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Stimulated Raman scattering of colored chaotic light in dispersive media
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A theory is presented for forward- and backward-stimulated Raman scattering of colored chaotic
light in dispersive media. Both amplification of a coherent Stokes seed and spontaneous generation
are treated. It is shown that group-velocity dispersion reduces the gain for the average Stokes inten-

sity, while the intensity fluctuations in the pump enhance it. For a given bandwidth, chaotic light is

scattered more eSciently than coherent light when its average intensity exceeds the critical intensity

for overcoming the decorrelating effects of group-velocity dispersion on the pump and Stokes
waves. The figures presented demonstrate the asymmetry in the intensity of forward and backward
Raman scattering of nonmonochromatic light.

I. INTRODUCTION

The problem of stimulated Raman and Brillouin
scattering (SRS and SBS) of colored (finite-bandwidth)
chaotic light in dispersive media arises in several real-life
experimental situations. First, it arises whenever high-
power broadband lasers are used in applications of Ra-
man and Brillouin scattering, such as generation of
frequency-shifted radiation, ' wave-front correction,
coherent beam combining, and phase conjugation.
These types of lasers (excimer, nitrogen, Nd:YAG} that
operate either multimode or in the amplified
spontaneous-emission mode exhibit amplitude and phase
fluctuations which are described adequately by Gaussian
statistics, the synonym for chaotic behavior. Second, it
arises in the use of the recently developed optical tech-
nique of induced spatial incoherence (ISI) for reducing
Raman backscattering in laser-induced fusion. The light
produced by ISI with a broadband incident laser beam is
chaotic, both spatially and temporally. Third, it arises
internally in the spontaneous (unseeded} generation of
second-order Stokes radiation from a coherent laser
pump. Below saturation the first-order Stokes radiation,
which generates the second-order in a cascade process, is
inherently chaotic because it is amplified spontaneously
scattered radiation; The amplification increases the
correlation time of the noise but leaves its statistics un-
changed. The second Stokes radiation in turn is super-
chaotic, because it too starts spontaneously (generation
via four-wave mixing is weak) and is amplified by the
chaotic first Stokes. There is in fact experimental evi-
dence of the associated super-Gaussian statistics in recent
experimental data on pulse energy distributions of the
second Stokes, although the analysis is complicated be-
cause the statistics change as the first and then the second
Stokes saturate.

On the theoretical side, the problem has been receiving
attention for many years. Akhmanov et al. studied SRS
of a zero-bandwidth (infinite correlation time) chaotic
field and showed that the intensity fluctuations in the
pump enhance the average Stokes intensity greatly over
that in the case of a coherent pump. The enhancement is

due to the large contribution from the tail of the negative
exponential distribution of the random pump intensity.
In a previous paper we presented a mathematical tech-
nique for averaging exactly the integral equation of
motion for the Stokes-field amplitude over the fluctua-
tions of a Markovian chaotic pump of arbitrary band-
width, in the presence of dispersion. We then used a
Markovian expansion for the Stokes-field amplitude to
calculate approximately the average Stokes intensity,
spectrum, and two-time intensity correlation. Numerical
results were reported for the special case of no dispersion.
The Markovian modeling of the Stokes field turns out to
be satisfactory in the case of a correlated Stokes seed for
arbitrary pump bandwidths, and in the case of a coherent
(uncorrelated) seed for pump bandwidths equal or less
than the Raman linewidth of the medium. But in the
case of a coherent seed and pump bandwidths greater
than the Raman linewidth the calculation cannot account
for the growth of a non-Markovian Stokes-field com-
ponent that is quasicorrelated to the pump and grows
with nearly the same gain as in the case of a coherent
pump. Trippenbach et al. ' studied forward SRS of
colored chaotic light in nondispersive media. They were
able to calculate exactly the average Stokes intensity and
the pump-Stokes intensity cross correlation, taking ad-
vantage of the existence of analytical solutions for the
Stokes-field operator in the case of an arbitrary stochastic
pump and no dispersion. Unfortunately, in the theory of
resonant, nonlinear, quantum-optical processes with
propagation effects included, the existence of such analyt-
ical solutions is the exception to the rule. To treat the
effect of incoherent laser fields in such processes in the
absence of analytical solutions, one has to either try to
average the relevant stochastic equations of motion or
resort to Monte Carlo calculations. In this paper, we ap-
ply the mathematical technique introduced in Ref. 6 to
average the coupled integral equations of motion for the
Stokes intensity operator and the triple correlation of the
amplitudes of the pump, Stokes field, and medium excita-
tion. The theory presented here corrects the one
deficiency of the Markovian modeling mentioned above.
Calculations are presented for the first time for the aver-
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age Stokes intensity in SRS of finite-bandwidth chaotic
light in dispersive media. The calculations show that
there is a competition between dispersion which reduces
the Stokes gain by decorrelating the pump and the Stokes
field, and the intensity fluctuations in the pump which
enhance this highly nonlinear optical process. The case
of backward SRS of incoherent light, where the counter-
propagation of the fields introduces a group-velocity
mismatch even in an ideal nondispersive medium, is
treated by our general theory in the same manner as for-
ward SRS in a dispersive medium, but with a different
dispersion parameter.

II. THEORY

%e start from the familiar equations for the Stokes
field operator E s(z, r) and the collective atomic raising
operator Q (z, w) corresponding to the Raman transition
in the medium"

~ s(z&7 } IK2Ep(r+pz)Q (z, r),
az

+—Q (z, r) =iK)E'(r+pz)k s(z, r)

at half maximum (FWHM) of the Raman line, and the
detuning from resonance is assumed to be zero. The cou-
pling parameters Ki and ~2 are defined in Ref. 12 for elec-
tronic Raman scattering, and the relation between them
in the MKSA system of units is K2=NAa)sK', /(2esus),
where N is the number density of the medium and e& its
permittivity at the Stokes frequency cos. I' (z, r) is a col-
lective quantum Langevin force operator that accounts
for the intrinsic noise of the medium which causes spon-
taneous Raman scattering. Ez(r+pz) is the fluctuating
complex amplitude of the chaotic pump which obeys
Gaussian statistics. The pump is assumed to be Markovi-
an and its correlation function is

(E (r, +pz, )E'(r +pz ))

=E,'Oexp[ ,'y—,—Ir) r2—+p(z) Z2—) I ], (3)

where y is the FWHM of the Lorentzian spectrum and
E 0 the root-mean-square amplitude.

From Eqs. (1) and (2) it can be shown that the average
Stokes intensity is given by"

(Is(z, r)) =Iso+ f [(E'(»+pz) )C(z),r})+cc ]dz.).,
0

+P t(z, r), (2)

where r=t —z/Us is a retarded time and p, =(1/Us
kl/U ) measures the group-velocity mismatch of the
pump and Stokes waves for forward ( —} and backward
(+) Raman scattering. Note that for backward scatter-
ing it is the pump and not the Stokes field that is taken to
propagate in the negative z direction. I is the full width

where I&o is the intensity of the incident Stokes radiation
which is assumed to be coherent. The angular brackets
denote average over the classical fluctuations in the pump
and C(z, &)=iK2(—z s(z»)Q(z, r))», where K2=2esUsK2
and ( )» denotes quantum average, is determined by the
stochastic integral equation

2
K2 r(T) —T) T (1/2)I (T] T)

C(z, r)= I E (r+pz) e ' dr)+K)K2Iso e ' E~(r)+pz)dr)
2PL. T0 Tp

T ( 1/2)r(T, —T) Z

+K)K2 e ' [E~(r)+pz)E'(r, +pz) )C(z), r))+E~(r, +pz)E~(r)+pz) )C'(z), r, )]
0 0

+ IE,(r, +pz, ) I'iK2(P s(z»r) )Q(z, r, ) &»

) ()/2)PT2 T))

T0 2 er

XEp'(r2+yz) )t 2(k s(z„r2)Q(z,r))) dr2 dz, dr, , (5)

where pL
= AN is the linear number density of the medium, with A being the cross-sectional area of the cylindrical in-

teraction volume. Equation (5) is exact, except for the neglect of a transient term which vamshes in the stationary case
(r » I ') considered here.

To calculate the correlation (E*(r+pz) }C(z),r) ) we apply techniques that were developed in Refs. 6 and 14 for
averaging stochastic integral equations over Markovian laser field fluctuations. First, we formally average Eq. (5) over
non-Markovian fluctuations in C(z, r). This is equivalent to defining margina1 auerages in the averaging of a system of
linear stochastic ordinary differential equations with Markovian coefficients. ' Then, we proceed to calculate the corre-
lation between the pump amplitude E (r+pz) and the marginal average of C(z, r). To this end, we multiply both sides
of Eq. (5) by the complex conjugate of an eigenfunction of the conditional average integral for a chaotic field '

(E~ ( r+ pz ) }=&N! /( N +m )!(E (r+pz ) /E o )Lg ( I
E (r+pz ) I /E 0 ), (6)
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N =0, 1,2, . . . , m =1, where Lg(x ) are generalized

Laguerre polynomials, and then average over the pump.
The averaging involves multiplication by the joint proba-
bility density

f(E',E",E'",E"*';z,T;z, Tl,z„T,;z1,TI)

(E( +) ))IE,;,
—(1/2)(2N+m)y (w—wi)=e ~'Nm Ep TI+Pz

The recursion relations for generalized Laguerre polyno-
mials

=f(Ep; z, T
~
Ep';z, T, )f( Ep";z, T, ~

Ep";z„T,)
Xf(Ep"',zl, TI ~Ep'",'z»TI)f (Ep'",zl, TZ), (7) all d

xLN1(x) =(N+1}LNo(x ) —(N+1)LNo+1(x )

and integration over the random variables E'
=Ep(T+Pz), Ep', Ep", and Ep"'=E (T2+Pzl ), in the or-
der that they are written. The conditional and marginal
Probabilities densities, f(E',Z, T~Ep';Z, TI) and f(Ep, z, T)

are given in Ref. 14. The average is carried out easily us-

ing the orthonormality of the eigenfunctions and their
conditional averages. For example, the conditional aver-
age of 4z (E (T+pz}) given the value of E at (z, TI} is

LN(x ) =L~(x ) L~—1(x ) (10)

are used to express products of the type E (T
+pz)C))')11(E (T+pz)) in terms of eigenfunctions of the
4&o(E (T+pz) ) kind, and after conditional averaging to
change them back to 4~1(E (T+pz)} kind. Carrying
out the average leads to the infinite system of determinis-
tic integral equations

2
I (rl —z) T (1/2)(I +yp )(SI 7)

( C(z, T) &)v
=

2
I Epo e ' dT, 5vo+ "PIEpoIso e d~, 5N0

2p 70

7 ( 1/2)[l + (2N+ 1 )y ](T] T)+K1K2Ep0 e
To

e ' N+1 C z1,w1 N
— N+1 N C z1,&1 N 1+c c.

0

—e ' ' [&(N+2)(N+1)(C(Z„T,) &~+I (N+1)(C—(Z„T,}&))1+c.c.]

+e ( 1/2)(2N+ 1 )py ( z —z )
p 1

(g(Z, T, ) &

X [(N+1)(C(zl, T1)&N V(N+1—)N (C(zl, TI)&)v
Q(zl Tl)

&(N+2)—(N+1)( C(z„T,) &)v+1+(N+1)( C(z„T,) &)v]

+ e
lli2)r(r r) (Q(z T—l}&

0 (g(.„., ) &

X I —,'(yp —I )e P ' ' [(N+1)(C(Z„TI)&)v &(N+1)N (—C(Z„T)I&)v ]I

+ ,'(yp+I')e —p' ' [&(N+2)(N+1)(C(ZI, TI) &)11~1

—(N+1)(C(zl, T2) &N]IdTI dzldT)

where (C(z, T)&N, N=0, 1,2, . . . , stands for (4~,(Ep(T+pz))C(Z, T)& and Q(z, T)=(Q(Z, T)&~. Note that

Epo(C(z, T) &o=(E'(T+pz}C(z,T) & is the correlation that determines the average Stokes intensity in Eq. (4}. In ob-

taining Eq. (11) from Eq. (5) we have used the approximations

(g(., T, ) &

I(sX2' (zs» )TQI(z, )T&Iq —
( ~ C( ,zl)T,I (12)

ZlyTI)/

and

(g(z, T, ) &

K I(X2( s, zl)QT2( , z)T&qI—( ~ C( ,zl)T,Iz„T2)&
where we assume that Q(z, T, ) grows froln Q(z„T,) and Q(Z„TI}approximately the same way that (Q(z, T1) & grows
from (Q(z„T1)& and (Q(Z„TI)&, respectively. The same approximation was used in Ref. 11, where we investigated
stimulated Raman scattering of a phase-difFusion laser field. The justification given there for this approximation is in-
dependent of the statistics of the field and, hence, is valid also in the present case of a chaotic pump.
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To illustrate the averaging technique we carry out below the average of the last term in Eq. (5), which is the most
complicated. Step by step the averaging proceeds as follows:

r a A.——+ E (y)+)Mz) ) E*(y2+pz) )ia2&c, s(z„y2)Q(z,y) &

2 B7]

&Q(z, y, ) &

&b~) {E~(y+)((z ) )
Q{z) y2)

r a—+ Ez(r~+pz& l Ez (rz+pz&)C(z&, rz))2 T]

&Q(z, y, )&
'

& Q(z), y2) &

r a —()/2)(2&+1)y [( — )+p( —z )]+ e &4)'v){E (y)+pz) )}E (y)+)((z) )E*(y2+pz) )C(z„y2)&
2 (}7)

Q z y) I (} 2
—(1/2)(2N+1)y [(r—~()+p(z —z) )]E oe

& g(z„y,) & 2
+

(}y,

X [ & 4 N(oE (y) +tu)z))Ep (72+pz) )C( z)'p )2& & 4 )v+) ()(E (y) +pz) ))Ep (y2+]Mz) )C(z) ~ 72) & ]
& Q(»y) }&, —()/2)(2)v+ 1)y [(~—~))+) (~ —~) )]

&g(.. ., )&
'"

X [ —,'(y I )e ' —' ' [(N+1)& C(z), y2) &)v v(N+1)—N & C(z), y2) &)v )]

+ —,'( y~
+I )e ' ' '[(/(N+2)(N+1}&C(z„y2)&(v+) (N+1)—&C(z , )y)2& ))vI

. (14)

Note that the only approximation involved is the use of the approximate Eq. (13) in the first step of the calculation. In
the second step, we have used the fact that the order of differentiation ((}/(}y)) and averaging can be interchanged, and
then carried out the conditional average from (z, y) to (z), y)). In the third step we have expressed the product
4)'v){E (y)+)Mz) })E (y)+)uz) ) in terms of 4)'vo(E (y)+tuz) )) and 4N+) 0(E (y)+)Mz) )). Finally, in the last step we
have carried out the conditional average from (z),y)) to (z),y2), and then expressed 4)'vo(E (y2+pz) )) and
4)'v+) 0(E (y2+pz) )) in terms of C)z)(E~(y2+pz) ))-type eigenfunctions.

In the stationary case (y» I' ), the averages & C(z, y) &)v are time independent and the infinite system of integral
Eqs. (11)can be converted into the following infinite system of first-order differential equations

X)v(g) =a)vX)v )(g)+ [b)v —
—,'(2N+1)y /I +G&(g)]X)v(g)+c)vX)v+)(g)+ —G&(g) Y~(g)

Xp

2I

+ +Gg(g) Z)v(g)+ —G(2(g) 5)vo, (15)

Y~(g) = NY)v(g) ——(N+ 1)N 1~X~ )(g)+(N+ ] )d)vX)v(g),

dg I
Z)v(g)= (N+1) Z~—(g) (N+1)d)vX~(—g)+v'(N+2)(N+1)d)vXN+)(g),

(16)

(17)

where g=)((,I z is a dimensionless length, X)v{g) is the sta-
tionary value of the quantity [E 0& C(z, y) &)v+c.c. ], and
Y)v(g) and ZN(g) are auxiliary functions defined by Eqs.
(16) and (17). The three functions are measured in units
of

I fms
+Iso gIp IP I

P

and their initial values are

X()(0)= 1, X)v(0) =0, N & 0

1 —
yp /I

1+2Ny /I

1 —y /I
b~= —,'(N+1) 6—

1+2Xy /I
I+q, yr

Ns1+2(N+ 1)y~/I

and

(20)

1+7./r
c)v = ,'&(N+2)(N+ 1—) —3—

N ~I +2(N + ] )y~ /I

Y)v(0)=Z~(0)=0, N=0, 1,2, . . . .

The parameters a~, b~, cN, and dN are given by

gl, rI r
dN 1+(2N+1)y /r (21)
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The function G&(g)—= (Q(g, r)& 'd(Q(g, ~)&/dg is the
stationary gain coefficient for (Q(g, r) &. Averaging both
sides of Eq. (2) over quantum and pump fiuctuations we
find that in the stationary limit

Before closing this section we should point out that in
the case of y » I the system of Eqs. (15)—(17) and Eq.
(23) can be truncated after N=O. Retaining only terms
of the lowest order in I /y we obtain

2K'
&Q*(, ) &= (E,'( +p )E,(, ) & . (22)

and

G(2(z)= —,'(gI —py ), (28)

&Es(&)&N= ANN-i&Es(&) &N-i+ ANN &Es(g) &N

+ AN, N+1&ES(k) &N+ i

where

(23)

From this follows that the average (Q'(z, ~)& and the
pump-Stokes field cross correlation (E'(r+pz )Es(z, r) &

have the same coefficient. " For a chaotic pump, this
cross correlation can be determined from equations given
in Ref. 6. The stationary values of the averages

(4Ni(E (~+pz))(P s(z, r) & &, N=0, 1,2, . . . , symbol-
ized here by (Es(g) &N, satisfy the infinite tridiagonal sys-
tem of linear differential equations

Xo(z}=(gI —py )Xo(z)
dz

gI
( ,'gIp ——p—yp) f Xo(z)dz1+y /I o

—
( ,'gI —py )—. (29)

G l 2 (gI I y }—Gl 2+( ,'gI I—y )—1+ /I
=0 .

yp

The solutions for Xo(z) and (I,(z) & consist of two ex-
ponential terms whose coefficients are the roots of the
quadratic polynomial

ANN = (2N+ 1—) yp

Ip N+1 N+1
2pl' 1+2Nyp/I 1+2(N+1)yp/I'

(24)

I6i =gI
p

(31)

(30)

For Ip &&I,„=—py lpg the two gain coefficients are given
by

gIp v (N+2)(N+1)
+ +

2p, l' 1+2(N+1)y /I'
p

The common gain coefficient for (Ep'(r+pz)Es(z, ~)&

=Epo(E, (z) &0 and (Q(z, i.) & can be written in the form

Vo(k) Wo(k)p(k)e@"'~

Gg(g) =

y V,(k) W, (k)ei""'~
k=0

(25)

(26)

where p(k), VN(k), and WN(k) are the eigenvalues,
eigenvectors, and reciprocal eigenvectors of the sym-
metric tridiagonal matrix A. N,

„

is the value of N at
which the matrix A and the system of Eqs. (15)—(17) are
truncated in a numerical solution so that G&(g) and

Xo(g) converge with a desired accuracy. The stationary
average Stokes intensity is given by

I Ac@, I gI(I,(g)=I„+ ' +I„
X f Xo(g')dg', (27)

where the quantity I Acus/4A plays the role of an
efFective Stokes input intensity for spontaneously initiated
Rarnan scattering in the plane-wave approximation. The
fraction I /(I +y ) multiplying the intensity of the
coherent Stokes seed represents the fraction of the pump
intensity that couples resonantly with the rnonochromat-
ic Stokes seed in the initial stage of amplification, before
the spectrum of the seed begins to broaden.

62=gIp —
pyp &0,

while for I »I„they are given by

6) =gIp —pyp,
rG2= ,'gIp I.+-

yp

(32)

(33)

(34)

Note that in both cases 6, is much larger than 62 and
determines the Stokes gain. These results are in agree-
ment with those obtained in the case of SRS of a phase-
diffusion pump field. " The agreement reflects the fact
that for y » I Raman scattering is sensitive only to the
first-order correlation of the pump field [Eq. (3)], which is
the same in the two cases. The higher-order correlation
functions play an increasing role as y decreases and be-
comes much less than I . In this case SRS responds to all
the details in the fluctuating pump field, and can distin-
guish between pumps having the same spectrum but
different statistics. For I » I,„,Eq. (33) gives G, =gI .
Therefore the gain for spontaneous Stokes generation or
amplification of a coherent seed in the case of a broad-
band chaotic pump is the same as in the case of a
coherent pump. However, because of the approximation
in Eqs. (12) and (13), our theory is missing a factor of
(mgI z) ' whic. h in the exact theory' ' for SRS of

gI z
coherent light multiplies e ~ and accounts for the lack
of perfect correlation between the pump and the Stokes
field. " This factor, which is missing also from all the
less detailed theories on SRS of incoherent light in disper-
sive and nondispersive media, ' ' affects the accuracy of
our calculations only for I )I,„,when the terms in Eq.
(11) involving the approximate Eqs. (12) and (13) become
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three bandwidths, we are approaching the dispersionless
case. For y =0.1I the average Stokes intensity grows
with approximately the same rate as in Fig. 2, indicating
that it has reached its dispersionless limit. For y =I
the enhancement is somewhat greater than in the previ-
ous figure. Finally, for y =10I the Stokes generation
becomes more eScient than in the case of a coherent
pump when I ~ 70I„.The enhancement is small in this
case and the dispersion has a residual effect. Figure 3 can
be compared with Fig. 1 of Ref. 6 and Fig. 2 of Ref. 9
which show the average Stokes intensity for SRS of a
chaotic pump in nondispersive media. In the first case
there is reasonable agreement, except in the Stokes
arnplification of a coherent seed with y =10t, where the
Markovian modeling of the Stokes field in Ref. 6 ac-
counts only for the uncorrelated Stokes field component.
In the second case the agreement is better. For
y =0.1I, our figure shows that (Is) =10 for gI z=2,
while the figure in Ref. 9 gives gI z =2.13, a difference of
6.5% which is due to the approximation in Eqs. (12) and
(13). For y =101, the enhancement from the statistics
of the pump is less in our case because of the residual
effect of dispersion. Compared to the case of a phase-
diffusion pump (see Fig. 4 of Ref. 11},where under the
same conditions the intensity for Stokes generation is in-
dependent of the pump bandwidth, in this case the Stokes
generation is bandwidth dependent because the gain
enhancement depends on the correlation time of the fluc-
tuations in the pump intensity.

As in the case of a phase-diffusion pump, "our calcula-
tions for SRS of chaotic light demonstrate very clearly
the asymmetry in forward and backward scattering for
nonmonochromatic light. For a medium with a 2%
difference in the group velocities of the pump and Stokes
field we have @+=100~)M ~. Therefore, if Fig. 2 corre-
sponds to forward SRS, then Fig. 1 corresponds to back-
ward SRS for the same medium length. The range of ab-

solute pump intensity in the two figures is the same.
Likewise, if Fig. 3 corresponds to forward SRS, then Fig.
2 corresponds to backward SRS. At this point a com-
ment seems appropriate on the reduction of Raman back-
scatter using ISI which was mentioned in the introduc-
tion. The experimental conditions reported in Ref. 4
(I ))I,„,y « I, and z))L„„)correspond to a situa-
tion where in the plane-wave approximation Raman
backscattering should be enhanced rather than reduced.
The observed reduction has been attributed to phenome-
na in the plasma that occur on a relatively long time
scale, such as density profile fluctuations or beam filamen-
tation. From the laser physics point of view, however,
one thing that seems to happen as the coherence time of
the laser is varied from 2 nsec to 2 psec, becoming equal
to the 2-psec differential delay between the 350 overlap-
ping beamlets, is that the temporal and transverse spatial
fluctuations become unfactorable. It is known from ex-
periments and simplified theories of phase conjugation
that in the case of an unfactorable pump, the backward
Stokes wave cannot become correlated to the pump and
its gain is less than that in the case of a pump whose tem-
poral and spatial fluctuations factorize. ' This possible
explanation of the reduction warrants further investiga-
tion, but to generalize the present theory to the case of an
unfactorable chaotic pump is a nontrivial problem.
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