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We develop a quantum theory for continuous photodetection processes that describes nonunitary

time development of the field under continuous measurement of photon number. Exact expressions

are obtained for time evolutions of the photon-field density operator, average and variance of the

photon number, and the Fano factor. These are applied to typical quantum states, i.e., number,

coherent, thermal, and squeezed states. The continuous photodetection process is made up of two

elementary processes in terms of the referring measurement process, that is, one-count and no-count

processes. Just after the one-count process in which a photodetector registers one photoelectron,
the average photon number ( n (t) ) of the remaining field is shown to increase for super-Poissonian

states {e.g. , thermal state) and decrease for sub-Poissonian states {e.g. , number state); for the Pois-

sonian state (e.g. , coherent light), (n(t)) does not change. During the no-count process in which

the photodetector registers no photoelectrons, on the other hand, ( n (t) ) decreases in time for all

states except the number state. The physical origins for these results are clarified from the

viewpoint of nonunitary state reduction by continuous measurement of photon number. Further-

more, we introduce a nonreferring measurement process in which the detector registers photo-

counts, but we discard all readout information. We discuss the difference in the way the photon
field evolves in this process compared to the referring measurement process.

I. INTRODUCTION

According to von Neumann's quantum theory of mea-
surement, a quantum photodetection process is categor-
ized into two stages. ' In the first stage, the photon field
and the detector couple with each other via a unitary in-
teraction, establishing a quantum correlation between
them. This process is reversible because the interaction is
unitary. In the second stage, the number of photoelectric
conversions is read out instantaneously, producing a new
quantum state of the photon field via nonunitary state
reduction. Thus, the measurement process is irreversible
only at the second stage.

An actual photodetection process, however, differs
from the above picture because the number of photoelec-
trons is measured not at a single time but one by one. In-
formation concerning registration of a photocount is read
out in real time throughout the measurement period.
The state reduction of the photon field therefore occurs
at every moment when the detector is active, and the
photon field thus evolves nonunitarily. There are a nurn-
ber of articles which correctly incorporate the effect
of state reduction by continuous measurement of photon
number based on or similar to the Srinivas-Davies mod-
el. Ueda further developed a general theory for the
nonunitary time evolution of the photon field by continu-
ous measurement of photon number.

In the present paper, we develop several general formu-
las to describe a nonunitary evolution of the field under
continuous photodetection process, and examine the time

evolution in detail for typical quantum states: number,
coherent, thermal, and squeezed states. We show that
the manner of the state reduction depends strongly on
both the initial photon statistics and the readout informa-
tion concerning registrations of photocounts (photoelec-
tron statistics). In particular, it is found that for a super-
Poissonian state, the average photon number immediately
after one photoelectron was registered (one-count pro-
cess) increases, whereas while no photoelectrons are being
registered (no-count process) the average photon number
decreases in time except for the number state. The physi-
cal origins for such counterintuitive results are clarified
from the viewpoint of nonunitary state reduction by con-
tinuous measurement of photon number.

The process we have described so far may be called a
referring measurement process (RMP) because we refer to
all information concerning registrations of photocounts
throughout a measurement period. We can, however,
discard this available information. That is, we certainly
know that the detector is active, but we do not read out
the results of measurement. Such a process may be called
a nonreferring measurement process (NMP) because we do
not refer to the results of measurement. We investigate
the di6'erence in the way the photon field evolves in this
process compared to the referring measurement process.

This paper is organized as follows. Section II describes
a nonunitary time evolution of the photon field in the
RMP and develops several formulas for the time evolu-
tion of the photon-number moments. Section III applies
these formulas to four typical quantum states. Here, the
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paradoxial time evolutions of the average photon number
and variance are schematically illustrated. Section IV de-
scribes the state evolutions of typical quantum states in
the NMP and compares them with those in the RMP.
Section V discusses the physical origins for some counter-
intuitive results obtained so far from the viewpoint of
nonunitary state reduction by continuous measurement
of photon number. Some complicated algebra is relegat-
ed to the appendices to avoid digressing from the main
subjects.

II. STATE EVOLUTION IN A REFERRING
MEASUREMENT PROCESS

A. General description

We adopt a model of a continuous photodetection pro-
cess proposed by Srinivas and Davies because it
abstracts the essential features of a quantum photodetec-
tion process without assuming any microscopic structure
of the photodetector. Before going into the detailed
analysis, let us outline our scheme. We consider the time
evolution of a photon field in a closed optical cavity as
shown in Fig. 1. The photodetector begins to count pho-
tons at t =0 when a small window on the cavity well is
opened. We assume an ideal cavity such that the photons
dissipate only through the window. Let us consider a
regular point process where the probability of more than
one photon being registered during an infinitesimal time
interval is negligible. Then the one-count and no-count
processes form an exclusive exhaustive set of events in
any infinitesimal time interval. We refer to the process in
which one photoelectron is registered as a one-count pro-
cess, and to the process in which no photoelectrons are
registered as a no-count process.

In general, the density operator of the photon field is
changed discontinuously by the one-count process be-
cause one photon is instantaneously absorbed from the
field by the detector. It is also changed by the no-count
process because it gives us information that no photon is
detected. This change is, however, continuous in time.
Therefore an initial photon field changes continuously
during the first no-count process, then discontinuously at
the first one-count process, and again continuously up to
the second one-count process, etc. After a sufficiently
long time, the total number of registered photoelectrons

photon fjeld
(system)

detector photodetection
probab~hty

readout

is identified with the total number of photons in the ini-
tial state. Here we assume unit detection efficiency for
simplicity. The photon field after the measurement pro-
cess is completed is the vacuum state because all photons
have been absorbed. If we stop the measurement process
by closing the window at a finite time t„„„(( oo ), then
the photon field in the cavity is not the vacuum state but
is an intermediate state which is reducing towards the
vacuum state. Thus an actual photodetection process
affords a good example of a quantum measurement pro-
cess in which the effects of both continuous measurement
and state reduction must be considered in real time.
Henceforth, we shall refer to such a process as a referring
measurement process (RMP).

We shall also investigate another process where we do
not read out any information concerning the results mea-
surement, although we know that the detector is active.
In this case, the density operator of the photon field
changes nonunitarily, too, but in a completely different
way from that in the RMP, as will be discussed in Sec.
IV. We refer to such a process as a nonreferring measure
ment process (NMP).

In general, a quantum measurement process plays two
distinct roles with respect to the past and future of the
observed system. ' With respect to the past, repeated
measurements of the same quantum state verify the prob-
ability distribution of photoelectrons that was predicted
from the previous measurement. With respect to the fu-
ture, a single measurement produces a new quantum state
via nonunitary state reduction caused by the rneasure-
ment back action on the photon field, as schematically
shown in Fig. 2. The density operator of the photon field
at a particular time determines the probability that a
photoelectron is registered at the same time (measure-
ment action); whether a photoelectron is registered or not
determines the photon density operator at an
infinitesimally later time (measurement back action).
Thus the density operator of the photon field evolves
nonunitarily due to continuous measurement of photon
number and its back action on the photon field. In the
rest of Sec. II we shall discuss how the photon field
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FIG. 1. Photon counting system for an optical field in a
closed cavity. The density operator of the photon field gradual-
ly changes into the vacuum state, producing photoelectric
pulses one by one.

FIG. 2. Measurement action and back action in a continuous
photodetection context.
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evolves in time according to the results of continuous

measurement of photon number.

B. One-count process

The one-count process is described by a superoperator
Jas

Jp(t) =hap(t)a (2.1)

where p(t} is the density operator just before the one-
count process, A, is a parameter which represents the
probability of one photoelectron being registered per unit
time when the initial field is in a single-photon state, and
a (a ) is the photon annihilation (creation) operator. The
operator J expresses the measurement action of annihilat-
ing one photon from the photon field. Although Eq. (2. 1)
is a postulate as described in Ref. 3, it can be justified if
we use a physical model of photon counting. '

An operator which describes a quantum photodetec-
tion process should give both the probability for the re-
sult of measurement (photoelectron statistics) and the
quantum state immediately after the measurement (pho-
ton statistics). The probability, P(J)dt, that a one-count
process occurs in the interval from t to t +dt is given by

P(J)dt =Tr[Jp(t)]dt =A, & n (t) )dt,
where

& n (t) ):—Tr[p(t)a a]

(2.2)

(2.3)

& [~n (t)]'&
&n(t))

(2.6)

which takes a value greater than unity for super-
Poissonian states, less than unity for sub-Poissonian
states, or equal to unity for Poissonian states. Thus we
find that the average photon number immediately after
the one-count process increases, decreases, or remains
unchanged according to whether the pre-measurement
photon statistics are super-Poissonian, sub-Poissonian, or

is the average photon number just before the one-count
process. The density operator of the post-measurement
state is related to that of the pre-measurement state by

+ Jp(t) ap(t)a
p t

Tr[Jp(t)] & n (t) )

where the symbol t+ denotes a time infinitesimally later
than t (just after the one-count process). Then the aver-
age photon number immediately after the one-count pro-
cess defined by & n (t ) ) =Tr[p(t+ )a a] is given by

& n (t ' ) ) = ( n (t) ) —1 + [ " ]
, (2.S)

&n (t))
where hn(t)=n(t) —&n(t)). This result expresses the
average photon number of the post-measurement state in
terms of the pre-measurement photon statistics. We find
that the difference between the average photon numbers
before and after the one-count process is not exactly
equal to 1, but it has an additional term depending on the
variance of the photon number before the measurement.
This term is nothing but the Fano factor,

TABLE I. One-count process.

Average photon number

&n(t )) =&n(t)& —1

&n(t)) —1«n(t+)& « n(t))
&n(t+)) = &n(t))

&n(t) & «n(t+) &&2&n(t)&

(n(t )&=2&n(t)&

&n(t ')) & 2&n(t) &

Inst&al state

number

sub-Poissonian

Poissonian

sub-thermal

thermal

super-thermal

(2.7)

where ([An (t)] ) is the third cumulant of photon num-

ber at time t. This equation shows that the sign of the
change in photon number variance depends on the
second and third cumulants of the original photon statis-
tics. Appendix A shows that the kth moment of the
post-measurement state is expressed in terms of the mo-
ments of the pre-measurement state up to (k +1)th as

k
&n(t+)") = g ( —1)" &n(t) +'),

&n(t})

k =1,2, 3, . . . . (2 8}

From this result we find that the one-count process, in

general, changes not only the average photon number but
also changes the whole statistics of the original photon
field. This reflects the fact that the photon counting is a
second-kind unsharp measurement of photon number. A
unique exception is the coherent state; the coherent state
suffers no change by the one-count process as will be
shown in Sec. V. With respect to only the kind of statis-
tics, the number state is another exception; it remains a
number state, although its eigenvalue decreases by 1.

C. No-count process

Next, let us examine the no-count process. Associated
with the no-count process is a superoperator S, such that
the probability, P(S, ), of no count being registered in the
interval from t to t +~ is

P(S, ) =Tr[S,p(t)], (2.9)

where ~ is an arbitrary time interval. It has been postu-
lated that

Poissonian, respectively. Results for several initial pho-
ton statistics are summarized in Table I.

The variance immediately after the one-count process,
which is defined by

& [b,n(t+)] ) =Tr[p(t")(a a) ]—ITr[p(t+)a a]]

is represented by the photon statistics before the one-
count process as

([bn(t+)] )=([bn(t)] )

& [An (t)]') & [hn (t)]')
&n(t)) &n(t))
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T

S,p(t)=exp —iso+ —a ar

Xp( t )exp i co ——a a r
2

(2.10)

Note that when the coupling between the detector and
the field is zero, that is when A, =O, the field evolves ac-
cording only to the free Hamiltonian ficta a, as it should.
The density operator immediately after the no-count pro-
cess is given by

p( } exp[ —(ice+A, /2)a ar] p(t)exp[(ice A—, /2)a aw]
p(t +r)=

Tr[S,p(t)] Tr[p( t }exp( —Aa a r ) ]
(2.11)

This evolution is also nonunitary. The state evolution in
the one-count process is discontinuous in general. The
state reduction in the no-count process, in contrast,
proceeds continuously because the nonunitary part
exp[ —(A, /2)a ar] vanishes as r approaches zero. The
no-count process does not extract any photons from the
initial photon field and, therefore, p „(t +r ) depends
only on p „(t). Nevertheless, the average photon num-

ber decreases for all but one quantum state because the
readout information that no count has been registered in
the interval from t to t+~ requires us to modify the
knowledge about the original photon-density operator ac-
cording to Eq. (2.11). Thus the statistical properties of
the observed photon field change in time during the no-
count process. A unique exception is the number state; it
suffers no change in the no-count process, as shown later.
With respect to the kind of statistics alone, the coherent
state is another exception; it remains the coherent state,
although its amplitude attenuates exponentially in time.

The time evolution of the average photon number in
the no-count process,

(n (t +r) ) =Tr[p(t +r)a a],
is given by

—([bn(t}] )=—A([hn(t)]'&,d
dt

(2.15)

or

& [bn(t+r)]') =
& [bn (t}] ) —){,J ([hn (t')]')dt' .

(2.16)

Therefore, the Fano factor evolves in the no-count pro-
cess as

"&[. ]')
r &n(t'))

([~n(t )]')
(n(t') &

(2.17)

( n (t +r) ) = ( n ( t) ) A—f , ( [b n (t ') ]')dt' . (2.14)

Results for several initial photon statistics are summa-
rized in Table II. The time evolution of the photon-
number variance depends only on the third cumulant as

(n(t+r)) = —— ln Tr[p(t)exp( Aa ar)] .—1

1 i)){,
(2.12) In a similar way, it can be shown that the kth moment

obeys the following differential equation:

TABLE II. No-count process.

Average photon number Initial state

(n (t +v) ) =(n {t})
(n(t+r)) =(n {t))e

( ( + )) (n(t))e
1+(n{t))(1—e ')

number

coherent

thermal

Expanding the right-hand side (rhs) of Eq. (2.12) in
powers of small A,~, and taking the limit A,~~O leads to a
differential equation:

—(n(t))= —
A, ([hn(t)] ) .

d
(2.13)

dt
Thus we find that the average photon number decreases
in time at a rate of the photon number variance multi-
plied by the reciprocal expectation value of waiting times.
Therefore, it does not change for number state
(([bn (t)] ) =0), but decays for all other states. Equa-
tion (2.13) is integrated to give another expression of
&n(t+r))

—&n(t)") = —&[(n(t)"+'& —&n(t)&&n(t)"&],
df

k =1,2, 3, . . . . (2.18}

This equation shows that the rate of change of the kth
moment is expressed in terms of the pre-measurement
moments up to the (k+1)th. Equation (2.15) implies
that the photon statistics change in time during the no-
count process, in spite of the fact that no photons are
detected in the process.

D. Quantum photodetection process
of forward recurrence times

Now that we have studied the one-count process and
the no-count process, we are in a position to describe an
actual time evolution of the photon field where we read
out all information concerning registrations of photo-
counts in real time throughout the measurement period.
We refer to such a process as the quantum photodetec-
tion process of forward recurrence times (QPF). Suppose
that the measurement process started as t =0 and ended



41 QUANTUM THEORY FOR CONTINUOUS PHOTODETECTION PROCESSES 3895

at t = T, and that m photons were registered at times r
(j =1,2, . . . , m) with no further photons registered in
the measurement period. Then, the density operator of
the photon field, pO~"(r&, rz, . . . , r., 0, T), immediately
after the measurement process is given by

pO "(r„r, . . . , r;0, T)

ST, JS, , J JS, p(0)

Tr[ST, JS, , J JS, p(0)]
(2.19)

field. Here the denominator is sometimes called the prob-
ability distribution of forward recurrence times (PDF). "
It is denoted as P' """'( r, , r2, . . . , r, 0, T) and gives
the probability per (unit time) that one count is regis-
tered at m times with no further counts registered at oth-
er times:

=Tr[Sr, JS, , J JS, p(0)] . (2.20)

where p(0) is the initial density operator of the photon
I

It has been shown that

m

ST, JS, , J S, p(0)=A. exp —
A, g r exp — ice+ —a aT a p(0)(a ) exp

m m —1 1 j=1
iso ——a aT

2

(2.21)

Substituting Eq. (2.21) into Eq. (2.19) yields

gpF exp[ —(i co+ A, /2)a aT]a p(0)(a ) exp[(i co —
A, /2)a aT]

Tr[p(0)(a ) exp( —ka aT)a ]
(2.22)

This equation gives the nonunitary time evolution of the
photon field in the QPF. Note that the rhs of this equa-
tion no longer depends on the times at which photoelec-
trons were registered. This is because the denominator
and the numerator in Eq. (2.19) share the same factor
exp( —

A, g, r ) and are therefore canceled out in form-
ing the ratio. This is characteristic of closed-system pho-
tocounting and does not hold for open-system photo-
counting. ' Henceforth we will denote the quantity in
the left-hand side of Eq. (2.22) simply as p'P"( T). On the
other hand, the PDF retains the lost information con-
cerning the times of registration. In fact, substituting Eq.
(2.21) into Eq. (2.20) yields '

7lp

(a)

INITIALLY NUMBER STATE

INITIALLY SQUEEZED STATE

=A, exp
j=1 7lp

INITIALLY THERMAL STATE

XTr[p(0)(a ) exp( —Aa aT)a ] . (2.23)

To examine how the original photon statistics develop
in time, let us calculate the photon-number moments,
(n(t+)"), immediately after the QPF. They are given by

I I

7j 79

(n(t+)") =Tr[po "(t)(a'a)"] . (2.24) TIME

k n
( 1)n+m k

(a a)"= g:(a a)": g m!(n —m)!
(2.25)

we obtain a useful formula,

Using the operator identity which expands the moments
in terms of the normally ordered ones'

FICx. 3. Time evolution of the average photon number
(n(t)) for initially (a) number, (b) squeezed, and (c) thermal
states. Their initial average photon numbers and A, are chosen
to be the same as one another. The dashed curves show the
average photon-number evolution for an initially coherent state
with the same initial average photon number. One-count pro-
cesses are assumed to occur at ~&, ~2, . . . .
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j ( 1)j+t k.

i!(j —i)! (2.26)

where t )r . In particular, the average and variance of the photon number are given by

(n(t)&=-
P ( f'orward )

(

P '"'";""
( r„.. . , r, t, t;0, t )

(2.27)

(2.28)

where t &~ . These formulas are very useful when we
follow the time evolution of the photon field in the QPF.
Figure 3 illustrates the time evolution of the average pho-
ton number in the QPF for initially (a) a number state, (b)
a squeezed state, and (c) a thermal state. The times
w), 7 2, . . . indicate the times when photoelectrons were
registered. The dashed curves correspond to an initially
coherent state. Figure 3(a) indicates that when the initial
state is a number state, (n (t) & does not change under the
no-count process, and decreases by 1 for every one-count
process. Figure 3(b) indicates that when the initial state
is a sub-Poissonian squeezed state, (n(t)& is not con-
stant: under the no-count process, (n (t) & decays more
slowly than the dashed curve, which corresponds to the
coherent state, and for the one-count process (n(t) & de-
creases by less than 1. Figure 3(c) indicates that when the

I

1

initial state is a thermal state, (n (t) & decays faster than
the dashed curve under the no-count process, and in-
creases for the one-count process in contrast to the other
states. The detailed calculation wi11 be given in Sec. III.

E. Quantum photodetection process
for the number of counts

In an actual photocounting experiment, we sometimes
read out partial information concerning registrations of
photocounts. One example is the quantum photodetec-
tion process for the number of counts (QPN) in which we
measure only the number of counts registered in a mea-
surement period. Since the information concerning the
times of photodetection is discarded, the superoperator,
Nr(m), describing the QPN is given by

Nr(m)= f dr f dr
~ f dr~Sr, JS, , JS,

Clearly, the probability, P(m;0, T), of m counts being registered in an interval [0,T) is given by

P(m;O, T)=Tr[NT(m)p(0)] .

(2.29)

(2.30)

Substituting Eq. (2.29) into Eq. (2.30) and using Eq. (2.20), we have
r T2

P(m;O, T)=f dr f dr
~ f dr, P'""" (r&, r&, . . . , r;O, T) .

0 0 0

The density operator, po~ ( T), immediately after the QPN is therefore given by

NT(m )p(0)
QPN( T)

Tr[NT(m)p(0)]

Substituting Eqs. (2.21) and (2.29) into Eq. (2.32), we obtain

qpN exp[ —(i td +A, /2 )a a T]a p( 0 )(a ) exp [( i co A. /2 )a —aT]
Tr[p(0)(a ) exp( Aa aT)a ]—

(2.31)

(2.32)

(2.33)

which is identical to Eq. (2.22). That is, with respect to
the post-measurement state, the QPF and QPN gives the
same result. This statement holds for any initial quan-
tum state as long as the closed-system photodetection
process is considered.

III. APPLICATIONS TO TYPICAL
QUANTUM STATES

Using the general equations obtained in Sec. II, we ex-
amine the nonunitary state evolution for four typical ini-
tial states, i.e., number state, coherent state, squeezed
state, and thermal state. The evolution can be traced ex-

I

actly and is graphically visualized using the average pho-
ton number (n (t) &, the photon number variance
([bn(t)] &, and the Fano factor F(t)= ([bn(t)] &/—
(n (t) &.

A. Initially number state

p'P"(T) = ~n, m&(n, m! . —— (3.1)

The photon field remains the same number state under

We choose the initial condition as the number state
p(0) = ~no & (no~. Equation (2.22) gives the density opera-
tor immediately after the QPF as
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the no-count process, but its eigenvalue decreases by l for
the one-count process. Hence the result (3.1). Thus the
time evolution of the average photon number is given by

(n(t))=no —k for rk (t rk+, . (3.2)

The photon number variance remains zero throughout
the measurement process:

([hn (t)]') =0 Vt . (3.3)

pO~ (T)=~no m)—(nc m~ —. (3.4)

With respect to the measured photoelectron statistics,
however, the QPF and QPN give different results. The
probability distribution of forward recurrence times,
which corresponds to the QPF, is obtained from Eq.
(2.23) as

The Fano factor of the number state remains, therefore,
zero. It should be noted that these results stem from the
fact that we read out all available information about re-
gistrations of photocounts; if we discard some of the in-
formation, the number state will no longer remain a num-
ber state. This observation is crucially important from a
measurement-theoretical point of view, as will be dis-
cussed in Sec. IV, in connection with the nonreferring
measurement process.

Next, let us examine the nonunitary time development
of the number state in the QPN. Since the QPF and
QPN give the same post-tneasurement states, we have

pO "(T)= aoexp — ice+ —T

X a exp — I'. m+ —T
L

0 (3.8)

( n (t) ) = ( [hn (t)] ) = ~ao~ exp( At—) . (3.9)

Hence, the Fano factor remains unity at all times:
F (t) = l. An initially coherent state remains Poissonian
throughout the referring measurement process.

7ZO

In contrast to the number state, the coherent state does
not change in the one-count process because the coherent
state is an eigenstate of the annihilation operator. There-
fore when operated on by the superoperator J, the
coherent state does not change but simply produces a
constant factor ~ao~, which is canceled out by the
denominator and numerator in Eq. (2.4). However, the
amplitude of the coherent state decreases exponentially
under the no-count process for the reason given in Sec.
II C. Consequently, both the average photon number and
the photon number variance decay exponentially at the
same rate, i.e.,

m t

=A, exp —
A, gr, (e "

)
'

(no —m)!
(3.5)

This probability distribution contains both the term of in-
formation concerning times of photocounts,
exp( —

A, g~ =, rj ), and the term concerning times of no

counts, (e )
' . On the other hand, the probability

distribution for the number of counts, which corresponds
to the QPN, is obtained by substituting Eq. (3.4) into
(2.30):

([Dn(t)]')

P(m;O, T)=
no

(3.6)

This probability distribution no longer contains the infor-
mation concerning the times of photocounts because we
discarded it. These results will be compared to those ob-
tained in the nonreferring measurement process (see Sec.
IV).

B. Initially coherent state

n

„=o (n!)' (3.7)

The nonunitary time evolution of the initially coherent
state in the QPF is obtained with the aid of Eq. (2.22) as'

The density operator of the coherent state is
p(0)=~ao)(ao~, where ~ao) is a coherent state vector
with complex amplitude uo. This can be expressed in
terms of the number state as'

lapl'
/a, ) =exp

(c)

p
[ I

11 T2 73

FIG. 4. Time evolution of the average photon number
(n (t) ), photon-number variance ( [b n (t)] ), and the Fano fac-
tor F(t) for an initially thermal state. The dashed curves show
the corresponding evolution for an initially coherent state with
the same initial average photon number. One-count processes
are assumed to occur at ~„r2, ~. . .
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(3.10)

C. Initially thermal state
The density operator of the thermal state is given by

n

~(0)=, y, '
ln&(nl,1+no, =o 1+no

where no is the average photon number of the initial
state. Substituting this into Eq. (2.22) yields the nonuni-
tary time evolution in the QPF of the initially thermal
state as

pQPF( T)
1+no(1 —e ~r) ~ n + rn n e A T

0

1+no
/n)(n/ . (3.1 1)

To calculate the time evolution of the photon-number
moments, let us evaluate the PDF. From Eqs. (2.23) and
(3.10), we obtain

m (Ano)
=m!exp —A. T r

/ [1+ (1
—AT)]m+1

(k + 1)no(no+1)e
& ~n(t) '&=

( 1
/, t) ]2—

Therefore, the Fano factor becomes

1+noF(t)=
1+no(1 —e ')

(3.16)

(3.17)

(3.12)

Substituting this equation into Eq. (2.27) yields

(n(t)) = (k + l)noe

1+no(1 —e ')

for rk &t ~rk+/, k =0, 1,2, . . . . (3.13)

&n(r'„) &

&n(r„))
k+1

k 1y2p ~ ~ ~ (3.14)

while under the no-count process the average photon
number decreases in time by the ratio

(n (t) ) 1+no(1 —e ")=exp[ —
A, ( t rk )]-

(n (rk ) ) 1+no(1 —e ')

fo«/, «~r/, +]

This equation shows that the average photon number de-
creases faster than for the initially coherent state. The
time evolution of the photon number variance can be ob-
tained using Eq. (2.28) as

From this equation we find that every time a photon is
detected, the average number of photons remaining in the
photon field increases by the ratio

which is always larger than unity, but approaches unity
as the measurement time progresses. Thus, we find that
an initially thermal state approaches the Poisson statis-
tics as a result of the referring measurement. Here we
note that although (n(t)) and ([d,n(t)] ) change
discontinuously in the one-count process, the Fano factor
has no discontinuities even for the one-count process.
This is a special feature of the thermal state whose photo-
count distribution obeys a power law. Figures 4(a), 4(b),
and 4(c) illustrate the time evolution of the average pho-
ton number, photon number variance, and the Fano fac-
tor, respectively, where the dotted curves correspond to
an initially coherent state with the same initial average
photon number.

The probability distribution for the number of counts
is obtained by substituting Eq. (3.12) into Eq. (2.31):

[no(1 —e )]
P(m;0, T) =

[1+ (1 e
—AT)]m+1

(3.18)

This result shows that the Bose-Einstein character of
photoelectron statistics for the initially thermal state
holds in the QPN, even though the photon statistics de-
velop into different statistics as in Eq. (3.11).

D. Initially squeezed state

A squeezed state of light,
~
a, r ), can be generated from

a coherent state a ) via a unitary transformation

r z
(

t)z, exp[ —lal'n+(a'l2)tanhr] + 1

2 (coshr)' o &n!
tanhr

2

' n/2H„, [n ), (3.19)
(sinh2r)'

where r is a squeezing parameter and H„(z) is the nth Hermite polynomial defined as

[ni2] 1 mn /

o m!(n —2m)!
(3.20)

Using Eq. (3.19), the density operator of the squeezed state becomes
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expI —
~a~ +[a +(a') ](tanhr)/2]

(coshr)'~ =p ( m!n!)'~

(m +n)/2
tanhr a

2 (sinh2r)'~

XH„', ~m)(n~ .
(sinh2r)'~

(3.21)

We assume that a is real because the phase of the coherent state does not affect the following discussion. Then Eq.
(3.21) becomes

exp[a (tanhr —1)] + 1

(coshr)' „=p ( m!n!)'~

' (m +n)/2
tanhr a, a

2 (sinh2r)' (sinh2r)'
(3.22}

Substituting this into Eq. (2.22) gives (see Appendix B)
' (k+n)/2

tanhr
2

1
"

1QPF( )—
N ~o(k exp( i Qk—r+i fI'n r}H„+,z2 H„'+,z2 ~

k ) ( n!
(sinh2r)' (sinh2r)'

where

dm
N:—

dz

r

2

( 1 2)
—1/2

1+z sinh2r z =e tanhr

(3.23)

(3.24)

and II =to iA/—2 A, s .before, we use formulas (2.27) and (2.28) to obtain the average photon number and variance,
where the PDF is given in Appendix 8 as

(A. tanhr)
exp —

A. g r +a (tanhr —1)
coshr g=1

J (3.25)

Figures 5(a), 5(b), and 5(c) illustrate the time evolution of
the average photon number, the photon number variance,
and the Fano factor of an initially squeezed state, respec-
tively, where the dotted curves show the corresponding
time development of an initially coherent state. We
choose parameters a and r such that the squeezed state
shows sub-Poissonian photon statics, and the complex
amplitude of the coherent state is chosen such that the in-
itial average photon number is equal to that of the
squeezed state. Note here that the average photon num-
ber and the photon number variance of the squeezed state

~
a, r ) are evaluated as a e "+sinh r and a e
+2 sinh r cosh r, respectively. In contrast to the thermal
state, the average photon number decreases by less than 1

for the one-count process, which is a common feature of
the sub-Poissonian state [see Eq. (2.5)]. On the other
hand, under the no-count process it decreases at a smaller
rate than that of the thermal and coherent states. The
time development of the Fano factor shows that the pho-
ton statistics approach Poissonian as time progresses. In
Fig. 5(c), we observe that the time development of the
Fano factor has discontinuities at times when photo-
counts are registered. This presents a sharp contrast to
the cases of number, coherent, and thermal states. The
probability distribution for the number of counts is ob-
tained if we substitute Eq. (3.25) into Eq. (2.31):

& (m; O, T) =X exp[a'(tanhr —1)] .[(1—e )tanhr]
m!coshr

(3.26)

7lp

(b)

((&"(')1 )

I

7] 7'7 73

(c)

TIME
FIG. 5. Time evolution of the average photon number

(n (t)), photon-number variance ([An (t)] ), and the Fano fac-
tor F(t) for an initally squeezed state. The dashed curves show

the corresponding evolution for an initially coherent state with
the same initial average photon number. Qne-count processes
are assumed to occur at 7&,7„.. . .
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IV. STATE EVOLUTION IN NONREFERRING
MEASUREMENT PROCESS

must satisfy the following identity:

Tr[T,p(t)]=1 . (4.1)
Thus far we have examined nonunitary time evolution

of the photon field in the RMP. A characteristic feature
of this process lies in the fact that we read out all or at
least partial information concerning registrations of pho-
tocounts in real time throughout the measured period.
Such a process consists of the one-count and no-count
processes. On the other hand, it is completely at our
choice whether we actually read out available informa-
tion or discard some of the information. What happens
to the photon field if we discard all information about
photocounts except for knowledge that the detector is ac-
tive? Such a process is called the nonreferring measure-
ment process (NMP) with emphasis on the fact that we
do not observe the photoelectric pulses although we cer-
tainly know that the detector is active. I.et us introduce
a superoperator T, such that it describes the time devel-
opment of the density operator in the NMP of duration ~.
Since we do not refer to the result of measurements, T,

I

Since the one-count and no-count processes form a com-
plete set of events in an infinitesimal time interval dt, we
have the equation

T«p(t) =Jp(t)dt +S«p(t) . (4.2)

This equation, combined with Eqs. (2.1) and (2.10), leads
to a differential equation for the density operator of the
photon field in the NMP:

dp(&)

dt
=A,ap(t)a — ice+ —a ap(t)

2

+ ice ——p(t)a a .
2

(4.3)

This operator differential equation can be integrated ex-
actly (see Appendix C) to give

T P(t) " (1—e ')"
p(t+7)= =T,p(t)= g, exp — ice+ —a ar a "p(t)(a )"exp ice —a —arTr[Tp(t)] ' „0 k! 2 2

(4.4)

where Eq. (4.1) has been used. This result has been ob-
tained in Ref. 7 using a different method.

From this equation we can exactly evaluate the
photon-number moments (n (t +r)") after the nonrefer-
ring measurement process (see Appendix D). The aver-
age photon number is given as

n0 0
no

—rn

p(r)= g (1—e ') (e ') '
lno

—m )
m=0

X(no —m~ . (4.8)

(n(t+r))=e '(n(t)), (4.5)
80 iREFERRIlVG PROCESS

that is, the average photon number decreases exponen-
tially in time. This is because we discard all readout in-
forrnation so that the photodetector comes to play the
simple role of a linear absorber with absorption
coefficient A, . The photon-number variance is given by

n
C

O

0

(a)

([bn(t+ )]r) =e '([bn(t)]'&

+e '(1 —e ')(n (t)) . (4.6)

0

REFERRING PROCESS

(b)

Hence we obtain the Fano factor

F(r+r)=e 'F(r)+1 —e (4.7)

Equation (4.7) shows that the statistics of the pre-
measurement photon field, which is represented by F(t),
lose their feature as time proceeds. No rnatter what the
initial statistics are, they approach the Poissonian. Fig-
ures 6(a) and 6(b) compare the time evolutions of the
Fano factors for the NMP and RMP.

To elucidate the meaning of the nonreferring measure-
ment, let us consider the initially number state
(p(0)=~no)(no~). The density operator after the NMP
of duration ~ is given by

0 l 1

7] T'7

TIME

FIG. 6. Time evolution of the Fano factor F(t) in the (a)
nonreferring measurement process and (b) referring measure-
ment process. Here the dot-dashed, dotted, solid, and dashed
curves correspond to initially thermal, coherent, squeezed, and
number states, respectively. One-count processes are assumed
to occur at ~&, ~z, . . . .
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This can be understood as follows: our knowledge that
the detector is active leads us to a conclusion that some
of the initial n0 photons can be detected by a photodetec-
tor with probability p =1—e . The coefficient in the
summand of Eq. (4.8),

no

p (1—p)' (4.9)

gives the probability of m out of n0 photons being detect-
ed with probability p. However, since we do not know
the number of photons that are actually detected, the
density operator after this measurement process falls into
a mixture of all possible numbers. Consequently, the
Fano factor increases toward unity as time progresses.

F(r) =1—exp( —
A,r) . (4.10)

In contrast, for the QPF and QPN, we do know the
number of detected photons. Therefore the post-
measurement density operator does not fall into a mix-
ture but remains a pure state as in Eq. (3.1). Similar ar-
guments hold true for other states. A unique exception is
the coherent state. An initially coherent state does not
fall into a mixture state but remains a coherent state
(pure state). In fact, substituting p(0) = ~ao) (ao~ into Eq.
(4.4), we obtain

p(x )
= axe xp — ixx +—x

)

X a exp — ico+—0 (4.1 1)

This result is the same as pO "(r) in Eq. (3.8). Only for
an initially coherent state is there no difference between
the time evolutions of the density operator in the RMP
and the NMP. For both measurement schemes the Fano
factor is always unity, independent of time.

V. DISCUSSION

Most results of this paper are intuitively intelligible.
For example, it is obvious that the average photon num-
ber tends to decrease by one-by-one photon counting.
For a number state, the photon number does not change
when no photons are detected, and it decreases by exactly
1 when one photon is detected. For the NMP, the aver-
age photon number decreases monotonically due to the
absorption by the photodetector. Some results, however,
seem paradoxial. For example, the average photon num-
ber can decrease even when no photons are detected, and
increases in some cases even when one photon is detected.
The density operator of the photon field in the NRP de-
velops differently from that in the RMP, although the
physical situation of the whole system does not appear to
be different.

The apparent paradoxes are resolved if we take into ac-
count the effects of continuous measurement and its
backaction on the photon field. First of all, the initial
state is given a priori in the present analysis. This means
that we know the initial photon statistics. For simplicity,

let us assume that the initial state is
—,'( ~0) (0~+ ~100) (100~ ). Then the initial average photon
number is 50. When one photon is detected for this state,
the possibility that the initial state was ~0)(0~ suddenly
vanishes. Thus we can conclude that the initial state was
~100)(100~. Since one photon has been extracted by the
detector just now, we conclude that the present state is
~99)(99~ with the average photon number increased by
49. The fact that the field state is modified by the mea-
surement can be regarded as a measurement back action.
Thus, the average photon number has changed from 50
to 99 by extracting one photon from the photon field. In
this way the measurement back action consists of two ele-
ments. One is that the probability of the state ~0) van-
ishes and hence the probability of the state ~100) in-
creases. The other is that the state ~100) transforms into
~99 ) by extraction of one photon.

If no photons are detected in the RMP, then we must
modify our knowledge of the initial photon statistics so
that the probability of ~0)(0 is increased and that of
~100) ( 100~ is decreased to be in accordance with the fact
that we have not detected any photons for a long time.
Such a modification results in a decrease in the average
photon number, even though no photon has actually been
detected.

Generalizing the above discussion, the density operator
is modified every moment according to the results of con-
tinuous measurements. It is natural to assume that the
probability of one photon being detected is proportional
to the average photon number in the cavity. This is ex-
pressed by Eq. (2.2). Therefore, if the statistics have a
long tail for large photon numbers like the Bose-Einstein
statistics, the probability that the photon number was
large increases as a result of the one-count process. This
results in the increase of the average photon number. In
fact, writing Eq. (2.4) in matrix elements, we have

+ &(m +1)(n +1)
P P +& +&(nt) (5.1)

p „= „,exp( —~a~'),a (a*}"
(m!n! )'

(5.2)

This equation shows that for the one-count process, each
matrix element is shifted by one and is multiplied by a

factor of &(m+1)(n+1)l(n(t)). This factor works as
an enhancement factor for large m, n such that
(m+1)(n+1)) (n(t)) and as a reduction factor for
small m, n such that (m+1)(n+1)((n(t))~. If the
photon-number distribution is localized around some
number, the photon number is roughly determined from
the beginning. Thus, we conclude that the average pho-
ton number for fields such as a number state decreases
approximately by 1 in the one-count process.

A coherent state is a special example in which the in-
creasing and decreasing contributions to the average pho-
ton number are balanced. Thus there is no discontinuity
in the average photon number, even when the detector
counts a photon, as is indicated in Fig. 3 (dashed curves).
In fact, the matrix elements for a coherent state can be
written as
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formed, but we do not know the results of measurements.
Therefore, the density operator for the NRP develops
differently from that for the RMP.

It should be noted that the above discussion can be un-
derstood within the context of classical probability
theory. In fact, we have used only the diagonal elements
of the density operator in the number state basis. There-
fore, the apparent paradox mentioned above is not re-
stricted to quantum-mechanical situations but may also
be found in some classical situations. However, the com-
plete analysis in Sec. II is done including off-diagonal ma-
trix elements of the density operator. Therefore, the
analysis in this paper is thus fully quantum mechanical.

Finally, we wish to discuss the conservation law of the
photon number in the context of continuous measure-
ment. Suppose that the measurement process began at
t =0 and m photons have been detected by the time
t = T. Then the density operator immediately after t = T
is given by Eq. (2.33) and the average photon number of
the remaining field is given as

(5.3)

which exactly satisfies Eq. (5.1) if we set p „(r+ )

=p „(t). Therefore, even off-diagonal elements suffer

nothing from the one-count process.
All these discussions are based on the fact that the den-

sity operator is redetermined according to our knowledge
about the results of measurements. The density operator
(and, hence, the probability distribution for the number
of photons) is a quantity that we determine according to
our knowledge. The average photon number is not an ac-
tually observed value but is the photon number we expect
to obtain by repeated measurements. Such an expecta-
tion value can increase when one photon is detected im-
mediately after the observation process began and can de-
crease when no photons are detected. Therefore, the den-
sity operator not only expresses an objective physical
state of a system but also reflects our knowledge about
the system. This is further understood by considering the
NMP. The density operator under the NMP expresses
the knowledge about photon statistics when we know the
initial state and know that photon counting is being per-

I

T [ &pz(&) t ] ( &&)
Tr[p(0)(a ) +'exp( ka aT)—a ']

Tr[p(0)(a ) exp( Aa aT)a—]

where the subscript m in (n (r)) indicates the number
of detected photons up to time T. It is noted that
(n ( T) ) is the average photon number but that m is a
result of a single measurement. Since the conservation
law in quantum mechanics holds true in the ensemble-
average context, the sum m + ( n ( T) ) does not have to
be equal to the initial average photon number n0. The
conserved quantity is the ensemble average of the sum-
mation with respect to m. It can be shown the way the
ensemble-averaged result certainly equals n0.

considered to be an instantaneous process. The evolution
of the state is obtained using the operation-valued mea-
sure. ' The present analysis enables us to trace the time
evolution of the photon field in real time as the state
reduces towards the vacuum state. In this sense, the
present analysis extends the conventional quantum
theory of measurement. However, the present analysis is
not a kind of measurement theory which "explains" why
the wave function collapses; it is a continuation of
infinitesimal nonunitary processes (one-count and no-
count-processes) which are postulated.

g P(m;O, T)[m+(n(T)) ]=n0 .
m=0

VI. CONCLUSIONS

(5.4)
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In the quantum theory of measurement process, the
nonunitary process due to the measurement is usually

APPENDIX A: PROOF OF EQ. (2.8)

The kth moment of the post-measurement state
( n (t+)") is given by

(n (t+)")=Tr[p(t+)(a a)"] . (A1)

Substituting Eq. (2.4) into Eq. (Al) yields

1(n (t+)")= Tr[p(t)a (a a)"a] .(~(r))
It can be shown by mathematical induction that

(A2)
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k

m=0

Substituting this into Eq. (A2) yields

k

(a a)"a = g ( —1)" a (a a) (A3)

where

(n(t) +')=Tr[p(t)(a a) +'] . (A5)

k
(n(t+)") = g ( —1)' (n(t)-"),

(A4)

APPENDIX B: PROOF OF EQS. (3.23) AND (3.25)

Substituting (3.21) into the numerator of the rhs of
(2.22) yields

exp( i Q—a ar)a p(0)(a ) exp(iQ'a ar)

exp[~a~ (tanhr —1)]=r
coshr

k, n =m

' (k+n)/2
tanhr

2

1
H&(y)H„(y)

(k!n!)'"

Xexp[ —iQ(k —m)r+iQ (n —m)r]
k!n!

(k —m)!(n —m)!

' 1/2

~k —m)(n —m~,

(B1)

where Q= co i A—, /2 a—ndy =a//sinh2r. Taking the trace of this equation, we have

Tr[exp( iQa—ar)a p(0)(a ) exp(iQ'a a7)]= exp(mls)z g z Hl, (y),exp a~ (tanhr —1) m d z 2

coshr dz k —o 2k!
with z =e tanhr. With the aid of the identity'

(B2)

z 2 2X

k=o 2 k! 1+zH„(y) =exp y

we finally obtain

( 1 2)1/2 (B3)

Tr[exp( i Qa aw)a —p(0)(a ) exp(iQ*a ar)]= (tanhr) Iexp[(2z/1+z)y ]/(1 —z )'exp~a~ (tanhr —1) d
coshr dz

(B4)

Substituting Eqs. (Bl) and (84) into the rhs of Eq. (2.22),
we obtain Eq. (3.23). Substituting Eqs. (Bl) and (B4) into
Eq. (2.23), we obtain Eq. (3.25).

the initial state p(0) under a nonreferring process. Using
the formulas for P(J), Jp, P(Sd, ), and S«p in the text,
Eq. (Cl) is rewritten as

APPENDIX C: STATE EVOLUTION
IN NONREFERRING MEASUREMENT PROCESS

In this appendix, we derive Eq. (4.4), which describes
the field-density-operator evolution under a nonreferring
measurement process, using a different method from a
previous work. In a nonreferring measurement process,
whether a one-count process or a no-count process oc-
curred is not referred, although one or the other certainly
occurred within the interval from t to t +dt. Therefore,
p(t +dt) in the nonreferring process is equal to the sta-
tistical summation of p(t +dt)'s that evolved from p(t) by
the one-count process and no-count process as

p(t+dt)=P(J)dt +P(S„,)Jp(t) S„,P(t)
Tr Jp(t) "' Tr Sd,p(t)

p(t +dt) =p(t)+ddt ap(t)a — iso+ —dt a ap(t)
2

+ iso —dt p(t)a—a .
2

(C2)

This leads to a differential equation

dp
dt 2

=A.apa — ice+ —a ap+ i' ——pa a .
2

(C3)

p(t) =exp — ice+ —a at p(t)
2

Next, we solve this differential equation. By analogy
with the usual interaction picture, we write p as

(Cl)

where p(t) is the density operator which has evolved from
Xexp ice——a at

2
(C4)
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Substituting this into Eq. (C3), we obtain difference equation for Ck(t) as

dp
dt

=A, exp( A—.t )apa (CS) dCk(t)ldt = '
A,e 'Ck &(t) for k ~ 1

0 for k=0 (C7)

p(t)= g C„(t)a"p(0)(a )" .
k=0

(C6)

Substituting this into Eq. (C5), we obtain a differential-

Here, the well-known formulas

exp(xa a)a exp( —xa a) =a exp( —x)

and

exp(xa a)a exp( —xa a)=a exp(x)

are used. Equation (C5) means that p is expressed by
apa of an infinitesimal time before. This implies that
the solution can be written as

with the initial condition Ck(0)=5ok. It is straightfor-
ward to show that the solution for this equation is given
by

(C8)

Combining Eqs. (C4), (C5), (C6), and (C8), we obtain Eq.
(4.4).

APPENDIX D: PHOTON NUMBER MOMENTS
IN NONREFERRING PROCESS

The kth moment of the photon number (n(t+r)")
after the nonreferring measurement time ~ is given using
Eq. (4.4) as

(n (t +r)")= g Tr[exp( i Q—a ar)a p(t)(a ) exp(iQ'a ar)(a a)"],1 —exp( —
A.r )

m=0 m!
(D 1)

where Q =co i A/2 —W, ith . the aid of the operator identity (a a)"a =a (n —m)" with n being the eigenvalue of a 'a,
Eq. (Dl) is rewritten as

1 —exp( —
A,r ) J([n(t+r)]")= g exp(mid) g . (j —m)"exp( —

jhow)
m =0

gk oo

g p (t)[1—exp( —Ar)+exp(y)]mm (D2)

This is a general expression for k = 1,2, . . . . The first two moments result in Eqs. (4.5) and (4.6).
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