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%e consider a lossless micromaser in which a monoenergetic, low-density beam of two-level

atoms in a coherent superposition of their upper and lower states is injected inside a single-mode
high-Q cavity. This is a realization of a harmonic oscillator driven by a quantum current. We find

that under appropriate conditions the field may evolve to pure states, which we call tangent and co-
tangent states, even for mixed-state initial conditions. In various limits, they exhibit nonclassical
properties such as sub-Poissonian photon statistics, or even more interestingly acquire the charac-
teristics of "macroscopic" quantum superpositions. The conditions under which these states are
reached, as well as the dynamical approach of the system to steady state, are discussed in detail.

I. INTRODUCTION

The last few years have witnessed considerable activity
towards the generation and detection of nonclassical
states of the electromagnetic field. Squeezed and sub-
Poissonian fields have recently been produced. ' There is
also good reason to believe that number states of the elec-
tromagnetic field will be generated in the near future, a
promising scheme involving a micromaser with negligible
cavity losses. Filipowicz, Javanainen, and Meystre have
shown that if inverted atoms with a well-defined velocity
are injected inside a micromaser cavity, it is possible for
the field to evolve towards a number state

~
n ) .

The present paper further studies the generation of
nonclassical fields in a micromaser. It extends and gen-
eralizes our previous results to the case where the two-
level atoms are injected inside the cavity in a coherent su-
perposition of their upper and lower states. We find that
the field may evolve to pure states of the field even for
mixed-state initial conditions. We call these new states
tangent and cotangent states of the harmonic oscillator.
In various limits, they exhibit nonclassical properties
such as sub-Poissonian photon statistics, or even more in-
terestingly acquire the characteristics of "macroscopic"
quantum superpositions.

As pointed out by Cummings and Rajagopal, such re-
sults might seem surprising at first: it is a common per-
ception that when the density matrix is reduced ithe
atomic variables traced out) after successive atoms exit
the cavity, information is discarded. Thus the entropy of
the field mode would be expected to increase. Rather,
while computing this entropy for a micromaser pumped
by inverted atoms under conditions such that it evolves
to a number state, they found that after an initial in-
crease, it eventually decreases to zero. We find that a
similar decrease of the entropy can occur for a cavity
pumped by a coherent superposition of their upper and
lower states, a signature that the maser mode evolves to a
pure state.

This paper is organized as follows. Section II describes
our model and presents selected results from numerical
experiments showing the evolution of the cavity mode to
a pure state of the field. These results show a large
variety of possible steady states, some sub-Poissonian and
some with the character of "macroscopic" quantum su-
perpositions. Section III derives the mathematical form
of these states from a general factorization argument, and
uses boundary conditions to select between tangent and
cotangent states for given initial conditions. Section IV
uses a simple graphical construction to determine general
properties of the cotangent states. In particular, this per-
mits us to predict under which conditions cotangent
states acquire the character of "macroscopic" superposi-
tions, become sub-Poissonian, or approach the properties
of coherent states. Section V turns to an eigenvalue
analysis of the micromaser map. We introduce a space of
"supervectors" that describes all physically meaningful
density matrices, reduce the micromaser return map to
this space, and find the eigenvectors with unit eigenvalue
corresponding to steady states of the system. We further
demonstrate the possibility of "period-2" oscillations in
the cavity mode dynamics. Finally, Section VI is a sum-
mary and conclusion.

II. NUMERICAL RESULTS

We consider a micromaser in which a monoenergetic,
low-density beam of two-level atoms is injected inside a
single-mode, high-Q cavity. The injection rate is low
enough that at most one atom at a time is present inside
the resonator, but still high enough that a large number
of atoms can be injected before cavity damping becomes
important. Under these conditions, the dynamics of the
system is obtained by successive applications of the
Jaynes-Cummings evolution operator. We assume that
the field is described by the density matrix po at the in-

stant when the first atom enters the cavity in a state de-
scribed by the density matrix p, (0). After the interaction
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time ~, the field density matrix reduces to

p, (r) =Tr, [U(r)pop, U (r)], (2.1)

Ho =Area 'a+Acocr, , (2.2a)

V=trur(ao++a o ) . (2.2b)
I

where the trace is over the atomic variables. Here U(v. )

is the interaction picture Jaynes-Cummings evolution
operator U(r) =exp( i—Vr/fi), and the Jaynes-
Cummings Hamiltonian is H =Ho+ V with

The field mode creation and annihilation operators a
and a obey the commutation relation [a,a ]= 1,o „o.+,
and o. are Pauli spin matrices and ~ is the atom-field di-
pole coupling constant. We assume exact resonance be-
tween the field frequency and the atomic transition fre-
quency, and in writing Eq. (2.1) we have assumed that the
state of the atom is not measured as it exits the cavity.
Hence the corresponding trace operation is sometimes re-
ferred to as a nonselective measurement.

In the interaction picture and in the absence of dissipa-
tion, the field density matrix does not evolve during the
interval T between atoms. Thus successive iterations
yield the field density matrix after I atoms as

pt=Tr, [U(r)pt, p, U (r)]=Tr, (U(r)p, Tr, t U(r)p, [U(r)p, poU (r)] U (r)I U (r)) . (2.3)

While numerically solving Eq. (2.3) for the initial atomic
density matrix

p. =(~la &+Plb &)(~'&aI+0*&bl) (2.4)

pi
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FIG. 1. (a) Moduli of the steady-state density-matrix ele-
ments p„=( n I pl m ) of the pure state reached by the harmonic
oscillator driven by a steam of spin- —,

' particles in a coherent su-

perposition of upper and lower states. The upper state popula-
tion is ~al =0.75, and the Fock state I25) is a vr-trapping state
&26~~=m.. The field mode was started from a thermal state
with mean excitation (n ) =10 '. The initial distribution has
been slightly truncated and renormalized to avoid any initial
population past the state I25). (b) Entropy of the harmonic os-
cillator (on a ln scale) as a function of the number of spins hav-

ing interacted with it.

0 2000 4000 6000 8000 10000
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FIG. 2. Same as Fig. 1, but with the Fock state I25) being
now a 3m.-trapping state 26 v3irnrand Ial~=0. 39. In this
case, the field mode evolves toward a pure state that resembles a
"macroscopic superposition. "
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(N+1)' Irr=qvr (N, q integers), (2.5)

for the spin-field interaction strength ~~, as well as the
fact that density matrix must be such that the probability
of finding n photons initially in the cavity is zero for
n & ¹ Examples of final states reached by the harmonic
oscillator under such conditions are given in Figs. 1 and
2. Figure 1(a) gives the modulus of the density matrix
elements p„=( n~p~m ) of the final state reached by a
cavity mode initially in a (truncated) thermal mixture
with an average photon number (n ) =10 '. In this ex-
am~le the number state ~25) is a "~-trapping state"
&26~r=n. , and the truncation is such that there is no ini-

with ~a~ +~P~ =1, ~a) and ~b) being the upper and
lower atomic states, we found that the reduced density
matrix for the oscillator alone can evolve towards a pure
(zero-entropy) steady state, provided that a number of
conditions are met. These conditions will be specified
precisely in Sec. III. For now, it suffices to mention that
they include the "trapping condition"

tial population past this state. The evolution of the field
entropy Sl = —k& Trpllnpi, where kz is Boltzmann's con-
stant, as successive atoms are passed through the cavity is
given in Fig. 1(b). After an initial transient, SI decreases
monotonically and eventually decays exponentially to
zero, indicating that the asymptotic state of the field is a
pure state. This exponential decay is further discussed in
Sec. V in terms of the eigenvalues of the micromaser re-
turn map.

Figure 2 gives similar results, except that the state ~25 )
is now a "3n-trapping state" &26m v=3~ A.gain, the
evolution of the field entropy indicates that the system
evolves to a pure state. Note however the qualitative
difference between the single-peaked final state for a ~
trap and the double-peaked photon statistics p„„corre-
sponding to the 3m-trap situation. Note also the much
slower approach to steady state in this last case. As
shown in Sec. III, the state of Fig. 1 is sub-Poissonian,
while that of Fig. 2 is clearly super-Poissonian.

A state with photon statistics similar to that of Fig.
2(a) is illustrated in Fig. 3. However, the nonzero final
entropy indicates that the field evolves now to a mixed
state. This is seen even more clearly in the considerable
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FIG. 3. Same as Fig. 1, but the field evolution is bound by the
2' trap ~N ) = ~23), i.e., &24irr=27r. Note that under this con-
dition the number state ~5) is a vr-trapping state &6 r=snso.
that the initial field photon statistics spans two disconnected re-
gions of Fock space. In this case, the field mode evolves to a
mixed state, as further illustrated by the field entropy.

FIG. 4. Same as Fig. 1, but with the number state
~
13 ) being

now a 2' trap &14lrr=2nand ~a~ =0.85. Alt. hough there is
no accidental trap between the vacuum state and this trap in
this case, the field still evolves toward a mixed state.
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reduction of the off-diagonal density-matrix elements

p„as compared to the situation of Fig. 2(a). In this ex-

ample, we have taken the number state I23& to be a 2n

trapping state &241rr=2m, hence the number state I5 & is
a m-trapping state &61rr=m. . We show in Sec. III that
the trapping states (2.5) divide the Fock space of the cavi-

ty mode into disconnected regions: the dipole interaction
(2.2) does not couple density-matrix elements between
these regions. Hence, no coherences can be generated be-
tween number states below and above the number state
I6&. In the example of Fig. 3, the states In & with n )6 of
the initial thermal field are significantly populated, hence
the micromaser field must remain mixed under the
Jaynes-Cummings dynamics.

Figure 4 shows another situation leading to a mixed
final state of the field. Here, the number state I13& is a
2n-trapping state &14sr=2n. After a rapid initial de-
cay, the field entropy remains constant and larger than
zero.

These numerical examples illustrate several important
features of the dynamics of the micromaser field. First,
the trapping states (2.5) lead to the existence of normaliz-
able steady states of the field in the absence of cavity
losses, even for initially inverted atoms. Second, the na-
ture of the final states depends strongly on the "parity" of
the trapping states by which they are bounded, where by
parity we mean the odd or even parity of q in Eq. (2.5).

I

We show in Sec. III that if there are no accidental inter-
vening traps between these bounds, then the evolution of
the field is towards pure states if it is bounded by traps of
opposite parities, and is towards mixtures for traps of
same parity. In the presence of intervening traps, the sys-
tem dynamics can become quite complex, involving, e.g.,
period-2 oscillations under appropriate conditions.

The evolution of the field towards pure states is a
surprising result at first: In general, partial traces such as
those that appear in Eq. (1) are expected to lead to mix-

tures, although exceptions do exist, e.g. , the classically
driven damped oscillator at zero temperature. What
happens in the present case is that the harmonic oscilla-
tor appears to benefit from a transfer of coherence from
the spins. Sections III—V determine the general proper-
ties of these new states and show that in various limits
they acquire nonclassical properties such as sub-
Poissonian statistics, or more interestingly resemble
"macroscopic" superpositions. As such they may pro-
vide new testing grounds for fundamental tests of quan-
tum mechanics and measurement theory.

III. TANGENT AND COTANGENT STATES

Under the Jaynes-Cummings dynamics, the evolution
of an arbitrary state of the oscillator —two-level-atom cou-
pled system is given in the interaction picture by

gs„ln &(ala &+P b &)~gs„[acos(&n +1K1 )ln &+iPsin(&n Kr)ln —1&]la &

n Pl

+ps„[Pcos(&n ~r)ln &+ia sin(&n + lax)ln +1&]lb & = If, & la &+ fb & lb & (3.1)

The existence of trapping states is immediately apparent
from this equation: if for some n =N we have

&N Irr =
q n, q integer, (3.2)

then the downward coupling between IN & and IN —1 &

vanishes and the regions of Fock space below and above
IN & are dynamically disconnected. We call IN & a down-
ward q~-trapping state. Similarly, a state such that

v'N + lar=qm. , q integer (3.3)

is an upward qm-trapping state. Equations (3.2) and (3.3)
show that the state immediately following an upward
qm-trapping state is always a downward qm. -trapping
state. Since trapping states separate the Fock space of
the oscillator into disconnected blocks, initial conditions
within one block cannot leak into others. This is the
essential ingredient leading to the existence of normaliz-
able steady states of the harmonic oscillator in the ab-
sence of dissipation. Filipowicz, Javanainen, and Meys-
tre showed how to exploit these states to generate num-
ber states of the electromagnetic field by injecting invert-
ed atoms inside a single-mode cavity. This section gen-
eralizes these results to the case where atoms in a
coherent superposition of upper and lower states are uti-
lized.

Since the driven oscillator's dynamics can be handled

separately in disconnected regions of Fock space we con-
centrate on initial conditions within one such region only.
Under more general initial conditions the harmonic oscil-
lator always evolves towards a mixed state, since the dy-
namics prohibits the build up of coherences between
disconnected blocks, see Fig. 3.

Guided by the numerical results of Sec. II, we develop
a self-consistency argument to determine the pure steady
state reached by the field mode. We assume that the field
is in the pure state

n =.V' d

(3.4)

after interaction with a given atoms, where the number
states INd & and IN„ & are the lower and upper boundaries
of the Fock space block under consideration. Requiring
that it remains in this same state (within an overall phase)
after interaction with the next atom imposes that the
state of the composite system at time ~ factorizes into a
tensor product of a field state

If & times a pure state of
the two-level atom,

If &(ala &+plb &)-e'If &(a'la &+p'Ib &) (3.5)

Here la'I + lp'I = 1 and a', p' as well as the overall phase
P are independent of n. Comparing Eqs. (3.5) and (3.1)
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gives readily

a'e'&If &
= If, ),

p' 'If&=lf & .

(3.6)

(3.7}

um state, cotangent states are physically more relevant
than tangent states. We concentrate primarily on the
properties of cotangent states in the following.

IV. BASIC PROPERTIES
With the definitions (3.1) of If, ) and

I fb ), these two

equations yield the recurrence relations

iP sin(&n + lar)
a'exp( i!}}) a—cos( &n + law )

(3.8)

.p'exp(ip) —pcos(&n + Iar)
Sn= l sn +1a sin(&n + liras)

(3.9)

which must be satisfied simultaneously for all n's within
the Fock space block under consideration. These condi-
tions are satisfied under the two possible conditions

ap' = —a'p,

ap= —a'p'e "~ .

(3.10)

(3.1 1)

Assuming without loss of generality that a, p, a', and p'
are real we find

e'~=+I, a'= +a, P'=+P (3.12)

or

e'~=+1, a'=+a, p'= +p . (3.13)

s„=i(a/P)cot(v n err/2)s„

in the first case and

(3.14)

No other zero-entropy steady states are possible under
the Jaynes-Cummings dynamics. Setting exp(iP) = 1

without loss of generality, Eq. (3.12) can be interpreted as
a nutation of the upper-state probability amplitude by ~
and Eq. (3.13) as a nutation of the lower-state probability
amplitude by n Equation. s (3.12) and (3.13) yield simple
recurrence relations for the probability amplitudes s„of
Eq. (3.4). We find readily

cot(&n err/2) & p/a . (4.1)

The cotangent function cot(x ) is illustrated in Fig. 5,
where we have also drawn a horizontal line at p/a. We
should keep in mind that for a given interaction strength
~~, only the discrete set of arguments x such that

4x /a r =n, n integer (4.2)

are physically meaningful.
From the discussion of the preceding section, me know

that the existence of cotangent states requires that condi-
tion (4.2) be satisfied at x =(2q +1)n./2 with q being an
integer. Consider first the simplest case q =1, where the
cotangent state is terminated at a m trap. If the first
value of x such that (4.2) is satisfied x =&llrr/2 is also
such that cot(x) & p/a, then from Eq. (4.1) we have that
s, & so and the cotangent state is peaked at n =0. In con-
trast, if this point is such that cot(x) )p/a, then s, )so.
In this case, the photon statistics are not peaked at n =0,
but rather at the last number state I

n ) such that Eq. (4. 1}
is satisfied and such that 0 ~ x ~ n. /2 satisfies Eq. (2.4).

Figure 6 gives the mean photon number and the nor-
malized second moment 0=((n ) —(n) )/(n) as a

In this section we use a simple argument to determine
the general properties of the cotangent states. In particu-
lar, we predict under which conditions they acquire the
character of "macroscopic" superpositions, become sub-
Poissonian, or approach the properties of coherent states.
We concentrate for concreteness on cotangent states
which include the vacuum state INd ) = IO). Our discus-
sion can be generalized to other situations straightfor-
wardly. We proceed by noting that the recurrence rela-
tion (3.14) indicates that Is„ I

& Is„,I provided that

s„=—i(a/P)tan(&n ter/2)s„ (3.15)

in the second case. The corresponding photon statistics
are

Is„ I'= la/pl'cot'(&n ~r/2) Is„

Is„I = Ia/pI tan (&n xr/2) fs„

(3.16)

(3.17)

For this reason we call these states cotangent and tangent
states of the harmonic oscillator, respectively.

We still need to verify that the states (3.14) and (3.15)
satisfy the trapping condition (3.3) at the boundaries of
the phase-space block under consideration. The Appen-
dix shows that these boundary conditions are satisfied
provided that the upper and lower trapping states IN„ )
and INd ) have opposite parities: specifically, the co-
tangent state (3.14) only satisfies the boundary conditions
if QNd+ llrr=qtr, q even and QN„+ llrr=pm, p odd.
The reverse is true for the tangent solution (3.15): in that
case q must be odd and p even. Note that since typical
initial conditions include a finite population of the vacu-
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FIG. 5. cot (xI function and horizontal line at P/a used in

the graphic determination of the photon statistics of the co-
tangent state.
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FIG. 6. Mean photon number (solid line) and normalized
standard deviation (dashed line) of a cotangent state bound be-
tween the vacuum and the n trap l21) as a function of the
upper-state population
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(4.3)

function of a for cotangent states bound between the vac-
uum state and a m. trap lN, ). For fully inverted spins
(a= 1) the system evolves precisely towards the Fock
state lN, ). For a=0, in contrast, it asymptotically
reaches the vacuum state l0). For intermediate situa-
tions, the resulting cotangent state is sub-Poissonian.

Although cotangent states bound between the vacuum
and a n-trapping state lN, ) are sub-poissonian, Fig. 1

shows that their photon statistics resemble those of a
coherent state. For cotangent states such that significant
populations are limited to number states ln ) such that
Kr«1/V n we have

V. DYNAMICS

So far we have limited our discussion to the steady
states asymptotically reached by the cavity mode. To
determine the dynamical evolution of the field we now
turn to an analysis of the eigenvalues of the discrete map

pI ~opt —i (5.1)

giving the reduced field density matrix after the passage
of I atoms from its value after l —1 atoms. From Eqs.
(2. 1) and (3.1), the density-matrix element
pI.„=( n

l pI l
m ) is given by

In this limit the cotangent state (3.16} approaches a
coherent state with Poisson photon statistics and mean
photon number (n ) = l2a/pKrl A. lthough this is essen-
tially the same state as reached by an oscillator driven by
a classical current, we emphasize that during its evolu-
tion to steady state, it was crucial that the oscillator feels
the presence of the trapping state lN, ). Hence it had to
probe number states such that the condition Kr « I/&n
is not fulfilled. Indeed, the oscillator would not even
reach a pure state if lN, ) were a trapping state of even
parity. This is a clear indication of the importance of its
"granular nature" and of quantum dynamics at play.

Consider next the situation where the cotangent state
is bound between the vacuum and a 3m trap, i.e., condi-
tion (4.2) is satisfied at x =3~/2, but not at n /2. In this
case, it is quite clear that the photon statistics of the co-
tangent state can become double peaked for appropriate
values of P/a. Such a state is illustrated in Fig. 2. More
complicated photon statistics, e.g., with multiple peaks,
are possible if the state is confined in a phase-space region
bound by a higher-order odd-m trapping state.

=pr, .„ lal cos( n +1K')cos(v'm+1K')+pI, .„+, +, lpl si n( vn +1 Kr)si n(& m+1K')

+ipI, .„+, a'/3sin(&n +1K')cos(&m +1K') ip I,
.„—, +pa'c s(ont+1Kr)sin(&m +1K')

+pr, .„, , lal sin(v'n Kr)sin(&m Kr}+pI,.„ lpl cos(&n Kr)cos(v'm Kr)

+i pj &.„, aP*sin(&n Kr)cos(t m Kr) ipI, .„—~a'Pcos(v'n Kr)sin(v'm Kr) . (5.2)

It is useful in the following to think of the matrix ele-
ments of p as defining a complex vector with
(N„Nd + 1) elemen—ts. The (N„Nd + 1) com—plex ei-
genvalues A of the map (5.1) are given by

Ao —A1=0 . (5.3)

We reduce the dimensionality of the problem by exploit-
ing the fact that any physically allowed field density ma-
trix p must be Hermitian. If it is confined between the
trapping states l Nd ) and lN„) it is fully defined by its
(N„—Nd + 1 ) real diagonal elements and by
(N„Nd + 1)(N„—Nd )/—2 complex off-diagonal elements,
or equivalently by (N„—Nd+1) real elements. We can
thus organize the relevant elements of the density matrix
p as a real "supervector" A with (N„Nd+ 1) elements—

with (N„Nd+1) real eig—envalues. We use the condi-
tion Trp= 1 to normalize the eigenvectors of AL.

Any physically allowed field density matrix is ex-
pressed as a linear combination of the eigenvectors ~„of
A as

(5.5)

After I iterations of the map (5.4), an initial density ma-
trix described by the supervector Ao evolves to

%1=+(k„)'c„~„, (5.6)

I

and whose evolution is given by the reduced real map A

(5.4)
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where A,„ is the real eigenvalue corresponding to the
eigenvector ~„. The micromaser transients are governed
by the eigenvectors ~„with —1 1,„1,while the fixed
points are given by the eigenvectors with unit eigenvalue.

A few remarks are called for at this point. First, be-
cause of the conservation of the trace, it is obvious on
physical grounds that the eigenvectors with nonunit ei-
genvalue must correspond to traceless density matrices,
while those with k„=1 must have unit trace when prop-
erly normalized. This is precisely the result found nu-
merically. Second, it is in principle possible to have
eigenvectors with eigenvalues k = —1. Their existence

P
leads to "period-2" oscillations of the quantum map (5.4).
Finally, if more than one eigenvector has unit absolute ei-
genvalue A,„~

= 1 an initial mixture po with nonzero com-
ponents on these two eigenvectors will always remain in a
mixed state. Hence, from the numerical results of Sec. II,
we expect only one eigenvector with unit eigenvalue in
the case of a field bound between two trapping states of
opposite parities.

We have numerically determined the eigenvectors and
eigenvalues of the map (5.5) for field density matrices
confined between the vacuum state ~0) and the upper
trapping state ~N„) up to N„= 18. In each case, we have
considered ~N„) to be a qrr trap (N„+ I )'~ irr=qrr with

q an integer between 1 and 10. In the normal situation
where there is no intervening trapping state between ~0)
and ~N„), we have found that the map has only one
eigenvector with unit eigenvalue. This eigenvector is pre-
cisely the cotangent solution (3.14) for q odd, while it cor-
responds to a mixed state for q even in agreement with
the results of Sec. III and of the Appendix. Our analysis
also indicates that the other eigenvectors r „ tend to be
grouped in two clusters, one with eigenvalues close to
zero and the other with eigenvalues close to unity. The
first group contributes to rapidly decaying transients,
while the eigenvectors with eigenvalues close to unity
lead to the slow exponential approach to steady state il-
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FIG. 8. Period-2 oscillations of a cavity field initially in a
coherent state with mean photon number (n) =1, ~a~'=0. 5.
The number state ~8) is a 3m-trapping state, so that the number

state ~1) is an trap.

VI. SUMMARY AND CONCLUSIONS

lustrated in Figs. 1(a) and 2(b). Our numerical results
show that the higher q, the closer to unity this last group
of eigenvalues tends to be, as illustrated in Fig. 7. Also,
for a given type of trapping, as the highest nonunit eigen-
value becomes closer to 1, the higher the trapping state,
so that the approach to steady state requires an increas-
ing large number of atoms to pass through the cavity.
These trends are illustrated in Figs. 1(b) and 2(b) and in-
dicate that it will take a very large number of atoms to
prepare states resembling "macroscopic" superpositions.
From a practical viewpoint, cavity losses will eventually
become important, thereby limiting the degree of macro-
scopic separation that can experimentally be achieved.

In the case where there is an accidental trap between
~0) and ~N„), we typically find two eigenvectors with
unit eigenvalue, as well as traceless eigenvectors with ei-
genvalue —1. Although traceless, these eigenvectors
have observable effects; they influence the off-diagonal
elements of the field density matrix and hence e.g. , the ex-
pectation value of the electric field. The eigenvalue —1 is
also a signature of a period-2 dynamical behavior: the
state of the cavity mode repeats each two atoms. Figure
8 shows such a situation where the field undergoes
period-2 oscillations as successive atoms are injected in-
side the cavity.

t

, I

3 5 7 9 11 13
trapping state

Flax. 7. log, o(l —A,„) for increasing number states ~n ).
Here A. „. , is the largest eigenvalue of the map (5.4) less than uni-

ty. The smooth line is for ~n ) being a rr trap, and the jagged
line is for ~n ) being a 3~ trap. The peaks in this second curve
at n ) = ~8) and 17) correspond to the appearance of interven-

ing ~ traps, i.e., they are such that n + 1=9q, q integer.

In this paper, we have shown that a lossless single-
mode micromaser driven by a sequence of spin- —,

' parti-
cles can evolve to a new class of pure states of the elec-
tromagnetic field. Under appropriate conditions, these
states can be sub-Poissonian or even number states, or
resemble macroscopic superpositions. The experimental
verification of these predictions requires overcoming the
considerable experimental challenge of preparing all
atoms in precisely the same coherent superposition. The
phase fluctuations in the superposition (2.4) are presently
being investigated both analytically and numerically fol-
lowing techniques similar to those described in Ref. 10.
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A further obstacle, specially concerning the generation of
macroscopic superpositions, is dissipation, as it is well
known that macroscopic superpositions are very sensitive
to damping. " However, the exceedingly high-Q
(Q ~10' ) of micromaser cavities, which correspond to
cavity damping times approaching a tenth of a second,
provide an excellent starting point for potential experi-
ments: even for "macroscopic superpositions" decaying
several orders of magnitude faster than this rate, there
might be a possibility of performing transient measure-
ments over a reasonable time scale. Finally, when think-
ing of potential experiments we should keep in mind that
although this paper treats explicitly the case of a micro-
maser, our considerations carry over to the more general
situation of any harmonic oscillator driven by a quantum
current of spin- —,

' particles.
Note added in proof We h.ave shown in the meantime

that macroscopic superpositions can survive in the micro-
maser in steady state and in the presence of dissipation. '
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APPENDIX

In this appendix, we impose that the states (3.14) and
(3.15) satisfy the trapping condition (3.3) at the boun-
daries of the phase-space block under consideration.
These boundary conditions are satisfied provided that the
upper and lower trapping states ~N„) and ~Nd ) have op-
posite parities: specifically, the cotangent state (3.14) only
satisfies the boundary conditions if QNd+ ltrr=qtr, q

even and QN„+ ltcw=ptr, p odd. The reverse is true for
the tangent solution (3.15): in that case q must be odd
and p even.

Consider first the down-trapping state ~Nd ), which
satisfies

+N„trr=pir .

For this state, conditions (3.8) and (3.9) become

iP sin(QNdtr r).
a'exp(iP) —a cos((/Ndtrr)

(Al)

(A2)

P'exp(i P )
—

/3 cos( QNd ter )
S(~ i) 1

Nda sin( t/Nd trr )

(A3)

Equation (A2) is automatically satisfied under the trap-
ping condition (Al), and under this same condition Eq.
(A3) only leads to normalizable states if

(/3'/P)exp(i ttt) =( —1)q . (A4)

For q even, this is fulfilled by the cotangent solution
(3.12) only and for q odd by the tangent solution (3.13)
only. Turning to the boundary conditions at the upper-
trapping state ~N„), with

"tt/ Ndtrr=pm.
we find similarly

(A5)

(a'/a)exp(ittt) =( —1)~ . (A6)

For p even, this yields the tangent solution (3.13) and for
p odd the cotangent state (3.12). Combining the results of
the upper and lower trap boundary conditions proves
that the upper and lower traps must have opposite pari-
ties. For q even and p odd, the solution is the cotangent
state and for q odd and p even it is the tangent state. No
pure state solution is possible in other situations.
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