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A nonequilibrium open-system theory for continuous photodetection processes is developed using
a probability-density functional combined with the path-integral technique. Nonunitary time evolu-
tion of the system-environment density operator due to measurement back action and continuous
measurement is exactly described for three familiar photodetection processes. New exact photo-
counting formulas are obtained for these three processes; in particular, Mollow’s photocounting for-
mula is generalized for a nonequilibrium open system. Distinctive features between a closed system
and an open system are presented; for example, the probability distribution for the number of
counts is shown to contain complete information about photoelectron statistics for a closed system,
whereas it does not for an open system. The obtained formulas are applied to photodetection of a
single-mode photon field that interacts linearly with a pump source consisting of a single harmonic
oscillator and a reservoir consisting of an infinite number of harmonic oscillators. In the former
case, increasing the ratio of the source-field coupling constant to the field-detector coupling con-
stant causes the photon field to cross over from a closed attenuating field to an open stationary field.
In the latter case, a quantum-mechanical fluctuation-dissipation theorem in the continuous photo-
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detection context is discussed.

I. INTRODUCTION

Photoelectric phenomena have revealed several unique
features of quantum mechanics. Einstein' found that
light behaves like particles during photoelectric conver-
sion, while Hanbury Brown and Twiss’ demonstrated
that the wave nature of photons is still preserved in pho-
toelectric correlation. New phenomena such as photon
bunching®* and antibunching®® were found from experi-
ments of this type. Photoelectric correlation experiments
have also served as an experimental means of testing the
fundamentals of quantum mechanics, such as Bell’s in-
equality,” quantum jumps,® !' nonlocal effects,'? and
photon localizability.'*~!> There are a number of
theoretical articles which describe how to extract infor-
mation concerning the original photon statistics from the
observed photoelectron statistics.'®”2®  Recently the
quantum photodetection process has aroused renewed in-
terest from measurement-theoretical points of view. That
is, the photon field experiences state reduction caused by
measurement back action?! and it evolves nonunitarily as
a result of continuous measurement of photon num-
ber.22726 This paper discusses the last two effects in the
context of a nonequilibrium open system.

Two intrinsic quantum-mechanical effects should be
considered in continuous photodetection processes. One
is the uncertainty in photoelectric conversion which is as-
cribed to the essentially statistical nature of light and is
represented by the density operator of the photon field.
If we have only to consider this effect, we can adopt a
conventional picture of photodetection processes, i.e., un-
itary evolution of the total density operator, followed by
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von Neumann’s projection postulate?’ or projection using
an operation-valued measure. This picture correctly in-
corporates the effect of state reduction caused by mea-
surement back action, and is used in a number of arti-
cles.?1'28731 The other effect arises from the fact that a
photodetector performs continuous measurement; we
can, in principle, read out the information concerning re-
gistration of a photocount in real time throughout a mea-
surement period. The readout information at each time
indicates that the photon field has experienced either
discontinuous or continuous collapse, according to wheth-
er or not the detector registers a photocount.?>3? The
photon field thus develops nonunitarily in two different
ways depending on the real-time readout information
concerning the registration of a photocount. The crucial
observation here is that the time-developed new density
operator at an infinitesimally later time determines the
photocount probability density at that time, but that,
whether or not photoelectric conversion actually occurs
is again uncertain owing to the essentially quantum-
statistical nature of light. This situation is schematically
illustrated in Fig. 1 for a nonequilibrium open system.
The conventional picture imposes quantum-mechanical
state reduction only at the end of the measurement pro-
cess, while continuous measurement imposes state reduc-
tion throughout the measurement period. Therefore, to
give complete quantum-statistical information about pho-
toelectron statistics, we must have some functional which
reflects a continuously infinite number of collapses of the
photon field.

With this in mind, we applied a new concept, which we
define as the probability-density-functional,** to develop a
new framework for continuous photodetection process-
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FIG. 1. Schematic illustration of nonunitary state evolution of the photon field in an open-system-theory context. The photodetec-
tion probability at a time is determined by the density operator of the photon field at the same time (measurement action), while an
actual readout (i.e., information concerning the no-count or one-count event) produces the density operator of the photon field at an
infinitesimally later time via nonunitary state reduction (measurement back action). Throughout the measurement period the photon
field is regularly pumped or randomly disturbed by its environment (a pump source or a reservoir).

es®® in which the probability-density functional combined

with the path-integral technique replaces the convention-
al picture of unitary evolution of the total density opera-
tor followed by von Neumann’s projection postulate.?’ It
is demonstrated that the probability-density functional
combined with the path-integral technique serves as a
fundamental mathematical tool for the description of
continuous photodetection processes; the probability-
density functional incorporates the effects of a continu-
ously infinite number of collapses of the photon field due
to continuous measurements and gives complete informa-
tion concerning photoelectron statistics.?> In Ref. 25,
however, the author treated a closed system in which the
photon field only interacts with the photodetector. The
present paper generalizes the framework to a nonequili-
brium open system where, while being measured by a
detector, the photon field interacts linearly with its envi-
ronment, which may be a pump source or a reservoir.
New exact formulas are obtained for both photocounting
distributions and photon density operators immediately
after the three familiar measurement processes. In par-
ticular, Mollow’s photocounting formula is generalized
for a nonequilibrium open system. The obtained formu-
las are applied to two typical nonequilibrium open-system
problems: For a single-mode photon field being pumped
by a single-harmonic-oscillator source, it is shown that
increasing the ratio of the field-source coupling constant
to the field-detector coupling constant causes the photon
field to cross over from a closed attenuating field to an
open stationary field. For a photon field interacting with
a reservoir consisting of an infinite number of harmonic
oscillators, a quantum-mechanical fluctuation-dissipation
theorem is discussed in a continuous photodetection con-
text.

This paper is organized as follows. Section II briefly
reviews a probability-density-functional description of a
random-point process, since it will serve as a fundamental
mathematical tool for the theory of continuous measure-
ment. This section derives a new expression for the

probability-density functional which establishes that the
probability-density functional gives the probability densi-
ty for the real-time change or the “path” of photoelectric
probability. Using the obtained expression, the relation-
ship of our description to a standard theory of a
random-point process is delineated. Section III develops
a general formalism for a nonequilibrium open-system
theory of continuous photodetection processes. A model
is employed in which the photon field interacts linearly
with an environment of harmonic oscillators. New exact
formulas are obtained for both photocounting distribu-
tions and corresponding nonunitary time evolution of the
system-environment density operator. The following two
sections are devoted to applications of the obtained for-
mulas to two typical nonequilibrium open-system prob-
lems. Section IV applies the obtained formulas to a case
in which the photon field is pumped by a single-
harmonic-oscillator source. It is shown that, when the
field-detector coupling constant A is much larger than the
source-field coupling constant g (A>>g), the detector
sees a photon-field correlation, while in the opposite limit
(g >>A) the detector sees a source correlation. This ob-
servation is crucial when we prepare various kinds of
quantum states such as a single-photon number state.
Section V applies the obtained formulas to a case in
which the photon field interacts with a reservoir consist-
ing of an infinite number of harmonic oscillators. Final-
ly, the obtained results are discussed and summarized in
Sec. VL.

II. PROBABILITY-DENSITY FUNCTIONAL
AND ITS FUNDAMENTAL PROPERTIES

This section defines the probability-density functional
and discusses its fundamental properties because it serves
as a fundamental mathematical tool for the description of
continuous photodetection processes. A new expression
for the probability-density functional is obtained. This
expression clarifies the significance of the probability-
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density functional as the probability-density “path’” and
its relationship to a standard theory of a random-point
process.

A. Definition of the probability-density functional

Suppose that observation begins at time ¢, and ends at
time ¢,. Let this time interval be divided into / subinter-
vals [t,=t,,t,), [ty,t3),..., [t 1=1t,], and let
A.x=max{At;,At,, ..., At;} be made so small that the
probability of more than one count being registered in
any subinterval is negligible, where Af;=t;,,—¢;
(j=1,2,...,1). The probability-density function p (¢) is
defined to give the probability p(¢;)At; of a count being
registered in [¢;,¢;+At;). If p(¢) is a unique function of
time, our information about photoelectron statistics is
complete if all p(¢,),p(t,),...,p(¢t;) are known to us.
However, in the precess of photoelectric conversion, p (¢)
itself is a random function; we can get only the probabili-
ty distribution for values which p(t) takes on at each
time. Therefore the best information we can get is the /-
fold joint probability distribution

i

j=1
which means that the probability of a count being regis-
tered in [tj,t]+Atj) (j=1,2,...,1) takes on values be-
tween p (£;)At; and [p(¢;)+dp(t;)]At;. We observe that
this joint probability distribution gives the probability
distribution for the probability-density function p(¢).
This function represents the uncertainty of photoelectric
conversion which reflects the essentially quantum-
statistical nature of light, while the probability distribu-
tion for p () represents fluctuations of the density opera-
tor of the photon field due to measurement back action
and interaction with the environment. Here we assume
unit quantum efficiency for simplicity. When A
infinitesimal, complete information is given by

max 18

I
Plp(t)p(ty),...,p)]TT dp(t;)

Jj=1

with [ — «.>* We denote complete information as

Plp(c)]dp(c)= Jim Plp(t)),p(ty), ..., p(1)]

i
X I1 dp(t,), (1)

j=1

where p (c) denotes the whole curve of p (¢) for t €[t,,1,).
Figure 2 illustrates two examples of the probability-
density path for initially sub-Poissonian and super-
Poissonian states, where ¢ (j =1,2,3) denote the times at
which single photons were registered. Note that for an
initially super-Poissonian state the probability-density
function increases by our extracting one photon from the
photon field.?® This Hanbury Brown-Twiss—-like effect is
a consequence of nonunitary state reduction described in
Sec. III. We call P[p(c)] the probability-density func-
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FIG. 2. Distinction between p(c) and p(t): p(c) denotes the
whole curve or the “path” of the probability-density function
p(t) for t €[1,,t,). A probability-density path typical of an ini-
tially sub-Poissonian state (a) and of an initially super-
Poissonian state (b).

tional. The probability-density functional gives the prob-
ability density for the “path”; that is, P[p (c)]8p(c) gives
the probability that the path p(c) lies in the hatched re-
gion in Fig. 3. Thus, we find that the probability-density
functional gives complete information concerning photo-
electron statistics. Once we find the probability-density
functional, the ensemble average of an arbitrary time-

”measure” ép(c) for the

probability-density functional

ta ty 12 t3 tb

FIG. 3. Probability-density functional as the probability den-
sity for the “path” p(c): P[p(c)]8p(c) gives the probability that
a path p (c) lies in the hatched region or “measure” 8p (c).



3878

distributed quantity can be obtained by our carrying out
the path integration of the quantity multiplied by the
probability-density functional.®* For this purpose it is
necessary and sufficient to give the expressions of the
probability-density functional ?P[p(c)] and its measure
8p (c) separately. They are given by>3

1
Plp(c)]= [lim Plp(t),p(ty), ..., p )] IT (A1)~ 12,

(2)

and

1
8p(c)=lim T dp(1;)(A1,)'"2. 3)

j=1

© rm t t 14
GMue)l= 3 _’r;Tflbdzlf[bdtz... f{bdtm)\(tl,tz,...
m=0 Pooe a a

The PDM is obtained by functional differentiation of
GVNu(e)l:

At ooyt st tp)

(6)

=0

1 SMG(”
im u(t))du(ty). . .Bult,)

An expression of G'"'[u(c)] in terms of the probability-
density functional is obtained if we substitute
AMty,ty, ..oy tyit,sty) from Eq. (4) into the right-hand
side (rhs) of Eq. (5):

G'VNu (c)]=ﬂexp

i
i [ dtp(tule) |Plp(e)lop(e) .
(7
From this equation we find that the probability-density

functional is the generalized inverse Fourier transform of
the generating function of the PDM. That is,
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B. Relations of the probability-density functional
to three familiar joint probability distributions

The probability distribution of multicoincidence
(PDM), A(2,t5,...,2,:t,,t,), gives the probability den-
sity per (unit time)™, where one count is registered at m
distinct times ?,,¢,,...,t, with no further conditions
imposed. Here ¢, and ¢, denote the start and end of the
observation time, respectively. The PDM can be ex-
pressed in terms of the probability-density functional as

At ty, oo tyitaty)

stmotas

=[[pt)p(ty). . .p(t, ) Plp(c)Idplc), (4)

where the symbol ﬂ denotes the path integration.3>3¢
The generating functional of the PDM, G'"[u(c)], is
defined as

slastastpu(tulty). o oult,) . (5)

Plp(0)]=[Jexp
X G Vu(c)}dlulc)/2m) . (8)

t
—ifrabdtp(t)u(t)

Thus we find that complete statistical properties of pho-
toelectrons can be obtained from the set of all PDM’s.

The probability distribution of forward recurrence
times (PDF) or that of waiting times, P~
(ty,85, - -y 1,3tg,1,), gives the probability density per
(unit time)™, where one count is registered at m distinct
times ¢,,¢,,...,¢, and no counts are registered in be-
tween. This can be expressed in terms of the probability-
density functional as

Plervard) (s e it ty)

t
Z_U.p(tl)p(t2)‘ —f[bdlp(l)]

XP[p(c)]dp(c) . 9)

.p(t,, )exp

The generating functional of the PDF, G'*[u(c)], is
defined as

o -m t t t
GYu)]= 3 lrﬁftbdtlftbdtz‘-- L d, Pttty (2D (1), () (10)
m=0 . a a a

The PDF is obtained by functional differentiation of G*'[u (¢)]:

SmGQ)[u (C)]

1
Poma (g by it ty) =

i™ du(t))dulty). . .dult,)

(1n

u=0
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An expression of G'’[u(c)] in terms of the probability-density functional is obtained if we substitute
Piforvard (s to .. tmitasty) from Eq. (9) into the rhs of Eq. (10):

t
G2 ()= [Jexp {iftabdtp(t)[u(t)+i] ]P[pm]ap(c) . (12)
This equation can be inverted to give
?[p(c)]=ﬂ-exp

Thus we find that complete statistical properties of photoelectrons can be obtained from the set comprising all the
PDF’s. Moreover, we find that the set comprising all the PDM’s has the same (complete) amount of information about

t
=i ["dtp (0w (0+1] | 6w (e)]8Cu (e)/27) 13

photoelectron statistics as all the PDF’s. In fact, from Egs. (7) and (12), the following equation holds:

GVNu(c)]1=GP[ulc)—i] .

(14)

The probability distribution for the number of counts (PDN), P(m;t,,t,), gives the probability of m counts being
registered between ¢, and ¢,. This can be expressed in terms of the probability-density functional as

t t
P(m;ta,tb)=ﬂ[(fr *dt p(1))" /m]exp [—ftbdtp(t)]?[p(c)]ﬁp(c). (15)

The generating functional of the PDF, G'*'[u (¢)], is defined as

© rm t ! t
Gu)]l= 3 #f,bdtlf[bd’z o f{bdth
m:o . a a a

m;t,,

ttt

m

m

wlt)u(ty). . ult,) . (16)

The PDN is obtained by functional differentiation of G*'[u (¢)]:

mey(3)
P(m;ta,t):—l—é——G——M
i du()”

u=0

(17)

An expression of G'[u(c)] in terms of the probability-density functional is obtained if we substitute

P(m;t,,(t,+1,+ -

+1t,,)/m) from Eq. (15) into the rhs of Eq. (16):

© rm t t t
GMu)l=3 #ft”d,lflbdtz...f'bdtmu(tl)u(tz)...u(tm)
m=o . a a a

<0 [/,
Xexp{—f}

In contrast to the PDM and the PDF, this equation can-
not be inverted because the rhs includes essentially
only two independent time parameters ¢, and
(t,+t,+ -+ +t,)/m, ie., information concerning
internal times of photocount registration is averaged out.
Therefore only the first two distributions of the PDM and
PDF can be obtained from the PDN.?’ The interrela-
tions between the three joint probability distributions,
their generating functionals, and the probability-density
functional are summarized schematically in Fig. 4. The
solid arrows show the existence of general expressions
and the dashed arrows show where only special expres-
sions exist.3’

C. An expression of the probability-density functional:
relationship to the standard theory
of a random-point process

This section finishes by deriving a new explicit -
functional-type expression of the probability-density

St P i o M V4

" dtp(t)} /m!]
(ty+ey+ - +1 )

m /m
dtp(t) ]?[p(c)]Sp(c) . (18)

a

f

functional because this expression clarifies the meaning of
the probability-density functional. Let us start by noting
the relation
AMe,ty, o tyste, 1) =C(p(t)p(ty). . .p(L,)) (19)

where the angle brackets denote the process of ensemble
averaging. Substituting Eq. (19) into the rhs of Eq. (5)
yields

G(”[u(c)]=<exp

i atpwun ). 0)

An explicit expression of the probability-density func-
tional is obtained if we substitute G'"[u(c)] from Eq.
(20) into the rhs of Eq. (8):

Plp(c)]=(8[p(c)—p'(c)p’, 21

where §[p (c)] is the generalized & function or the § func-
tional defined by
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FIG. 4. Various levels of “information triangle” concerning a
random-point process and interrelations between three familiar
joint probability distributions (PDM, PDF, and PDN), their
generating functionals (G'"[u(¢)],G*[u(c)],G"*[u(c)]), and
the probability-density functional. The solid arrows indicate
the existence of a general relationship where the figures indicate
the equation numbers in the text. The remaining interrelations
are shown in Ref. 33.

ulc)

827'r

) (22)

6[p(c)]=ﬂexp [iiftlbdtp(t)u(t)

and the subscript p’ denotes that ensemble averaging is
carried out with respect to p’(c). Equation (21) clearly
shows that the probability-density functional gives the
probability density for the “path” p (c).

The expression (21) is reminiscent of the standard
description of a random-point process.*® *° According
to the standard theory, the joint probability density of a
random function £(¢) is given by

O, (&8t s ty)
=(8(&—E&(1)) - 8§, —E&1,))),  (23)
where &,,...,&,, are a set of realizations of random

function &(¢) at times ¢, .. .,t,,, and the angle brackets
denote the process of ensemble averaging with respect to
§(t;) (j=1,2,...,m). Equation (21) shows that the
probability-density functional is a generalization of Eq.
(23) to a continuously infinite-time-point expression. The
joint probability density ©,, (&, ..., &5, ..., ) satis-
fies the normalization condition

Jdg - [dé 0,6 . &ty . t,)=1. (24)

The corresponding expression for the probability-density
functional reads as

[TPlp(c)dp(e)=1. (25)

The ensemble average of a function of f(&,...,§,) can
be obtained by multiple integration of this function multi-
plied by the joint probability density. That is,
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<f(§l7"-,§m))
= [ag, - [d&,fl&. . &)
Xy (Epy ooy Emills e orty) . (26)

For continuous measurement, a measurable quantity like
the number of photocounts in a time interval is a function
of the probability-density “path” p (c). In general, such a
time-distributed quantity can be denoted as f[p(c)].
Therefore the ensemble average and generating (or
characteristic) functional of a quantity distributed in time
can be defined in the most natural way using the
probability-density functional. The process of ensemble
averaging of a probability function, f[p(c)], is equivalent
to that of path integration of this quantity multiplied by
the probability-density functional. Thus we obtain a
basic formula

(Fle@D =[] flp()]Plp(c)18p(c) . 27)

This formula reduces to Eq. (26) when the relevant quan-
tity is distributed only at discrete times. Equations such
as Eqgs. (4) and (7) are special applications of this general
formula.

III. GENERAL FORMALISM FOR A NONEQUILIBRIUM
OPEN-SYSTEM THEORY OF
CONTINUOUS PHOTODETECTION PROCESSES

This section develops a general formalism for a none-
quilibrium open-system theory of continuous photodetec-
tion processes, and derives new exact formulas for both
photocounting probability distributions and photon field
(system)—environment density operators immediately
after three different measurement processes.

A. An exact mathematical model of the continuous
photodetection process for a nonequilibrium open system

Our model consists of a photon field (system, Hamil-
tonian Hp), its environment (Hamiltonian Hg), and a
photodetector (see Fig. 5). The interaction between the
photon field and its environment is represented by H;.
The environment may be a pump source or a reservoir.
The interaction between the photon field and the photo-

measurement action
system

J S photodetector
(photon field) T
measurement back action
nonunitary
interaction

unitary
Hi interaction

environment

(pump source or reservoir)

FIG. 5. Schematic diagram of the open-system photodetec-
tion model: The system (photon field) is interacting with its en-
vironment (pump source or reservoir) via a unitary evolution
while continuous measurement of photon number is being per-
formed by a photodetector.
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detector is characterized by two operators J and S,
which describe the one-count and no-count processes, re-
spectively. These two operators describe a continuous
photodetection process and give both the result of mea-
surement (photoelectron statistics) and the system-
environment density operator immediately after the mea-
surement process.

Let p(t) be the system-environment density operator at
time ¢. Then the operator J gives the probability

Tr[Jp(t))dt (28)

of one count being registered in [¢,¢ +dt), and gives the
density operator immediately after the measurement pro-
cess as

(t+ —_Jplt) (29)
Tr[Jp(1)] ’

where the symbol ¢+ denotes a time infinitesimally later
than ¢. Since such a one-count process annihilates one
photon in the photon field, it is natural to assume that

Jp(t)=nap(t)a’, (30)

where a and a' are the annihilation and creation opera-

tors of the photon field, and A denotes the reciprocal ex-

pectation value of waiting times?? and is therefore real.
The operator S, gives the probability

Tr[S,p(1)] (31)

of no counts being registered in [¢,¢ +7), and gives the
density operator immediately after the measurement pro-
cess as
S,p(t)
(t+7)= o . (32)
P T[S p(1)]
The action of the operator S, is determined as follows.
First, it is postulated that

S p(t)=e"o(t)e'" . (33)

Since we are considering a regular-point process*' in
which the no-count and one-count processes form an ex-
clusive exhaustive set of events occurring in any
infinitesimal time interval, it follows from Egs. (30) and
(33) that

Tr[Jp(1)+ Yp(1)+p()Y]=0 . (34)

When the detector is switched off (A=0), the photon field
must evolve in time according to the Hamiltonian
Hp+Hp+H,; of the photon field and its environment.

Therefore, Eq. (34) is satisfied if the operator Y assumes
the form

Y=—;;—(HE+HF+H,)—%a*a . (35)

The operator N_(m) gives the probability
Tr[N.(m)p(0)] (36)

of m counts being registered in an interval [0,7), and
gives the density operator immediately after the measure-
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ment process as
N_(m)p(0)
OPN(p )= — L — 37
A Tr[N.(m)p(0)] G7

Since such an m-count process annihilates m photons in
the photon field but does not register the times at which
they are annihilated, we have

T tm
NT(m)=f0dtm fo dt, _ -
L)
Xfo dt,S,_, JS, _, ' JS,
(38)

The operator T, is defined to describe a time evolution
of the system-environment density operator when the
detector is performing a continuous measurement in
[#,¢ +7) without any reference to its results. Since such a
nonreferring measurement process does not register even
the number of photocounts, we have

T.,= S N.m). (39)

m=0
From this equation we have
Tr[T p()]=1. (40)

The density operator immediately after the measurement
is therefore

p(t +7)=T p(t) . (41)

It should be noted that the two operators J and S, play
both roles of measurement action and back action. Mea-
surement action produces photoelectron statistics, as in
Egs. (28) and (31), while the measurement back action
produces a new state via nonunitary state reduction, as in
Egs. (29) and (32). This is a quantum-mechanical version
of Newton’s third law of motion, although the outlook
differs greatly from the classical law.
We assume that the photon field has a single mode

Hp=tw,a'a , (42)
and its environment consists of harmonic oscillators

Hp=3 fiw;clc; , (43)
J

where # is the Planck constant divided by 27 and zero-
point energies are dropped since they have no bearing on
the following discussion. We assume that the photon
field and the environment interact linearly with each oth-
er as

H,=3 #igj(c/a+a'c)), (44)
J

and that the commutation relations of these operators
obey

[a,a']=1,

[e;c/1=8 (45)

ij

and
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[a,c;1=[a,c]1=0, (46)

where §;; is Kronecker’s delta. Then the operator Y is
given by

Y=—aa'a— Eﬂjcfcj- > yj(c;a +aJ"cj) , 47
J i
where

-|~A B,=iwj,

at o and y;=ig; .

B. Nonunitary time evolution of the system-environment
density operator by continuous measurement
of photon number

Let us investigate nonunitary time evolution of the
system-environment density operator for three different
quantum photodetection processes. We shall see that
nonunitary time evolution depends strongly on the way
we read out or discard information concerning registra-
tion of a photocount.

The time evolution of the operator A (¢) is determined from

d _

EA([)Ze Yilg,Y]eV'=—ad(1)— zyjcj(z) ,
J

where Eq. (47) was used, and

—,— 1 Yt
Cj(t):e (T

Since 4 (0)=a and CI(O)=
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1. Quantum photodetection process
of forward recurrence times

Let us consider a continuous photodetection process in
which we read out information concerning registration of
a photocount at every measurement time. We refer to
such a process as a quantum photodetection process of
forward recurrence time (QPF). Associated with such a
process is the probability distribution of forward re-
currence times (PDF) which gives the probability per
(unit time)™ of m photocounts being registered at m dis-
tinct times ¢ (j=1,2,...,m) in [0,7) with no further
photocounts registered in between. The PDF is ex-
pressed in terms of J and S, as??

Pr{rforward)( t

Ll oo sty 0,7)

=Te[S,_, JS, _, =S, IS, p0]. (49

Substituting Egs. (30) and (33) into the rhs of Eq. (49)
yields

") leto) j[ii](ey’a"e-y*’f) v 50
T4l ler™, b

J=1
(52)
(53)
(54)

c;, we find that operator 4 () contains only annihilation operators. This observation great-

ly facilitates calculation, as we shall see below. From Eq. (51) we have

P g ey 1,30,7)=A"Tr |p(0) | TT 4 7(2;) eV el I1 A(tj-)H : (55)
1=1 j=1
The system-environment density operator immediately after the QPF, p?F¥(¢,,t,, .. .,t,,;0,7), is given by®
pOPF(t 1, o 1,30,7)= Doty Syt St 5RO (56)
" Te[S._ IS, —, =S, JS, p(0)]

Substituting Egs. (51) and (55) into the rhs of (56) yields
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m m 1' +
e¥r IT A@) |p0) | IT 4 (¢;) eV "
i=1 j=1
pEE(ty,ty, o 1,,30,7)= - d (57)
+ m
Tr |p(0) | TT A%(1;) [e¥ ¥ | [T A1)
i=1 j=1
To obtain an expression of the generating functional of the PDF, let us rewrite Eq. (55) as
+ m + m
Pl o 1,30,7)=A"Tr [p(0)e¥ | [T A'(;—=7) | [ [T 4(;—7) [e" |, (58)
i=1 j=1

where Eq. (52) is used. Note that A4 (¢) contains only annihilation operators and 4 *(¢) contains only creation operators.
This observation facilitates the operator calculation because then the relevant operators in Eq. (58) are normally or-

dered. The generating functional of the PDF is obtained if we substitute Eq. (58) into Eq. (10):

(2) - i;\m T i PR i
GPu(eN= 3 Jja [ ey - [ dr, Te

=Tr 1

!
m=0m'

=Tr [p(O)e Y*T:exp

e T 14N, —1) A (t,— ) (1) e ™
P

pl0)e? . 3 [mfo’dz ATt —m A —nu(n)

ir [ Tdt 4’ =) Al =7u ) ]:e Yr

i=1

m
:eYT

(59)

Equations (55) and (59) give the PDF and its generating functional for a nonequilibrium open photon field. Equation
(57) gives the photon field-environment density operator immediately after the QPF. To check our results, let us con-
sider a closed system of the photon field for which Y and 4 (¢) are given by

Y=—(i/fAHy—(A/2)a'a=—[io+(1/2)]a"a (60)
and
A (t):e[im(x/z)]a*azae ~[rw+<x/2>]a*az=ae —lio+ (/2] 61)
Then Eq. (55) reduces to
m +
plforsardy ot 0,7)=A"exp | —A 3 t, | Tr[p(0)a e 2@ 97 (62)
i=1
which is identical to the result obtained by Mollow.?! Equation (57) reduces to
—lio+(A/2)atar, m tm lio—(A/2)]a ar
pﬁPF(tl,tz,...,tm;O,T)=e a”p(Qla e , (63)

which is identical to the result obtained by Ueda.?® Note
that in Eq. (62) information concerning registration times
contributes to the PDF only through a simple exponen-
tial factor exp(—AX 7 ,z;). This is because for a closed
system the photon field is coupled only to a photodetec-
tor. For an open system, the photon field is pumped or
disturbed by its environment throughout a measurement
period, so the PDF depends on the registration times in a
more complicated way as in Eq. (55) through Eq. (53).
Note also that the rhs of Eq. (63) no longer depends even
on registration times. This is because for a closed system,
the measurement action (which produces photoelectron
statistics) and its back action (which causes nonunitary
state reduction) are uniquely related so that their time
dependencies are canceled out in forming the ratio of the
rhs of Eq. (56). However, for an open system they are not
related uniquely because of the effect of the environment,
as shown in Eq. (57). An explicit expression for A4 (¢) will
be given in Secs. IV and V for two typical open-system

Tr[p(0)a e ~2a"a7gm]

f

problems.

2. Quantum photodetection process for the number of counts

Let us consider a continuous photodetection process in
which we read out only the number of counts in [0,7)
and discard information concerning the times at which
they are registered. We refer to such a process as a quan-
tum photodetection process for the number of counts
(QPN). Associated with such a process is the probability
distribution for the number of counts (PDN). The PDN
is expressed in terms of N_(m) as

P(m;0,7)=Tr[N.(m)p(0)] . (64)

It is difficult to calculate the rhs of this equation directly
from Egs. (38) and (51). Instead, we apply the
probability-density-functional method developed in Sec.
II. The probability-density functional is obtained if we
substitute Eq. (59) into the rhs of Eq. (13):
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Plplc)]= Tr[ O)eY"exp

J b z)d:]&(p(c)—u (c—m)Alc—r))e?"
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(65)

The PDN is therefore obtained by substituting Eq. (65) into Eq. (15) to give

P(m;0,7)=Tr [p(0)e”" (A [t 4't—r1 4 (1 =7)

"'/m!:e”] . (66)

The system-environment density operator immediately after the QPN is obtained from Egs. (37), (38), (51), and (66) as

fofdtmfot'"dtmﬂ-- f dte’” l
i=1

po N (0,7)=

) {p(0) HA

i=1

(67)

Tr [p(O)e

¥’ |f’dz ATt —m) At —7)

m
/m!:eYT]

Equation (66) gives the exact formula of the PDN. It is a generalization of Mollow’s photocountmg formula to a none-
quilibrium open photon field. For a closed photon field, Eq. (66) reduces to Mollow’s formula?!

_, —ATym A
P(m;0,7)=Tr |p(0): [a'a 1m:? ) exp[—a‘a(1—e )] |, (68)
and Eq. (67) reduces to
—[io+(A/2) ]a ar,m tm [iw—(}»/Z)]a*ar
pQPN(7)= 47pla e : 69)

m ’ka ar m]

Tr[p(0)a

which is identical to the result obtained by Ueda.? It is
noted that p&N(7) in Eq. (69) is identical to pF in Eq.
(63). That is, for a closed system, only the number of
photocounts which are registered in a measurement
peribd contributes to the post-measurement state. In
contrast, for an open system, registration times are also
relevant for the gost -measurement state, as in Eq. (57),
and therefore p2¥N(7) is not, in general, identical to pQFF.

3. Quantum photodetection process of multicoincidence

Let us consider a continuous photodetection process in
which we read out the information concerning registra-
tion of a photocount at m distinct times in a measure-
ment period and discard all other information. We refer

f

to such a process as a quantum photodetection process of
multicoincidence (QPM). Associated with such a process
is the probability distribution of multicoincidence (PDM)
which gives the probability per (unit time)” of m counts
being registered at m distinct times L (Gj=12,...,m)
with no further condition imposed. The PDM is ex-
pressed in terms of T, and J as®?

A([l,tz, « oo ,tm;O,T)

=Tr[TT_,mJT,m,,m : T,Z_,IJT,]p(O)] . (70
It is difficult to calculate the rhs of Eq. (70) directly. In-
stead, we apply the probability-density-functional
method. The PDM is readily obtained if we substitute

Eq. (65) into Eq. (4):

_
Alty,ty, .0, t,30,7)
=Tt [p(0)e "% IT 4 (e, —rexp Afde 4T = A —n) | I] A=, (71)
=1 j=1
=A"Tr [p(0) | [T 4t [e¥ exp [xfo’dz AT(t——T)A(t—T)]:eY 0 A(tj)H . (72)
i=1 j=1

The system-environment density operator immediately
after the QPM is given by

oMy, 5. .., 1,,50,7)
TT’“ImJTIm—tm4] T th—t]JTt,P(O) (73)
Tr[TT_,mJT,mA,’Vl th'tl‘]Thp(O)] ’
where the denominator is given by Eq. (71); the numera-

f

tor cannot, however, be simplified unless we specify more
about the form of the interaction, although it can be
simplified somewhat for a closed system.?’

Equation (71) gives the PDM for open systems. For a
closed system of the photon field, it reduces to

A3y

i=1

Alty,ty, .00y 8,30, T)=ATexp Tr[p(O)a*'”a"'] .

(74)
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Some comments concerning an inversion problem are
appropriate here. The problem of recovering the original
photon statistics from the observed photoelectron statis-
tics has been one of the central issues in quantum optics.
In semiclassical theory, the distribution P(W) of in-
tegrated intensities W can be determined from the photo-
count distribution.!® In full quantum theory, the prob-
lem is restated as the recovery of the diagonal matrix ele-
ments of the original density operator from the
knowledge of the observed photoelectron statistics. For a
closed system, this is possible. Rewriting the rhs of Eq.
(68) in terms of the diagonal matrix elements of the densi-
ty operator gives

P(m;0,r)= 3 r’; (1—e Ayme~Ayn=mp . (75)
where

n|_ n!

m min—m) ~

This equation can be inverted to give

m

< ) n
Pon= > P(n;0,7) lml

n=m

(76)

However, for an open system, the corresponding equation
(66) cannot, in general, be inverted. The physical reason
for the difference can be explained as follows. For a
closed system, the photon field evolves exclusively owing
to the measurement back action of the photodetector.
Since the measurement back action is uniquely related to
the measurement action which produces the observed
photoelectron statistics, the diagonal matrix elements of
an initial density operator are completely reproducible
from the observed photoelectron statistics. In contrast,
for an open system, they are not uniquely related because
the fluctuations from the environment side are unpredict-
ably added to the photon field.

It is well known that the PDN cannot, in general, con-
tain complete information about photoelectron statis-
tics.* Nevertheless, Eq. (76) demonstrates that the diag-
onal matrix elements of the initial density operator of the
photon field can be completely recovered from the PDN.
Thus, we find for a closed system that the sets of the
PDN, PDM, and PDF each contain complete informa-
tion about photoelectron statistics. If we find the PDN,
we can obtain the PDM and PDF. This is a unique
feature of a closed system. It will be useful to write down
the expressions of the PDM and PDF in terms of the
PDN. Expressing the rhs of Eq. (74) in terms of the diag-
onal matrix elements of the initial density operator of the
photon field, we obtain

At ty, .oy t,,50,7)

|2 I
}\'ztl llg’"p” (l_m)| 4

i=1

=A"exp

(77
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where p;, =(I|p(0)|]). Substituting Eq. (76) into the rhs
of Eq. (77), we obtain

Aty ty, ... t,50,7)
= exp |—A D ¢,
l“€7kf P izl ]
had n!
X ngmp(n,O,T)Fm—)! . (78)

Similarly, we obtain an expression of the PDF in terms of
the PDN:

porvardi(y o, 130,7)
A" z
=m! — exp |—A 3 t; |[P(m;0,7)
l—e " =1
(79)

IV. APPLICATION TO A PHOTON FIELD
BEING PUMPED BY A
SINGLE-HARMONIC-OSCILLATOR SOURCE

Sections IV and V are devoted to applications of our
method to two typical nonequilibrium open-system prob-
lems. In the present paper, however, the scope of
research is limited to the bare essentials of the problems.
In this section we consider a pump source and demon-
strate that increasing the ratio of the source-field cou-
pling constant to the field-detector coupling constant
causes the photon field to cross over from a closed at-
tenuating field to an open stationary field.

Let us consider a case in which the photon field in-
teracts linearly with a single-harmonic-oscillator environ-
ment, which may be considered as a pump source.*? The
Hamiltonians of the photon field Hp, source Hg, and
their interaction H; are

Hp=tw,a'a , (80)

Hg=#o.'c, (81)
and

H,=#%g(acT+ca®) . (82)

Then the operator Y is given by

Y=—{lio, +(A/2)]a'a +iwccfc +iglac™+eca")y .
(83)

From Eq. (A6) in Appendix A, we find that
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S 90 (I | eato. A
A(t) e ae exp i 5 +4 ¢
where
- (o, —w.)+(A/2) 5
‘ ([i(w, —w)+(A/2)P—ag?}' 2’
2ig
- ’ (86)
’ {[i(w,—w.)+(A/2)]?—4g*}'?
and
(0, —w,)+(1/2)]2—4g?}/?
om L2 L (87)

2

To focus on important physical aspects of the problem,
let us consider the resonant condition, where w,=w.,.

|

A/4g

A(t)= —lio+(A/8)])t _
¢ [1—(1/4g ]2

i
[1—(r/4g)*]'?

sin{[1—(A/4g)*]"%gt}c
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[( —u sinhwt +coshwt )a —v sinhwic] , (84)

Under this condition, the nonunitary time evolution of
the total system is classified into two cases.
(a) 4g > A. In this case, Egs. (85), (86), and (87) reduce

to
iLA/4g
== (88)
T T 1= (A/ag )
1
_——, (89)
v [1_()"/4g)2]1/2
and

o=ig[1—(A/4g)*]'"?, (90)

and A4 (1) is therefore given by

sin{[1—(A/4g)*]'/%gt} +cos{[1—(A/4g)*]'%gt} |a

91)

This result shows that the photon field and its environment interact coherently, while the measurement back action at-
tenuates the amplitude of the photon field exponentially. In the limit of 4g >>A, Eq. (91) reduces to

A (t)=e Lot A/H[(cosgt)a — (i singt)c] .

(92)

The photocount probability density at time ¢, A(z,;0,7), is derived from Eq. (72) as

(p())=M1;0,7)=ATr |p(0) 4 (1)e ¥ ":exp
p

For 4g >>A, the rhs of (93) can be approximated to give
(p(2)) =he *'Tr{p(0)[(cos’gt)aa +(sin’gt)cc]} .

(94)
This result shows that if we identify ¢ with a pump field
which generates single photons at equal time intervals T
which are much larger than 1/A, we can observe a
discrete single-photon number state with jitter 1/A, as
shown schematically in Fig. 6. In Fig. 6 we observe that

f—— T — T

*
H

p(t)

ty 2

FIG. 6. Time development of the probability-density func-
tion for 4g >>A. The probability-density function traces out a
coherent Rabi flopping until a photon is actually detected by the
detector at time ¢, (i =1,2,...).

A[ldr ATt —n A —r)

e?7 4 (z)] . (93)

[

the probability-density function traces out coherent Rabi
flopping between the photon field and the pump source
before a photon is actually detected by the detector at
time ¢; (i =1,2,...). The exponential decrease is due to
the feedback of the readout information (in this case “no
count”) into the immediate future photon field-source
density operator.

Conversely, if we set T much shorter than 1/A, we can
observe an approximate Poisson state whose cycle-
averaged light intensity is nearly constant. In this case
the photon field remains stationary while being measured.

(b) A>4g. In this case, Egs. (85), (86), and (87) reduce

to
YR S— 95)
[1—(4g/k)2]1/2 ’
4ig /A
=l 96
YT = (4g /0] 2 06
and
o=(A/4)[1—(4g/1)*]'?, 97)

and A4 (1) is therefore given by
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_ 21172
Sinh[1 (4g /A)°]

: 1
A(1)= Lot/ | | _
(=e [1—(4g /07272

4ig /A

[1_(4g/}\)2]1/2 S

In the limit of A >>4g, Eq. (98) reduces to
A (t)=ge "ot/ (99)

This result shows that the detector looks upon a photon
field as a closed system; no effects of the pump source are
included. The physical reason for this is that, owing to a
strong field-detector coupling, a photon generated by a
source attenuates long before coherent Rabi flopping
starts. It should be noted that this attenuation is not
caused by actual detection of a photon but the knowledge
that no photon is detected until ¢; (i =1,2,...). Such an
apparently paradoxical result is a unique feature of con-
tinuous measurement. In Fig. 7, the time development of
the probability-density function is shown schematically
for T>>1/A.

Thus, we find that increasing the ratio of the source-
photon field coupling constant to the field-detector cou-
pling constant causes the photon field to cross over from
a close attenuating field to an open stationary field. An
exact photocounting formula can be obtained if we sub-
stitute A4 (¢) in Eq. (84) into the corresponding general
formula obtained in Sec. III.

V. APPLICATION TO A PHOTON FIELD INTERACTING
LINEARLY WITH A RESERVOIR OF AN
INFINITE NUMBER OF HARMONIC OSCILLATORS

In this section, we consider a reservoir and discuss a
quantum-mechanical fluctuation-dissipation theorem for
open-system continuous photodetection. Here again we
focus only on the essential features of the problem.

Let us consider a case in which the photon field in-
teracts linearly with a reservoir consisting of an infinite
number of harmonic oscillators. The Hamiltonians of the
photon field Hp, reservoir Hy, and their interaction H,
are given by

Hp=tw,a'a , (100)

p(t)

il t‘g A : ia 1y

FIG. 7. Time development of the probability-density func-
tion for A>>4g. The probability-density function simply de-
creases exponentially due to a strong field-detector coupling.

[1—(4g /M) 72
4
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_ 21172
At +cosh—[l—(—4a/k#kt a
At c’ . (98)
T
Hp= Zﬁch;cj , (101
J
and
H;=3 #gjlac] +c;a") , (102)
J
respectively. The operator Y is given by
Y= lio. + 2 lata— S io.ct
lo,+— |a'a zlecjcj
J
- Eigj(ac;r+cja*) . (103)
J

If the photon field is a quasimonochromatic light, it is

shown in Appendix B that the operator 4 (t)=e Yae!
satisfies the following Langevin-type equation:
d . Y A
L A4(n=— +hw, )+ L+ | A +L(t
ar (1) (i, +Aw,) I) A()+L(1),
(104)

where L (¢) is a Langevin operator defined by (B13), and
Aw, [defined by (B10)] is the Lamb shift in the center of
frequency of the photon field due to interaction with a
reservoir. This Langevin operator represents fluctuations
which are unpredictably introduced from the reservoir
into the photon field.

It can be shown that the fluctuations caused by the
Langevin force exactly balance the dissipation represent-
ed by y/2. This is a quantum-mechanical fluctuation-
dissipation theorem.**** Usually this theorem ensures
that the commutation relation is preserved all the time.
However, in our case, the commutation relation of the
operator A (t) decays exponentially owing to an addition-
al decay constant A/2. In fact, the Langevin-type equa-
tion (104) can be solved by the Laplace transform
method, giving

A(t)=plt)a + Zvj(t)cj , (105)
j

where

”(t)ze—[i(wa+Awa)+(y/2)+(k/2)}r , (106)
and

) li(w,~w, —Aw,)=(y/2)=(A/2))i
V»(I):-g»e_'wlt 1—e
J ] w;—0,— Ao, +ily/2)+i(y/2)
(107)

The commutation relation is therefore given by
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[4(1), AT(D]=e . (108)

An exact photon-counting formula for this case can be
obtained if we substitute Eq. (105), together with Egs.
(106) and (107), into the corresponding general formula
derived in Sec. III.

One comment is appropriate here. We showed in Sec.
III that when the photon field interacts with only the
detector, we can obtain complete information about pho-
toelectron statistics. In the present case, where the pho-
ton field interacts with a reservoir as well, however, the
above statement cannot hold because the fluctuations
from the reservoir are unpredictably introduced into the
photon field, as shown in Eq. (105), so that every internal
time in the measurement process has a special meaning
and cannot be averaged out.

VI. DISCUSSION AND CONCLUSIONS

The continuous photodetection process provides us
with several unique features of quantum mechanics.
Among other things, this paper focused on state reduc-
tion caused by measurement back action and nonunitary
state evolution due to the feedback of the readout infor-
mation from continuous measurement in a nonequilibri-
um open-system-theory context.

In general, the quantum photodetection process plays
two distinct roles with respect to the past and future of
the observed system. With respect to the past, it verifies
the predicted photoelectron statistics by repeated mea-
surements of the same quantum state. With respect to
the future, it produces a new state via nonunitary state
reduction determined by the result of a single measure-
ment. A conventional unitary picture of a photodetec-
tion process imposes such a quantum-mechanical state
reduction only once at the end of the measurement
period.21 However, our new nonunitary picture of a con-
tinuous photodetection process imposes state reduction
throughout the measurement period because we can, in
principle, read out information concerning registration of
a photocount in real time throughout the measurement
process. To completely describe time distributions of
photoelectrons, we must therefore obtain some functional
which reflects a continuously infinite number of collapses
of the photon field-environment density operator. Refer-
ence 25 demonstrated that such a complete description
can be achieved using the probability-density functional
combined with the path-integral technique. In the
present paper, this new framework for continuous photo-
detection processes has been generalized to a nonequili-
brium open system in which, while being measured by a
photodetector, the photon field interacts with its environ-
ment, which may be a pump source or a reservoir.

New exact photocounting formulas are obtained for a
nonequilibrium open photon field. The obtained formu-
las are then applied to two typical environments: a pump
source and a reservoir. For a pump source, increasing
the ratio of the field-source coupling constant to the
field-detector coupling constant causes the photon field to
cross over from a closed attenuating field to an open sta-
tionary field. For a reservoir, a quantum-mechanical
fluctuation-dissipation theorem is discussed for a none-
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quilibrium open system.

The time evolution of the photon field-environment
density operator is discussed for three familiar quantum
photodetection processes: QPF, QPN, and QPM. The
obtained results present a sharp contrast to those ob-
tained for a closed photon field. Suppose that a continu-
ous photoelectron process starts at time O and ends at
time 7. For a closed photon field the density operator im-
mediately after the QPF gives exactly the same result as
that after the QPN:?*

p¥F(t ,ty, .. 1,;0,7)=pFN(0,7) (109)

for a closed system, where ¢; (i =1,2,...,m) give the
times at which photons were detected. This result shows
that specific internal times at which photoelectric conver-
sion occurred do not contribute to the post-measurement
density operator; only the number of detected photons
contribute. On the other hand, the specific internal times
do contribute to the time distributions of photoelectrons.
In fact we have

Py, s 1,30,7)

m
“A 3y
1=1
(e trym P(m;0,7) .
The physical reason for the result in Eq. (109) is that
since no fluctuations are introduced into the photon field
from the environment, the measurement action produc-
ing photoelectron statistics and its back action causing
nonunitary state reduction are uniquely related to each
other throughout the measurement process and are there-
fore canceled out between the denominator and numera-
tor in Eq. (56). This is why complete information about
statistical properties of photoelectrons can be obtained
from the PDN. In contrast, Eq. (109) does not hold, in
general, for an open photon field, as is found by compar-
ing (57) with (67):

m !A"exp

(110)

pE(t1,t5,..,1,,30,7)7pN0, 7) (111)

for an open system. In this case, every internal time, or
more precisely the correlation of internal times, has a
special meaning which reflects the statistical properties of
the environment.

It should be noted that the general formalism
developed in Sec. III holds true irrespective of the special
form of the photon field-environment interaction Eq. (44)
if A(t) contains only an annihilation operator. There-
fore, the following important interaction, for example,
equally applies to our formalism:

H,=3 #glc*a+a'c}). (112)
j

Physically, this Hamiltonian represents the second har-
monic generation.
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APPENDIX A

Here, we describe the time evolution of the operator
A (t) which is defined by

A (t)Eexp{[aaia +BcTc+y(ac++caT)]t}
Xa exp{ —[aa’a+Bc'c
+ylact+cahH)ey . (A1)

It is convenient to define the dual operator C(¢) associat-
ed with A(?) by

C(t)=exp{[aa'a+Bcic+ylac’+ca®)]r)
Xc exp| —[aa*a +Bc*c +y(ac1+ca+)]t} .
(A2)

It can be shown that the two operators A4 (¢) and C(t)
satisfy the differential equations

(Dt +a)A(t)+yC(t)=0 (A3)

and
Yy A(t)+(Dt +B)C(t)=0, (A4)

where Dt =d /dt. Multiplying (Dt + ) from the left of
Eq. (A3) and y from the left of Eq. (A4), and subtracting
both sides of the resultant equations yields the differential

equation which includes the operator A (¢) only:
[(Dt +B) (Dt +a)—y*]4(t)=0 . (AS5)

This equation can be solved by a standard method, yield-
ing

A(t)y=e 2BV (—y sinhwt + coshwt )Ja — (v sinhwt )c] ,
(A6)

where

- a—B
Tla-prra (A7

] t'—t
le(

?ﬁﬂAWﬁ

=40 |iP [ dop(w)y(o?*

where p(w) is the density function of the reservoir oscilla-
tors, and the following identity is used:*®

J e dr=iP(1/0)+7b(w) ,

where P denotes the principal value. The first term on
the rhs of Eq. (B9) gives the frequency shift of the photon

o l(wj—wa )t

) —ilw, —w, )t
dt'~ At ; ;e e
( )?gje J,
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2y
v= , (A8)
[(a—B)’+4y*]'?
A2 21172
w=Le=B T4y (A9)
2
APPENDIX B
Let us start with definitions
A(t)=e Vage (B1)
=Y, Y
Ci(t)=e ’c]-e r (B2)
where
+ . +
Y=—|lio,+ aa— Y iwc;c,
J
(B3)

— 2 igj(ac]-l'+cja+) .
j

It can be shown that A(z) and C;(1) satisfy the
differential equations

d _ . A =
th(t)— zwa+2 A(t) gzngj(t) (B4)
and
4 c(1)=—ig; A()—iw,C;(1) (BS)
dtjt_lgj t)—iw;C(t) .
The solution of Eq. (B5) can be written as
(=C. —iw]t_,' t o=, B6
C,(1)=C;(0)e ig; [ A dr'.  (B6)

Substituting Eq. (B6) into the rhs of Eq. (B4) yields

d
dt

A
o 4+
fo, 3

A(1)— 3 ig;C,(0)e "

J
le(t —1)

A(t)=—

2 ! ’ ,

- ] At dt’ . B7

%g} J Awe (B7)
If we assume quasimonochromatic light, we have

o
1o, (t—1")

A(t")=A(t)e (B8)

Then the third term on the rhs of Eq. (B7) becomes*’

dt'
—ilw,~w )
+ 7y (0, plo,) | , (B9)
wj —wa
[
field due to the interaction of the reservoir
© ’ 12
Aw,=P [ CRACRI (B10)

oc a)a_w’

and the second term gives the photon lifetime due to the
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random action of the reservoir
y =2mplw, )y (w, )* . (B11)

Thus, we find that the operator satisfies a

Langevin-type equation

A(t)

MASAHITO UEDA 41

L 4= — |ilw, +ho )+ L+ |a+L ),
dt 202
(B12)
where L (¢) is a Langevin operator defined by
Il (B13)

Lil=—iYgicie 7 .
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