and equal decay
rates K&

=K2 this result for the difference current

simplifies to

V+(8I, m
—8„co)=V (8„—8i, rII)=1- 4P

(P+1) +III

(7.6)

4g
V+(8i, 82, CO) = 1+2S ii (Ci) )+

~
cos(81+82)C12(III

1+g
(7.5)

since si I (co) =s2z(III ) and c»(co) =czi (III). Choosing

~1 + L92 K for V+ and 0]+02 =O for V, with equal

gain (g = 1), we obtain

A perfect suppression of the shot-noise level is predict-
ed near threshold and at zero frequency. The second
term in this function is plotted in Fig. 3. The reduction
in noise indicates a correlation between the particular

0i 02
quadrature operators X, and X2 in frequency space.
This indicates the presence of "four-mode squeezing, "
which is a nonclassical property of the radiation field.

To facilitate a discussion in frequency space, we con-
sider the normalized Fourier-transformed quadrature
operator

T/2; r 0
x '(~)= — e' 'X '(r)dr .V'T rn— (7.7)

(3
o-

c I= E

I

—2

Here we introduce the observation time T for normali-
zation of the quadrature operator commutation relations.
We intend to take T large but finite (i.e., T))II '), so
Fourier-transform identities are approximately valid. In
cases of perfect efficiency, the power spectrum in terms of
these components may be written, using the fact that

0 t 0
[x~'(III)] =xj'( —co) and the result Eq. (3.34), as

V+(8I, 8„co)=,([x, '( —~)+gx &'( —~)]
1+g

X[x, '(co)+gx, '(co)]) . (7.8)

C)C)--

C)
C) -—

I

I

I

,
I

I

I
I

It should be noted that the Fourier quadrature opera-
tor x '(co) itself is not a Hermitian operator. As dis-

1
cussed by Schumaker and Leverson and Shelby, one
may, however, define real and imaginary parts which are
Hermitian. It is these rea1 and imaginary parts, or a
linear combination of these operators, which are the
measurable quadrature observables at the detectors. Let
us write

(b)

—4 aIld

0 ~ 0 0
x '(co)=Re[x, '(~)]+i Im[x '(co)],

0l 02x (co) =x I'(co) —gx, '(co)

(7.9)

FIG. 8. As in Fig. 7, but with P =0.9, near the critical point. =Re[x (co)]+i Im[x (co)] .
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The correlation between, say, Re[x i'(co)] and

Re[x 2 (~)], is obtained by measuring the noise quantity
of Eq. (7.8). The associated (stationary) power spectrum
may be denoted

&lx (~)l'&=&[x (~)]'x (~)&

=
& [Re[x (co)]] &+ & [Im[x (co)])

(7.14)

we find that S+ reduces to an optimal combined squeez-
ing S",where

S'+'(8, , 82, co) = &:x,'( —co)x, '(co): &

(7.10) X2 COX
~

CO

(7.15)

X] NXp N (7.11)

The inequality implies maximum correlation between

x, '(co) and x z'(co) when the correlation coefficient

(7.12)

For the particular type of field we consider, the corre-
8 8

lation properties of Re[x J'(co) ] and Im[x J'(co)] are iden-

tical, and the Re[x, '(co)] and Im[x '(co)] are uncorre-
lated. Hence & lx (cu)l & is the measure of the total vari-
ance of the difference between signal and idler quadrature
observables, regardless of which particular linear com-
bination of real and imaginary parts we would choose as
our signal. Thus where the noise level V (8i, 82, co)~0,
there is a perfect correlation between both the real and
imaginary parts of the quadrature operators

x, '(co),x ~'(co).
These results demonstrate the existence of four-mode

squeezing in the current-difference observable. We note
that this can be distinguished from having two indepen-
dently squeezing quadrature fields at the two detectors.
In the case of the nondegenerate parametric oscillator,
the four-mode squeezing depends on the sum of the quad-
rature phase angles, not on the angles individually. An
alternative way to demonstrate that the quadratures have
nonclassical correlations is through the Cauchy-Schwarz
inequality derived in Sec. III:

&x, '( —co)x, '(co) &&x ~'( —co)x 2'(co) &

A violation of the classical Cauchy-Schwarz inequality
(3.44) thus implies S"&0. Thus a violation of the
Cauchy-Schwarz inequality implies that there exists a
choice of g (namely g, ) which will allow a squeezing of
the combined field: V (8„82,co) & 1. In fact, the reverse
statement is also true. It is possible to show that the
choice g, corresponds to the minimum value of S
Hence, if squeezing is observed in the combined field so
that V (8, , 82, co) &1, this implies S &0, and hence that
S'" &0. This is a violation of the classical Cauchy-
Schwarz inequality. We mention this because it is often
easier in some experimental situations to measure the
difference power spectrum as opposed to the correlation
products directly. Thus we point out the equivalence of
"squeezing" to this violation of the classical Cauchy-
Schwarz inequality. In fact, a squeezing of a variance of
the type V (8, , 82, co), and hence, an implicit violation of
the classical Cauchy-Schwarz inequality, has already
been observed by Schumaker et al. and by Heidmann
et al. '

For the system studied here, the results of Eqs. (3.30)
and of (5.11) and (5.12) can be utilized directly in the res-
onant symmetrical decay case, with g =1, to show that

&x, '( —co)x2'(co}&=2P cos(8, +8~)

1

(1 P) +co—

becomes equal to 1.
We see from the derivation in Sec. III of the Cauchy-

Schwarz inequality that if the equality (7.11)] is satisfied,
then there exists a choice of g [given by Eq. (3.41)] such
that the variance V (8„82,co) is zero. The measurement
of V (8&, 82, co) is a suitable way to obtain information
about correlation. In fact, it may be used to infer
sufficient correlation to violate the classical Cauchy-
Schwarz inequality [Eq. (3.44)]. We can write

and

8, 0,
&x '( —co)x '(~):&=2P

1

(1+P) +co

1

(1 P) +a)—
1

(1+P) +co

(7.16)

(7.17)

V+(8), 8~, co) =1+S~(8),8q, co)/(1+g'),

where

S+(8,, 8,, co) = &:lx, '(co)+gx ~'(cu)l: & . (7.13)

With the relative gain (g} chosen so that g =g, for the
case of V and g = —g, for the case of V+, where

For cos(8, +82) = 1 (i.e., 8, +9&=0), the classical
Cauchy-Schwarz inequality is violated, indicating the ex-
istence of greater than classical correlations between the
signal and idler quadrature phases. As pointed out in
Sec. III, a correlation strong enough to produce a noise
level below the shot-noise level [V (8, , 82, m) & 1] cannot
be ascribed to fields represented in the positive Glauber-
Sudarshan P representation. The dual-detector experi-
ments thus provide a means of testing for quantum corre-
lation in the quadrature phase between signal and idler.
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Dual-beam intensity correlations and systems which
violate a classical Cauchy-Schwarz inequality in intensity
correlations have been discussed previously. ' '

UIII. NONLOCAL INFERENCE
OF QUADRATURE AMPLITUDES

The dual-local-oscillator experiments give direct infor-
mation about correlation between two quadrature phases.
The correlation between particular quadrature phase am-

plitudes of the signal and idler fields allows one to per-
form nondestructive measurements of the signal. One
may make a homodyne measurement of the idler ampli-
tude x z(co), for example, and hence infer from it the
value of the signal amplitude x ] (co). The nondegen-
erate parametric oscillator and systems closely related to
it have recently ' been considered in potential quantum
nondemolition measurement schemes. The correlation
between signal and idler intensities in the parametric os-
cillator above threshold also has potential application in

absorption spectroscopy. '

In a realistic situation, the correlation between quadra-
e,

'
e2

ture phase operators x, (c]]) and x2 (co) w]11 not be max-

imum. The result [Eq. (7.6)] for the ideal parametric os-

cillator indicates a small, but still nonzero, noise level

[V (0, —O, co) )0] over accessible frequencies. The im-

portant question then is to what precision can we infer

the signal quadrature amplitude x ]](co), given a measure-

ment of the idler amplitude x z'(co). Let us suppose we

measure x z'(co) and obtain a result x2(cu). We write our

estimate of x, '(co), given this result, as x] (co), where

of identically prepared systems.
Clearly, because of the correlation existing between

x, '(co) and x 2'(cu), we expect the variance in x z'(co) to

be much smaller than the variance of x, '(co). The factor

g is now chosen to produce the best estimate of x, '(co), in

the sense of minimizing the variance 5 (0,, 02,g, co). Sim-

ple differentiation gives a value of g =g, where

(8.&)

= V„(0„0„co)

~
V21(02~01~~) ~ ~V22(02&02~~) (8.6)

Note that g =g is defined by the minimization procedure,
and we have used Eq. (3.28) for the case of perfect detec-
tor eSciency to express the result in terms of observed
variances.

We now specialize to our particular system and solu-

tions. We consider the case of equal decay rates K2 K&
0 0

and no detunings. This implies that g and c»(co) are real.
In terms of the definitions s; (co) and c,, (co), we would

have written

The corresponding minimum variance is, writing out
the quadrature phase angles in full,

b, (0„0„g,co) = (x, '( —co)x, '(co) )

x, (co) =gx2(~) . (8.1) b, (0 O]„g,co)=1+g +s„(cu)+s„(—co)

Later we shall define g to be g, where g is a number
determined in such a way as to give the best estimate for
x ]'(cu). The error in this estimate for an arbitrary value
of g is given by

+g [$22(&)+S22( N)]
i(,e)+ e~)—2g ReI[c]2(~)+C2](~)]e

(8.7)

[b ( 0],02,g, ~ )]„= ( ~x , '(co )
—x ](co )~ )„ . (8.2)

Here, R indicates the conditional average given the result
x2(co) for the x2 measurement. Averaging over all out-

07
comes of the x 2- measurement, we therefore define an
overall variance of C]2(CO)+ C21(6) )g=

I+S22(CO)+S22( —~)
(8.8)

In this system the variance is minimized with the choice

The optimal value of g is then

We note that this corresponds to the difference opera-
tor x (co), where

The corresponding minimal value of 6 (0],02,g, cu) at the
optimal phase angle 02 is denoted b, (0],co), where

x (co)=x ]'(cu) —gx 2"(co) . (8.4) 6 (O„co)= I+s„((u)+s„(—co)

If the output fields are in an eigenstate of x (co), then the
variance of x (co) is zero. In this case the "state of the

signal field upon idler readout" is an eigenstate of x, '(co)
with the value x](co), i.e., the result of subsequent im-

mediate measurement of the signal x, ' gives, with cer-
tainty, the result x](co). Of course, where the quantum
system is not an eigenstate of x (cu), this is not the case,
and there is a distribution of values, say, x z'{co), obtained
over a series of such measurements made on an ensemble

C ]2(]g] ) +C ]2(Q) )

I+S22(Cu)+S22( —
CO)

(8.9)

We see immediately that where one has perfect squeez-

ing, the variance b, (0],co) is zero. This corresponds to a

maximum correlation between x, '(co) and x 2 ](co).
In general, however, the squeezing variance

V (0],02, co) and the "inference" variance b (0 0 ]g,2')
are quite difterent and have different physical interpreta-
tions. Squeezing occurs when V (0, , L92, co ) & 1 or
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FIG. 9. The inference spectrum 6 (Ol, co) on resonance for a

range of input powers and with equal relaxation times:

P =0.3,0.5,0.7,0.9; 71= 1.

b (8&, 8z, g, co) & 1+ ~g ~
. Squeezing is not necessarily

minimized by the choice of g=g and refers to a total
noise reduction relative to the combined shot-noise level

on both signal and idler detectors. The b, (8,, 82,g, co),

however, is minimized relative to the shot-noise level of
the signal alone and is relevant in, for example, establish-

ing quantum nondemolition (QND) measurements. In

fact, such an inference variance has been discussed and

measured by Levenson and Shelby in broadband four-

wave mixing using optical fibers. Because in general g is

dependent on, for example, frequency co, the b, (8,, co)

spectrum and squeezing spectrum look quite different.
The b (8&,co) spectrum is plotted in Fig. 9.

We point out that such correlations between the quad-
rature phase amplitudes provide an example of the EPR
paradox. This is discussed in previous publications
on parametric amplifier experiments. The EPR paradox
was an argument put forward by Einstein, Podolsky, and
Rosen (EPR), in support of the hypothesis that a
quantum-mechanical description of a physical system is
incomplete. We briefly review their original argument.
They considered two spatially separated particles which
have, according to quantum mechanics, a maximum
correlation of their positions, as well as a correlation of
their momenta. Thus a measurement of the position of
particle 2 implies with certainty a particular result if the
position of particle 1 is measured immediately. Assum-
ing there is no action-at-a-distance, the prediction for the
position of particle 1 is made without disturbing the par-
ticle. Hence EPR identify with particle 1 a predeter-
mined definite value of its position. The momenta of the
two particles is also correlated and hence by similar argu-
ments EPR were led to ascribe to particle 1 a definite
predetermined value of its momentum. This seems to im-

ply tha particle 1 can be thought of as having a definite
value of both position and momentum. In quantum
mechanics such a description is contrary to the uncer-
tainty principle. EPR deduced from this argument that
the quantum-mechanical description is in some sense in-
complete. A subsequent version of the paradox involving
correlations between spin components of two spatially
separated particles was presented by Bohm. The Bohm

correlations, however, involve completely different opera-
tors from the EPR proposal. Experimental demonstra-
tions of the Bell inequalities are associated with this latter
version, although there have been recent suggestions re-
lating to the original version.

The original EPR paradox can be formulated in terms
of the correlated quadrature phase amplitudes of the non-
degenerate parametric amplifier. We examine the solu-
tion of Eq. (8.7) for the variance and note the angular
dependence, t9&+02=0, required for minimum variance.
According to Eq. (8.9) as plotted in Fig. 9, as we ap-

proach threshold the zero-frequency components x (0)
and x z '(0) are (in principle) perfectly correlated. Thus

one can infer the result for x, '(0) by a measurement of
x z(0); or we could infer x, (0) by a measurement of
x z (0). Now x,(0) and x, (0) are operators whose
commutators correspond precisely to position and
momentum operators. The Heisenberg uncertainty rela-
tion specifies a nonzero minimum uncertainty product for
their variances. Hence the correlation between [x „x z)
and tx f,x2 "

) is an example of the EPR paradox, al-

though in order to have causally separated observations,
the two detectors would need to be separated by at least
2 cT from each other. This is a system which appears
capable of experimental realization.

In a realistic experimental situation the correlation be-
tween the x

&
(co) and x 2 ((I() will not be perfect because

of losses and detector inefficiencies. Hence we will not
observe b, (8, ,co)=0 but some finite value of the quantity
5 (8,, co). We ask ourselves at what correlation has the
paradox been demonstrated. This has been discussed in
another paper and we adopt that approach. If we mea-
sure x z((I(), then as discussed above we can infer x &((o)

with a certain precision given by the inference variance.
This would lead us, assuming the EPR concept of reality
and no action-at-a-distance, to assign to the signal field a
predetermined range of values of x, with an associated
variance 6 (0, (I(). Similarly, we could measure
x 2 (co), and infer from this an average value for
x, ~ (~) with associated variance b, (m. /2, co). Thus we
also associate with the signal field a predetermined range
of values of x, with a certain variance. Now if our in-

ferred variances are such that

b, (O, co)b, (m/2, (I.I) & 1, (8.10)
we have the EPR contradiction between quantum
mechanics and local realism.

In order to verify that the inequality of Eq. (8.10)
holds, experimental variance measurements are required
at the two complementary phase angles of 0 and m. /2.
We note that since the local-oscillator phase angles can
be adjusted at each detector independent, it is possible to
have delayed choice of the type of measurement used.
This removes to some extent the famous objection of
Bohr to the EPR paradox, namely that local realism must
involve a specification of the measurement technique.

In the case of a measurement that directly produces
the correlation of the output currents, Eq. (8.9) can be ex-
pressed as the following inequality between the observed
variances and correlations (for perfect detector
efficiency):
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[ Vzz(0, 0,0) V„(O,O, O) —I V»(0, 0, 0) ~z][ Vzz(m/2, vr/2, 0) Vzz( —vr/2, —m/2, 0)—
~ Vz, (m/2, —vr/2, 0)

~ )

~ Vzz(0, 0, 0)vzz(tr/2, tr/2, 0) . (8.11)

The above expression can be generalized to the case of
finite-frequency correlation measurements, although as
remarked earlier, the usual finite-frequency measure-
ments, in fact, involve a pair of Hermitian operators at
each frequency point. For this reason, an additional as-
sumption that there is no cross correlation between the
real and imaginary parts is required. While this is true in
our theoretical treatment, it does not appear to be neces-
sarily true in general.

In practice, it is often simpler to measure the V+ vari-
ances than the V; variances. Since these variances are
normalized by the total shot noise, the equation corre-
sponding to (8.10) at any given gain g is just

V (O, o, co)V (~/2, —~/2, co) &
1

(1+g')' (8.12)

This is generally harder to obtain than just squeezing,
owing to the 1/(1+g ) factor. Thus a direct subtrac-
tion of currents with g =1 would require at least 50%%uo

squeezing before an inferred violation of the Heisenberg
uncertainty principle is obtained. This, however, is not
the optimal choice of g. It is possible to calculate from a
complete set of measurements at any g value, whether the
optimal choice of g would give correlations that are
strong enough to satisfy Eq. (8.10).

A similar version of the paradox has been discussed by
Paul, who considers the phase and intensity correlations
of two spatially separated beams. With the recent suc-
cess in degenerate parametric oscillation in measuring
noise reduction below the coherent state level in one of
the quadrature phase amplitudes, our proposal for the
nondegenerate parametric oscillator would seem feasible.
We note that the operators we choose here correspond
precisely in their algebraic properties to those utilized in
the EPR paper. The experimental verification of the
violation of Bell's inequalities was restricted to operators
with a spin- —,

' algebra, with a completely different eigen-

value spectrum to that proposed by EPR. The nondegen-
erate parametric oscillator appears to be capable of
reproducing the precise type of quantum-mechanical
correlations required to demonstrate the original EPR
paradox. Further, since quadrature detection is a highly
efficient process, this experiment would not have the
problems associated with inefficient photodetection in the
usual photon correlation experiments that test the Bell
inequalities.

IX. DISCUSSION

We have analyzed the below-threshold correlations in

the signal and idler fields of a nondegenerate parametric
oscillator. A detailed analysis of single- and double-
local-oscillator measurements has been given, using a
normally ordered photodetector theory. This allows us

to directly use the results of a normally ordered stochas-
tic theory for the quantum correlations in the output, and
their spectra. The results imply that good squeezing ex-

ists including detuning and unequal decay rates.
We have also analyzed nonclassical correlations be-

tween the output quadratures. Conditions for nonclassi-
cal correlations are calculated using a Cauchy-Schwarz
inequality, which is violated over a range of local-
oscillator phase angles. From the point of view of the
EPR paradox, an apparent violation of the Heisenberg
uncertainty principle occurs, using inferred measurement
to obtain the value of two complementary variables. This
allows the possibility of a new test of quantum mechanics
in the area proposed by Einstein, Podolsky, and Rosen.
We note that this test is different from the Bell inequality
tests, as it involves variables with continuous spectra,
which have an identical operator algebra to that original-

ly suggested.

'H. Takahashi, Adv. Commun. Syst. 1, 227 (1965); for a review,
see D. F. Walls, Nature (London) 306, 141 (1983).

2D. Stoler, Phys. Rev. D 1, 3217 (1970);4, 1935 (1971).
3H. P. Yuen, Phys. Rev. A 13, 2226 (1979).
4C. M. Caves, Phys. Rev. D 26, 1817 (1980).
5M. Xiao, L. Wu, and H. J. Kimble, Phys. Rev. Lett. 59, 278

(1987).
R. E. Slusher, L. W. Hollberg, B. Yurke, J. S. Mertz, and J. F.

Valley, Phys. Rev. Lett. 55, 2409 (1985); R. M. Shelby, M. D.
Levenson, S. H. Perlmutter, R. S. Devoe, and D. F. Walls,
ibid. 57, 691 (1986); L. Wu, H. J. Kimble, J. L. Hall, and H.
Wu, ibid. 57, 2520 (1986); M. W. Maeda, P. Kumar, and J. M.
Shapiro, Opt. Lett. 12, 161 (1987); M. G. Raizen, L. Orozco,
M. Xiao, T. L. Boyd, and H. J. Kimble, Phys. Rev. Lett. 59,
198 (1987); S. Machida, Y. Yamamoto, and J. Itaya, ibid. 58,
1000 (1987).

7L. Wu, M. Xiao, and H. J. Kimble, J. Opt. Soc. Am. B 4, 1465
(1987).

sR. Graham, in Quantum Statistics in Optics and Solid State
Physics (Springer, Berlin, 1973).

P. D. Drummond, K. J. McNeil, and D. F. Walls, Opt. Acta
27, 321 (1980);28, 211 (1981).
G. J. Milburn and D. F. Walls, Opt. Commun. 39, 401 (1981).

"B.Yurke, Phys. Rev. A 32, 300 (1985).
' M. J. Collett and C. W. Gardiner, Phys. Rev. A 30, 1386

(1984); M. J. Collett and D. F. Walls, ibid. 32, 2887 (1985); C.
M. Savage and D. F. Walls, J. Opt. Soc. Am. B 4, 1514 (1987).
R. Graham and H. Haken, Z. Phys. 210, 276 (1968); R. Gra-
ham, ibid. 210, 319 (1968);211, 469 (1968).

' K. J. McNeil and C. W. Gardiner, Phys. Rev. A 28, 1560
(1983).

' M. J. Collett and R. Loudon, J. Opt. Soc. Am. B 4, 1525



CORRELATIONS IN NONDEGENERATE. . . . II. 3949

(1987).
'6S. Reynaud, C. Fabre, and E. Giacobino, J. Opt. Soc. Am. B 4,

1520 (1987); A. Heidmann, R. J. Horowicz, S. Reynaud, E.
Giacobino, C. Fabre, and G. Carny, Phys. Rev. Lett. 59, 2555
(1987).
G. Bjork and Y. Yamamoto, Phys. Rev A 37, 125 (1988); 37,
1991(1988)-

' M. D. Reid and P. D. Drummond, Phys. Rev. A 40, 4493
(1989).

' R. J. Glauber, Phys. Rev. 130, 2529 {1983);131,2766 {1983).
H. P. Yuen and J. H. Shapiro, IEEE Trans. Inf. Theory IT-26,
78 (1980); H. P. Yuen and V. W. S. Chan, Opt. Lett. 8, 177
{1983};J. H. Shaprio, IEEE J. Quantum Electron. QE-21, 237
(1985); C. M. Caves and B. L. Schumaker, Phys. Rev. A 31,
3008 (1985).

'Z. Y. Ou, C. K. Hong, and L. Mandel, J. Opt. Soc. Am. B 4,
1574 (1987); H. J. Carmichael, ibid. 4, 1588 (1987); M. J. Col-
lett and R. Loudon, ibid. 4, 1525 (1987).
D. C. Burnham and D. L. Weinberg, Phys. Rev. Lett. 25, 84
(1970); R. Loudon, Rep. Prog. Phys. 43, 913 (1980); S. Fri-
berg, C. K. Hong, and L. Mandel, Phys. Rev. Lett. 54, 2011
(1985); E. Jakeman and J. G. Walker, Opt. Commun. 55, 219
(1985); J. G. Walker and E. Jakeman, Opt. Acta 32, 1303
(1985); C. K. Hong and L. Mandel, Phys. Rev. Lett. 56, 58
(1986); R. Brown, E. Jakeman, E. Pike, J. Rarity, and P. Tap-
ster, Europhys. Lett. 2, 279 (1986).
C. M. Caves and B. L. Schumaker, Phys. Rev. A 31, 3068
(1985);B.L. Schumaker and C. M. Caves, ibid. 31, 309 (1985).

~4B. L. Schumaker, J. Opt. Soc. Am. A 2, 92 (1985).
B. L. Schumaker, S. H. Perlmutter, R. M. Shelby, and M. D.
Levenson, Phys. Rev. Lett. 58, 357 (1987); M. D. Levenson
and R. M. Shelby, J. Mod. Opt. 34, 755 (1987); M. D. Leven-
son, R. M. Shelby, M. D. Reid and D. F. Walls, Phys. Rev.
Lett. 57, 2473 (1986); H. Bachor, M. D. Levenson, D. F.

Walls, S. H. Perlmutter, and R. Shelby, Phys. Rev. A 38, 180
(1988).
S. F. Pereira, H. J. Kimble, P. Alsing, and D. F. Walls (private
communication).

27Z. Y. Ou and L. Mandel, Phys. Rev. Lett. 61, 50 (1988).
A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777
(1935). See also, J. F. Clauser and A. Shimony, Rep. Prog.
Phys. 41, 1881 (1978); A. Aspect, P. Grangier, and G. Roger,
Phys. Rev. Lett. 47, 460 (1981)~

M. D. Reid and P. D. Drummond, Phys. Rev. Lett. 60, 2731
(1988).
M. D. Reid, Phys. Rev. A 40, 913 (1989).

3'W. H. Louise11, Quantum Statistical Properties of Radiation
(Wiley, New York, 1973).
P. D. Drummond and C. W. Gardiner, J. Phys. A 13, 2353
(1980); P. D. Drummond, C. W. Gardiner, and D. F. Walls,
Phys. Rev. A 24, 914 (1981)
E. C. G. Sudarshan, Phys. Rev. Lett. 10, 277 (1963).
P. D. Drummond and D. F. Walls, Phys. Rev. A 23, 2563
(1981).
B. L. Schumaker, Phys. Rep. 135, 317 {1986).
M. S. Zubairy, Phys. Lett. 87A, 162 (1982); R. Loudon, Rep.
Prog. Phys. 43, 913 (1980).
C. M. Caves, K. S. Thorne, R. Drever, V. D. Sandberg, and
M. Zimmermann, Rev. Mod. Phys. 52, 341 (1980); M. Hillary
and M. Scully, in Quantum Optics Experimental Grauitational
and Measurement Theory, edited by P. Meystre and M. O.
Scully (Plenum, New York, 1983); G. J. Milburn, A. Lane,
and D. F. Walls, Phys. Rev. A 27, 2804 (1983); N. Imoto, H.
A. Haus, and Y. Yamamoto, ibid. A 32, 2287 (1985).
M. Zukowski and J. Pykacz, Phys. Lett. A 127, 1 (1988), and
references therein.
H. Paul, Opt. Acta 28, 1 (1981).


