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Lifetime of a hydrogen atom in an intense radiation field
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The lifetime of an atom in a high-frequency high-intensity laser field is studied. A coupled-
channel formalism is developed, based on a well-known high-frequency theory, that describes the
behavior of an atom in a laser field. Numerical results are obtained using a finite-difference approxi-
mation in combination with a two-center complex scaling technique. The complex scaling method
is also shown to be very well suited for calculations on diatomic molecules. Several numerical re-
sults are used to illustrate the qualitative features of the method. We show that our theory is for-
mally (though not in practice) equal to other methods that have been used heretofore. It will be
shown that, for high-frequency and high-intensity laser fields, the present method can be used to
calculate resonance energies using only a few channels.

I. INTRODUCTION

The effects of lasers on atoms have become very com-
plicated with the advent of lasers that are strong enough
to compete with the static attraction an electron "feels"
in the first Bohr orbit of hydrogen. (For a linearly polar-
ized laser this corresponds to an intensity Ip=3.5X10'
W/cm .) For these intensities one can no longer consider
the effect of single photons separately, as can, for in-
stance, be seen from the phenomenon of excess photon
ionization, where outcoming electrons pick up several
times the photon energy in excess of the minimum num-
ber needed to ionize. '

In the (idealized) case where the duration of the laser
pulse is long compared to the inverse frequency, so that
one has a large number of oscillations in such a pulse, it
might be justified to approximate the pulse by a plane or
standing wave. Since the size of a laser focus is usually of
macroscopic dimension, the spatial extension of the fields
can be disregarded when considering its effects on an in-
dividual atom. If, furthermore, the velocity of a free elec-
tron in the laser field is low compared to the speed of
light, the nonrelativistic Schrodinger equation is applic-
able. As usual, the nucleus is considered as an infinitely
heavy point charge that exerts a Coulomb attraction on
the electron(s). The approximations in the treatment of
the laser field made here are common to most theoretical
studies of multiphoton effects, although some work has
been performed on multiphoton effects in noisy lasers
and Kulander has studied the effect of the temporal
profile of the laser pulse using the time-dependent
Hartree-Fock equation.

For intensities that are much smaller than 10' W/cm
one can calculate the effects of the laser through pertur-
bation theory in the intensity of the laser (for reviews see
the papers in Ref. 4). For stronger lasers perturbation
theory is no longer good enough and one needs to consid-
er other means. Two methods have been employed: the
Floquet supermatrix method by Chu, and co-workers '

and the integral-equation approach by Tang and Shake-
shaft. ' In essence, both these methods take the unper-

turbed atom as a reference system and perform a kind of
coupled-channel calculation based on this reference prob-
lem. These methods can be applied when we do not con-
sider too strong a distortion of the hydrogen atom; in
fact, these methods are quite successful for intensities up
to Ip ~ If we go to much higher intensities these methods
become highly impractical, however. This is rejected in
the fact that one will not be able to obtain convergent re-
sults with a reasonable number of channels.

For this reason a completely different starting point
has been taken for large intensities and high frequencies.
If one considers an atom that is subject to a radiation
field for all times, it appears useful to include part of the
interaction of the electron with the laser field in the refer-
ence problem. This can be accomplished through the
choice of an accelerated coordinate frame, where the
inertial forces compensate the p A term in the Hamil-
tonian. This idea has been applied several times in the
theory of multiphoton processes; see Refs. 10—14.

The new Schrodinger equation contains a new refer-
ence system: if we take both the intensity and frequency
to ao, keeping the ratio &I /co fixed we obtain a radia-
tion dressed bound-state problem. The resulting
Schrodinger equation has been studied exhaustively in
Ref. 15. The purpose of the present paper is to go
beyond this static problem and to study the use of a
coupled-channel approach based on this new reference
system. This should be most fruitful for high frequencies
(the meaning of the world high will be specified later).

Bardsley and Comella' have recently studied such an
approach numerically for a simple one-dimensional po-
tential, where one can easily obtain the quasienergies by
integrating the time-dependent Schrodinger equation. As
expected their results show that, in the large cu limit, the
quasienergies are very close to the bound-state energies of
the corresponding reference problem. The coupled-
channel problem we are studying here provides a means
to study the same behavior for the three-dimensional
Coulomb potential.

The paper is organized as follows. We start by discuss-
ing some theoretical background. In Sec. II we give a
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derivation of the Schrodinger equation in the accelerated
frame. We discuss some ideas about spectra and the cal-
culations of resonances (an atom in an intense laser field

is not stable, so all bound states become resonances). In
Sec. III the structure of the potentials appearing in the
modified Schrodinger equation will be studied in more de-
tail. This leads to a natural extension of the usual spec-
tral deformation as obtained through the complex scaling
transform. In Sec. IV a modified form of the variation
functional, appropriate for complex symmetric Hamil-
tonians, will be introduced. The numerical approach to
solution of the coupled-channel equations is discussed in

Sec. V and the Appendix. We end the description of the
formalism in Sec. VI with a discussion of the relation of
results obtained by approximate solution of the
Schrodinger equation in the accelerated frame to results
obtained in the lab frame.

The method developed in the previous sections is sub-

sequently applied to a few examples (Sec. VII). We first
check the qualitative features of the theory (Sec. VII A),
in cases where we are not interested in high-accuracy cal-
culations. For these calculations we do not make use of
the sparse matrix structure of the problem, but we calcu-
late all eigenvalues to illustrate the qualitative features of
the method. We comment on some of the differences in

behavior compared with the usual basis set methods.
Then (Sec. VII 8) we report some accurate calcula-

tions, using the sparse matrix structure. We show that
the method can be used to obtain results close to those al-

ready reported in the literature for relatively weak fields,
but that its main power lies in the region where ao is

greater than 1. As an example, we study the frequency
dependence of the lifetime and energy of the ground state
for fixed ao. This shows where the bound-state problem
used as a starting point is a good approximation.

Finally, in Sec. VIII, a few conclusions are drawn and
an outlook is given.

It should be noted here that atomic units
(iii=e =m, =1, so= 1 /4n)are used .throughout this pa-

per.

and

(Vf)(r)= f(r+a(t)),
a( t ) =eaosin(cot ),

[with ao=a /co= (I/Io )' co and Io =3.5 X 10' W/cm ].
The transformation V was first introduced by Kra-

mers in a different context and first applied to multipho-
ton processes by Henneberger. ' It is a change-of-
coordinate transformation where the new coordinates are
chosen in such a way that the origin follows the quiver
motion, the orbit of a free electron in the laser field. The
Schrodinger equation Eq. (1) is transformed into

[—,'p + V(r —a(t))]y(r, t)= id, y—(r, t) .

This equation is, just as Eq. (1), a Schrodinger equation
with periodic coefficients. A general statement about
such equations is the Floquet theorem [named after Flo-
quet, a pioneer in the field of (ordinary) differential equa-
tions with periodic coefficients' ]. This is a generalization
of the well-known transition from the time-dependent to
the time-independent Schrodinger equation (see especial-
ly Refs. 18 and 19). It is most readily formulated on an
extended Hilbert space of quadratic integrable functions
in four-dimensional space-time (r, xo) that are periodic in

xo. The Floquet theorem states that in the enlarged Hil-

bert space we can write a spectral equation, similar to the
usual time-independent Schrodinger equation

[—,'p +po+ V(r —a(xo))]g(r, xo) =E1(r(r,xo) .

The energy parameter F. is called a quasienergy since it
appears as the energy in the usual spectral form of the
Schrodinger equation, but describes only part of the time
evolution of the wave function,

g(r, t ) =exp( iEt )g(r, t —),
where P is periodic in t

We now represent the periodic functions by their
Fourier series. If one defines

II. HAMILTONIANS AND SPECTRA

Consider an atom in a linearly polarized classical radi-
ation field. This can be described by a time-dependent
Schrodinger equation in the minimal coupling scheme,
where retardation is disregarded and the field is approxi-
mated by a standing wave

g(r t) = g e '" 'P„(r),

V(r, t)= g e '" 'V„(r ao),

one obtains the more conventional set of equations

g [(—,'p k~)fi«i+ Vi —«(r ao)]it'« =&it'i .
k

(9)

(10)

[ —,'[p —A(t)] + V(r)]P(r, t)= iB,P(r, t)—,

A(t)=ea cos(cot) . (2)

$= V(U(y)),

with

(3)

(Uf)(r, t)=exp ——f A (t')dt' f(r, t),

It is useful to perform a combination of transforma-
tions on P,

These equations have been studied previously by Gersten
and Mittleman' and also by Gavrila and Kaminski. ' '
Note that the operators on the left-hand side of Eq. (10)
commute with L„so that all values of the magnetic
quantum number m can be treated separately. The
molecular notation (o, ir, fi, . . . for ~m~=0, 1,2, . . . ) is
used for all these symmetry channels. We shall restrict
the study in the present paper to the states of o. symme-
try, the manifold that includes the ground state.

In practice one will, of course, not consider the infinite
problem, Eq. (10), but a limited subset
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[-,'p'+ Vo(r ao)]fo=EWo (12)

has an infinite number of bound states (E (0) as well as a
continuum for E & 0. The zeroth order is a good (asymp-
totic) approximation as soon as

ct)» ~Eo (ao) (13)

i.e., the frequency must be much larger than the binding
energy of the lowest state of the same m quantum num-
ber in the field. The eigenfunctions and eigenenergies of
this equation have been studied Refs. 10, 12, and 20, but
especially in the work of Pont et al. ' The most impor
tant results obtained in these last papers are the breakup
of the wave function into two parts as ao grows, and a
simultaneous strong decrease of the ionization potential.

In order to understand the high-frequency condition
(13) in the context of frequency and intensity instead of
frequency and ao, the reader is invited to study Fig. 1.
There we have plotted the curves co =E(ao) and 1.5E(ao)
for the ground state (ls} o~. The region where co is
smaller than the energy falls under the curve. As can

0.25

N2

[(—,'p —mco)5„-+ V„--(r,ao)]g =Eg„.
m =Nl

This set is a good approximation to the full problem once
the number of channels (E2 N—, +1) is sufficiently high
for the value of co chosen.

In the work of Gavrila and Kaminski the limit co~ (x)

has been studied in some detail. They have shown that in
this limit only a single time-independent equation, corre-
sponding to fixing k=1=0 in Eq. (10), remains. For
large but finite frequency the correction to the equations
are of order 1/co. The arguments presented by these au-
thors cannot be used to prove convergence of the expan-
sion in 1/co, however, and presumably the series is
asymptotic.

The single equation left in the limit co~ (x), from now
on called the zeroth-order equation,

r~r exp( —i0) (14)

in the Hamiltonian results in an operator that has the

(a) (m(E)

Re(E)
~ ---- ~----~---~---- ~----4k-~--~---- ~----~---~---- ~

2f N Zt M Zt i" )~ N M M

clearly be seen the high-frequency condition is most
readily satisfied for small intensities when the frequency
is either very small (e.g., microwave radiation) or very
large [vacuum ultraviolet (vuv}, x-ray, etc.].

Let us now return to the coupled-channel problem. If
we neglect the "off-diagonal potentials" (V, , i&0), the
spectrum of Eq. (10) is purely continuous from —~ to
~, consisting of an infinite multiplet of continua with
thresholds at mao. When the off-diagonal potentials are
nonzero but not too strong we expect the same behavior
to persist. Since Eq. (10) is invariant under a shift in

co, E =E+co, it is clear that the spectrum is periodic with
period m.

Since every channel has open channels (channels it can
decay to) under it, one knows that every bound state of
Eq. (12) becomes a resonance for finite co. This situation
is depicted in Fig. 2(a), where the first Riemann sheet of
the resolvent is plotted. For those readers who are not
familiar with this representation, one can equivalently
consider this to be the complex energy plane for the S
matrix. Bound states show up as poles of the S matrix on
the real axis. The continuous spectrum causes a branch
cut in the complex plane. Scattering resonances do not
lie in the first (physical) Riernann sheet and can only be
reached by going into the second Riemann sheet from
above the real axis, crossing the branch cut.

The complex scaling method has been applied quite
successfully in the problem of calculating resonances (see
Refs. 21 and 22 for a practical discussion of the method
and Simon for a discussion of the mathematical con-
text). If the potential decays fast enough as r ~ ~, it can
be shown that the transformation
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FIG. 1. Functions co=ED(o.'0) (solid line) and co=1.5Eo(ao)
(dashed line). In the regions under these curves co is smaller
than 1 (respectively 1.5) times E(ap).

FIG. 2. (a) Continuous spectrum of the complete coupled-
channel problem Eq. (10). In order to be able to distinguish the
continua, each threshold is indicated by a dot. The stars indi-
cate the position of a resonance. (b) The effect of a complex
coordinate transformation on the spectrum sketched in (a). The
continua are rotated and the resonances become eigenvalues of
the new operator.
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same bound states as the original problem, but, depend-
ing on the parameter 0, has a complex eigenvalue at the
position of a resonance in the S matrix. The Hamiltonian
has now become a non-Hermitian operator, and has thus
different left and right eigenvectors. If one takes 0 purely
imaginary, one sees more clearly what this method does,
because in that case one ends up with a Hamiltonian with
identically the same spectrum as before the transforma-
tion, due to the fact that Eq. (14) is just a similarity trans-
formation.

In fact, we can define a unitary transformation U& cor-
responding to Eq. (14),

71= E[—1, 1],
2cxp

(( =arctan(x /y ) .

In these coordinates one has

(20)

of these potentials than the Cartesian one. As in the H2+
problem these are the prolate spheroidal (also called con-
focal elliptical) coordinates,

r+ +r
E[1,~),

2cxp

Uef(r)=e ' e f(re'e) (15)

The power of this transformation lies in the fact that, in
general, the operator U& does not map the Hilbert space
of square integrable functions onto itself. Let us, for ex-
ample, consider a state with complex energy E. In the
large r region, where we can neglect the potential, we
have

P ~ exp( i &Er )—, (16)

which if E has negative imaginary part will grow ex-
ponentially, and is not square integrable. If we replace r
by r exp(i8), we can see that if 8(argE the function P
becomes exponentially damped, and thus can belong to a
new space of square integrable wave functions. There is
obviously a great similarity with the use of Siegert bound-
ary conditions, where one imposes exponentia1 growth
on the wave function. The main advantage of complex
scaling is that it reduces calculating resonances to an ei-
genvalue problem.

Clearly the class of transformations with properties
given above is larger than just the single representative.
The choice given above is convenient for many problems,
and in general allows one to move the continua as depict-
ed in Fig. 2(b). In this way one can construct a new
Hamiltonian that is no longer self-adjoint and has com-
plex eigenvalues at the resonance positions. For the
problem at hand it is not the right transformation, how-
ever, since the potentials are too singular; we shall discuss
an appropriate similarity transformation after a study of
the structure of the potentials V„.

d r= a[o(g —1)+(1—
ri )]dgdridg,

cos(nP)
—~ [(g' —l )(1—

7) )+(gg —cos/3) ]'/

(21)

As one can easily see, the potentials V„are only singular
for )=1. Since as r=(x +y +z )'/ grows large one
has

(~r /ao, ri~cos8, (22)

it is an obvious alternative to exterior scaling to take g to
complex values. A very straightforward choice (one
should note that the lower boundary (= 1 remains un-
transformed, in order to avoid stock terms on partial in-
tegration) is

g- —l~e ' (g —1) . (23)

There is a close relation to ordinary complex scaling. We
shall not discuss the mathematical details, but will
check numerically that the transformation behaves as is
expected, i.e., that the continuous spectrum descends un-
der an angle 20 into the complex plane. The complex
scaling transformation U& has a somewhat more compli-
cated form than in the radial case:

Uef(g, ri, g)=f([(g 1)e ' +1]'—, q, $)

(g —1)e ' +(1 r) )—
(g —1)+(1—g )

III. POTENTIALS V„AND COMPLEX SCALING

A few simple integrations show that for the hydrogen
atom, where V(r) = —1/r, one has

g
1 /2 —i 9

X
[(g2 1)

—2ie+ 1]1/2
(24)

( )
1

J
~ cos(nP)

2m. —~ ~r —aoecosP~
(17) IV. VARIATIONAL FORMULATION

OF COMPLEX SCALING

Vo = —— K([(1—r+.r )/2]' ),
( )1/2

with

r+ = r+ape . (19)

There is a more natural coordinate frame for the study

The potential Vp can also be evaluated as a complete el-
liptic integral

with

5I(p, (5') oI($, $')
5p

' 5p' (25)

In this section we investigate the variational formula-
tion of the Schrodinger equation after complex scaling.
As is well known, the usual time-independent
Schrodinger equation is equivalent to the variational
principle
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I((t(, (t(')={(t(',(H E—)(t()= f d r (t('(r)(H E—)P(r) .

(26)

5I(P, P) (27)

For a complex scaled Hamiltonian one has (U(( again
denotes the transformation that takes the coordinates to
complex values)

Hg = Ug 'HUg .

The "bivariational" equation reads

(2&)

or {(t(',( Ut(HUe E)P)=—0 .
5p'

(29)

Of course, one cannot restrict P to be real, but a simple
calculation using some properties of inner products and
Hermitian conjugation shows that the two resulting equa-
tions are

(H(( E)$=0-,
(H(( E)P'=[(t—('(H(( E)] =0—.

(30)

Taking (t('=iI) thus leads to a consistent variational princi-
ple

5I((((t(, (t() =0, (31)

where P is now a complex function.

V. FINITE-DIFFERENCE DISCRETIZATION

Since there is no simple natural set of basis function as-
sociated with the zeroth-order Hamiltonian Eq. (12), we

I

Due to the Hermitian character of H, it does not make a
difference whether H acts to the left or right, so that we
can take (({i=(l)' and P real, in which case one has

g =cosh(u,

7/=cosv .
(33)

This is most appropriate for H2+ since it removes the
cusp in the wave function at a Coulomb singularity,
but since a linear increase in p means exponential in-
crease in g for large radii, it is also useful in the present
calculation, where the states also show exponential de-
crease. For the complex scaled version of the photoion-
ization problem the variation al functional obtained
through lowest-order finite differences is (for m =0, the
only symmetry considered in this paper)

prefer to use a purely numerical method. This is different
from the Gaussian basis functions employed in Ref. 15.
We base the method on the variational equation (31).
The form of the integral appearing in this equation

I ((I) ) =fP(H E—)P d r

can be simplified by redistributing the action of the kinet-
ic energy operator —

—,'50 both to the left and the right by
partial integration such that only first derivatives are left.
The resulting integrals can be approximated on a grid, us-
ing either the finite-difference or finite-element methods
(for a representative selection of papers where these
methods are applied in quantum physics see Refs.
28 —31).

In the present paper we consider only the lowest-order
finite-difference approximation, which has the advantage
of having an error estimate that contains only low-order
derivatives of the wave function. Due to the singular na-
ture of the potential we know that the high-order deriva-
tives on the "line of charges" (the line from —ap to ap)
are also singular, so that one cannot increase the order of
the method without further analysis of the behavior near
the singularity.

One further change of coordinate transformation is
performed

N —2N —1

1 1

z z g g 1V'+((z, (0 0 +(, )(V' 0 V'+(, 0 +(,2ap h =p „=p

p vN —1N —2 N —1N —
1

p v+, g g w' „„„((('„—y „„)(v.'„y „—v'„„y „„)+ y y ~(v „—E)g „y'„~.
v m=0 n=O m=O n=O

(34)

a g Pk(Hk( Eg(5„()(t( =0, —
( j,k

(35)

Here h„=C„/N„, h =m/N, where C„ is some cutoff
on the p coordinate. An index m denotes evaluation at
p=(m+ —,')h„and n evaluation at v=(n+ —,')h„. The ex-
plicit form of the functions 8", 8', V', V, and g is
given in the Appendix, where Eq. (34) is also derived.

Using Eq. (34), Eq. (31) can be rewritten as (we have
abbreviated the two indices m and n by one combined in-
dex denoted by i or j)

leading to the ordinary eigenvalue equation

g H,
' P' =E(t(', ,

J

with

H'=g '"H g

(36)

(37)

where H =H'„but the entries of H' are complex. Due
to the simple structure of H' the matrix vector multipli-
cation g H,

'
g can be performed extremely fast on a vec-

tor computer. For this reason any diagonalization pro-
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cedure that is iterative in the sense that it only uses
matrix-vector multiplications to solve the eigenvalue
problem would be very convenient. One such choice is
the Lanczos procedure. This is certainly a good
choice for the calculation of the bound-state problem Eq.
(12) since it is known to converge most speedily for the
extreme eigenvalues. For the coupled-channel problem
Eq. (10), it cannot be applied as it stands.

We have chosen to use a slightly different version of
the algorithm, using our knowledge of the bound-state
reference problem. We first calculate the eigenvector
corresponding to the lowest eigenvalue of the zeroth-
order Hamiltonian —,'p + Vo(r). This can be done using
the ordinary Lanczos procedure (for complex symmetric
matrices, since we scale the bound-state problem as well).
If we expand this eigenvector with zeros for the channels
either above or below this single channel, we can consider
this as an estimate for an eigenvector of the full Hamil-
tonian (we know this is exactly true for co~~). If we
take this vector as a starting value in the Lanczos itera-
tion and use a sufficient number of iterations, we expect
rapid convergence to the eigenvalue of the full matrix
closest to the bound-state eigenvalue.

frame (as in Refs. 5 —8) are identical to the ones obtained
in the present approach. Second, it can be seen that, if a
small number of channels suffices to describe the wave
function in the Kramers frame of reference, this does not
at all have to be the case in the lab frame; it depends on
the behavior of the Fourier components of g

Let us make one final remark about gauge invariance
in this place. The Schrodinger equation in a purely elec-
tric field, Eq. (1), can be transformed from a form con-
taining a p. A coupling term to a form containing a E.r
coupling term. This is an electromagnetic gauge trans-
formation, and thus all operators involving only the coor-
dinates of the electrons and their expectation values
remain unchanged.

Due to its similarity to this gauge transformation, the
Kramers form of the Hamiltonian is also called the "ac-
celeration gauge. " Note that the Kramers transform Eq.
(5) is not an electromagnetic gauge transformation (that
is the reason why the term "acceleration gauge" is not
used in this paper). The transformation (5) intertwines
coordinates and electromagnetic fields, so that there are
no simple invariant operators.

VI. RETURN TO THE LAB FRAME
VII. RESULTS

The results obtained by solving the present coupled-
channel problem are all given in the accelerated frame. If
we return to the lab frame we can easily show that the
fact that the wave function in the Kramers frame looks
like

g(r, t ) = g P (r)exp[i(EO me@)t]—
m=N

l

implies

(38)

P(r, t ) = g g (r —a( t) )exp[i(EO —m co)t ]
m=NI

N2

P k(r)exp(i[ED (m+k)ro]t ],—

, (r) exp[i(EO —neo)t] .

(40)

This last equation can be used to demonstrate several
things. First of all, it follows that the Floquet energies
calculated by making a Floquet decomposition in the lab

(39)

where P denotes the wave function in the lab frame and
p „ the nth Fourier component of 1( (r —a(t)). Thus
the Floquet decomposition of P is approximately

P(r, t ) = g P„(r)exp[i(Eo =

neo�)t

]

A. Qualitative behavior

We implemented the finite difference equations in a
computer code. The program was tested on the eigenval-
ue problem for Hz+, with satisfactory results. We
checked the bound-state energies of Vo against the results
listed in Ref. 15, which were calculated using a Gaussian
basis. For the typical examples discussed below, where
we do not use a large number of grid points, the accuracy
of the ground-state energy is in the order of a few per-
cent, though we can reach large accuracy.

Before going to the complete problem for H it is useful
to study the effect of the scaling transformation Eq. (23)
on —,'p . The number of grid points is chosen so that one
can expect reasonable accuracy of the results. We used
12 grid points in the v coordinate and 36 in the p coordi-
nate. The upper bound on the p coordinate is chosen 4.2,
the scaling angle 0=0.35 rad, a value that is typical for
most scaling calculations [note again that only the states
with o symmetry (m =0) are studied here).

As one can see in Fig. 3 the results fall almost perfectly
on a straight line for small energies —small wavelengths
that do not feel the boundary —and show some spread at
larger energies. As can be seen most clearly in the inset
(low-energy spectrum), the angle of descent into the com-
plex plane is exactly 0.7 rad, as was expected. This nu-
merical check indicates that our assumption that the re-
sulting spectral deformation is identical to that of ordi-
nary complex scaling may be correct.

It is important to note here that the scatter of energies
for higher real parts is typical for the type of solution
method we use; in usual basis set methods one would not
find this. The effects on energies and widths are small, as
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ters are the same as in Fig. 3. The inset on the left shows an en-
larged version of the threshold behavior, the one on the right
shows the "unphysical" states above threshold.

can be checked by increasing the grid size and the num-
ber of grid points.

In Fig. 4 the spectrum of the Hamiltonian
—,'p + Vo(ao, r) is displayed for the same parameters as

above. We use a0=20 as being a case that has all charac-
teristics of the problem (see Ref. 15). In the figure one
can see several interesting effects, which are enlarged in
the insets for more clarity. In the inset on the left one
sees that two continua with different threshold descent
into the complex plane. This can be understood by con-
sidering the fact that Vo is symmetric under a parity
transformation, so that the eigenstates of gerade and
ungerade symmetry (i.e., of even and odd parity) do not
mix. Since a finite difference approximation is used, a
(small) error is made in the calculation of all our in-

tegrals, of the same order of magnitude but not necessari-

ly of the same size. Therefore the thresholds for the two
continua (o and a„) need not coincide, as one sees here.

This is very different from what happens in the usual
basis set approach, but need not concern us very much
since the difference between the thresholds, as well as
their value, goes to zero as the discretization steps h„and
h go to zero.

This is not true for the feature shown in the inset on
the right where one sees that there is a large number of
states at positive imaginary energy, above threshold but
below Re(E) =0. This phenomenon is related to the shift
of the threshold to a value below E=0; both phenomena
are strongly influenced by the size of the cutoff parameter
C, . The states at positive imaginary energy correspond
to high-lying Rydberg states of the potential. Since a
cutoff was applied in the radial direction, these states
cannot be described accurately. The coupling to bound
states of lower energy is not affected by this cutoff, so
that after complex scaling, which causes a coupling of all
the real-energy states found before scaling, the decay to
the Rydberg states is described well. The decay from
these Rydberg states to the continuum is dominated by
the part that is outside the integration range. For this
reason one finds a positive imaginary part. The shift of
the threshold to values below zero is caused by the fact
that the orthogonalization to a full Rydberg series is
needed to get the low-energy continuum wave functions
at the right place. This accords to the well-known fact
that the distortion of continuum states in a Coulomb po-
tential is strongest near threshold. The reader should
note that this problem is not going to influence the results
for the low-energy bound states. This is again a
difference with a basis set method, where an incomplete
basis for the higher excited states (a translation of what
happens here) does not manifest itself with this signature.

Now consider two typical cases for the coupled-
channel problem Eq. (11). Somewhat smaller values of n„
and n„, 10 and 12, respectively, are taken in order to
keep our matrices relatively small.

First the case of small co is considered, co =0. 1

a.u. =2.72 eV, so that A, =456 nm, which is in the visible
spectrum. The intensity corresponding to ao =20 is
I=7X10' W/cm, which is large but not extremely
high. These cases are more similar to those studied by
Tang and Shakeshaft and by Chu and Cooper. The
value of O.o is larger than what these authors use, however
(about 1). In these calculations one mostly finds small
shifts to more negative values of binding energy. In Fig.
5 one can see a pole pair at the low energy of the spec-
trum that I think is caused by the increase in ionization
potential. One should note that it is hard to decide on
the position of a resonance since all calculations give a re-
sult modulo co. Another feature that can be seen in Fig. 5
and more clearly in Fig. 6 is that there is no convergence.
One would expect that the spectrum would not change
any longer if enough channels were taken into account.
This appears not to be the case, which is not surprising
since this is not the range where the high-frequency and
high-intensity approximations make sense; one would
certainly need a much larger number of channels.

A case where one expects the theory to apply when
taking into account only a few channels is co =0.5
a.u. = 13.5 eV, X=91 nm. Keep ao at the value 20, which
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FIG. 5. Spectra for the channel-coupling Hamiltonian Eq.
(11). The finite-difference parameters are C=1.4, n„=10 and
n =12. The scaling angle is 0.35 rad and ~=0. 1 a.u. Results
for one to five channels are shown.

FIG. 7. Spectra for the channel coupling Hamiltonian Eq.
(11). The finite-difference parameters are C = 1.4, n = 10, and

n =12. The scaling angle is 0.35 rad and co=0.5 a.u. Results
for one, three, and five channels are shown. The dashed lines

indicate a discontinuity in the energy scale; at each line a step of
0.3 a.u. is taken.

means I=1.75X10' Wlcm . As one can see in Figs. 7
and 8 convergence is present in this case; there is hardly
any difference between the case with three and five chan-
nels. The strange poles found in Fig. 5 are also not
present. Identifying the eigenvalue that is lowest in each
channel with the ground state (as can be done for co = ~),
one sees that the shift of the ground state is large and the
width small.

B. Quantitative results

In order to study the behavior of the width as co in-

creases, we have studied the ground-state pole for co

=0.5, 0.75, 1, 2, 4, and ao (the single-channel case). Only
five channels were used (justified by the previous calcula-
tion) and more grid points (N„=40 and X„=172). One
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FIG. 6. Comparison of the energies of the states in the ener-

gy range —0.1(Re(E)(0, for the states of Fig. 5, for one,
three, and five channels.

FIG. 8. Comparison of the energies of the states in the ener-

gy range —0. 1 &Re(E)(0, for the states of Fig. 7, for one,
three, and five channels.
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VIII. CONCLUDING REMARKS

can easily see from Fig. 9 that high accuracy is necessary
for calculations of the widths since these are very small in
general. The imaginary part of the state at infinite fre-
quency shows the limited accuracy of the present calcula-
tion; this state is a bound state and should have imagi-
nary part zero. Clearly, we indeed find that the results
converge as co increases. This gives once more a
confirmation of the consistency of the high-frequency and
high-intensity limit.

It remains to compare our method with the "standard"
low-frequency theory. We have taken one specific exam-
ple from the papers by Shakeshaft and Tang and Chu
and Cooper. This is the energy and width of the ground
state for ap=0. 3, co=0.6. (All the other parameters used
in these papers correspond either to smaller m or smaller
ap. ) A calculation was performed with N&

= 1 5 N = 5

and 7 channels (the small value of N„can be justified by
the expectation that for such a small value of aQ the wave
function is still almost spherical). The value for the
ground-state energy in this field was FQ= —0.4931—i0.0081, and should be compared to
EQ = —0.4987 —i0.0071 from Refs. 6 and 8, so within the
(limited) accuracy of the present calculation the results
agree. We tried to increase the accuracy of the present
calculation, but were limited by the fact that if aQ be-
comes small, the two-center coordinates used here are not
such a good choice and lead to numerical instabilities.
Part of these appear in the solution of the Lanczos prob-
lem for the scaled bound-state equation, and could
presumably be surmounted by transferring our program
to a larger computer system, since we are limited by the
amount of computer memory available. Still it shows
that the region of small Q.Q is not easily accessible using
our present approach.

be performed of the energy and of the lifetime of an atom
in the Kramers gauge. Especially for cases where the fre-
quency co is a few times Ep(ap), the convergence of our
coupled-channel method is quite fast. Since Ep(ap) is a
decreasing function of ap (see Ref. 15), the method can be
applied to optical frequencies when aQ= 10.

The scaling of the g coordinate we have introduced in
order to be able to perform the calculation can be used in
any system where the potential has singularities on a line.
It may therefore be used in the description of single-
photon ionization of diatomic molecules or of electron
scattering from diatomic molecules.

The reader should not be misguided by some of the ap-
parent complications of the finite-di6'erence method. The
method leads to sparse matrix problems, and for that
reason is very efficient, even for matrix dimensions that
are huge (say, a million by a million). We never have to
store the matrix itself, since it is very easy to write a com-
pact and efficient routine that performs the matrix-vector
multiplications needed in the Lanczos procedure. As
such, the method shows promise for the treatment of
atomic behavior in high-frequency laser fields.

The applicability of the present method is limited by
the fact that high-intensity laser are always pulsed. So,
for low frequencies, even when the high-frequency condi-
tion holds for the peak intensity, it does not hold for the
flanks of the pulse, where intensities are much lower. In
order to be able to perform experiments with lasers of op-
tical frequencies, one might think of a two-laser experi-
ment. Here one pulsed laser would pump a transition
from the ground state to an excited state. A second con-
tinuous wave laser would be used to provide a beam that
is high-frequency high-intensity for the excited state, but
is chosen to be so weak that it does not perturb the
ground state. Such experiments (and some refinements)
would be very useful to establish the merits of the present
theory.
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APPENDIX: FINITE DIFFERENCES

We will discuss here the scaled version of Eq. (24), ap-
proximated on a grid through a finite-difference ap-
proach. It is easy to see that the quantum number m is
conserved, so that we only need to consider 0& as con-
stant. For convenience we take m =0, but similar results
can be obtained for other values of m.

So we want to solve the equation

The results given in this paper show that in high-
intensity and high-frequency laser fields a calculation can 5p f$(H E)gd'r . — (A1)
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Consider the confocal elliptical coordinates (g, 2), p). We
choose the polarization vector e along the z axis,

Making one more change of coordinates,

p =cosh(, (A3)
g=(r+ +r )/2ao,

ri=(r+ —r )/2ao,

r+ =r+.&Oe

(A2)
V =COSY/, (A4)

where 0&v&~, 0&p& ~, one can readily derive the
form of Hz

1 1

2;e
2cxo e slnh p+s1n v

( I +e2iesj nh2iu)1 /2 I ( I +e2iesjnh2+)1/2
B„sinh„ i3

e' coshp»nhp e' coshp

+ . BpinvB„+ V(g'(p), 21(v) ) .
1

sinv
(A5)

The boundary condition at the limits of the coordinates are

a„y[, ,=o,

B„p[, =0, (A6)

a,y[„,=o .

Performing one partial integration, one can now easily derive a useful form for the action integral that contains at
most first derivatives

1 . . (1+e ' sinh p, )'/ sinh iu+sin v (1+e ' sinh p)'/I,= dvdp 2 sinhpsinv, ap 28 2 2

' '"e
aO

2cxO coshp e sjnh2p+ sjn2v e 'Hcoshp

+sinhpsinvB„. (() 8 P +(sinh @+sin v)sinhpsinv(V(g'(p), 2)(v)) —E)P
e 2I OS1nh2p +Sin2v

(A7)

Making use of Eq. (A6), we see that for a calculation of the derivatives through finite differences it is not very useful to
integrate over the first interval near the border (this gives zero to the same order as the accuracy of the finite
differences), where these are zero. In a one-dimensional example it can clearly be seen that a choice of function values
at (n+ —, )h, where h is the discretization step, is very convenient. The derivatives at the points nh can be approximated
through finite differences as f'(nh)=[f{(n —

—,')h) —f((n +')h)]/h, the integrals over derivatives can be evaluated
through the iterated midpoint rule [from (n —

—,
' )h to (n + —,

' )h], and the integrals over function values through the mid-

point rule from nh to (n+ I )/h. The accuracy thus obtained is O(h ). The final expression is

N —2N —1
p v

~m+1/2 n(0nm 0' m1+)( nmn~, mn mV1+en~m1, ,n )m, n m m, n m mn m, n m, n

N —1Nv —2
1 2 2

~m, n+1/2(kmn 4m, n+1)( mn0mn m, n +10m, n+1)
~v m=0 n=O

N —] Nv —l

+ g g [(V„E)g„g„], —
m =0 n=0

where the indices mn denote evaluation in iii, =(m + —,
' )h„, v=(n + —,

' )h, and the function Wand V are

( 1 -+ e 2iHsjnh2p )
1/2

W' =sinhp sinv e' coshp

sinh p+sin v (1+e ' sinh p)'
e ' sinh p+sin v e' coshp

W =sinhp sinv,

sinh p+sin v

e ' sinh p+sin v

g „=(sinh @+sin v)sinhp sinv .

(A8)

(A9)
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These last equations were used in the computer code.
The formulas discussed in this section are only valid for the operator Ho. The extension with the off-diagonal poten-

tials is straightforward and is easily derived in a similar fashion as the integrations for Vo, the potential part of Ho.
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