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Radiation at the harmonic frequencies in free-electron lasers is affected by several factors includ-

ing misalignment of the electron beam and wiggler axes, and transverse gradients of the electron
beam and wiggler field. These processes manifest themselves as changes in the harmonic power and
transverse intensity profile. A transverse source function for the monochromatic radiation from a
single electron in a plane-polarized wiggler magnetic field is derived that addresses these various
effects. The resultant source is a composite of multiply peaked sources distributed over the local
transverse wiggle range of each electron where the nth source has n peaks. For transverse-
electron-beam density distributions that are slowly varying, an excellent description of the harmonic
radiation can be obtained by including only the first few sources. Transverse averages of the distri-
buted sources are taken to make comparisons with previous one-dimensional theories where they
exist.

I. INTRODUCTION

In contrast with conventional lasers, the radiation from
free-electron lasers (FEL's) is generated by individual
electrons as they execute macroscopic transverse oscilla-
tions in a periodic magnetic field. The spatial amplitude
of these oscillations can be much greater than the FEL
radiation wavelength. Consequently, the electron radia-
tion source can have structure over its oscillating range.
The structure appears as variations in the electrons' radi-
ation phase at different transverse positions along its tra-
jectory. Thus, each electron can be thought of as a distri-
buted radiation source with a radiation source pattern
that is different for each harmonic. In this paper we ob-
tain an expression for the distributed monochromatic ra-
diation source pattern of an electron in a plane-polarized
wiggler magnetic field.

Previous one-dimensional ( 1 D) classical' and
quantum-mechanical ' analyses of the source functions
for the fundamental and harmonic radiation in FEL's ob-
tain a result that is equivalent to the transverse average of
the distributed source function discussed herein. The 1D
coupling coefficients ignore the multiply peaked nature of
the harmonic source functions by discarding the oscillat-
ing terms in their mathematical expansion. Disposing of
these terms would be justified if the electron radiated at a
single transverse position in space. However, since the
electron oscillates in transverse space with oscillation fre-
quency equal to an integer divisor of the frequency of the
oscillating terms, coherent enhancement over many
wiggler periods will occur. Therefore these oscillating
terms must be considered so that their contribution to the
total harmonic radiation can be ascertained.

The single-electron source pattern is of fundamental
importance in determining the radiation pattern of an en-
semble of electrons in a FEL. The radiation pattern of an
electron beam is determined by the convolution of the
single-electron source pattern with the transverse density

of the electron beam. The description embraces two not-
able limiting cases. For filamentary electron beams the
resultant radiation source will be a scaled version of the
single-electron source. Alternatively, in the limit of an
infinitely wide electron beam, the radiation source will be
given by a scaled version of the transverse average of the
distributed single-electron source, i.e., the one-
dimensional description.

In Sec. II the form of the distributed transverse source
function of a single electron for arbitrary harmonic num-
ber is derived including misalignment effects. A higher-y
approximation is invoked to simplify the analysis. In Sec.
III the 1D FEL coupling coefficients are recovered by
performing a transverse average of the source functions
derived in Sec. II. Such an average eliminates coupling
to the even harmonics for an aligned system. In Sec. IV a
discrete form of the distributed source function is con-
structed to allow the multiply peaked nature of the har-
monic radiation to be modeled numerically. This
analysis also gives insight into the relative amplitudes of
the even and odd harmonic radiation. Modifications of
the formalism to include the effects of transverse drift ve-
locities and transverse gradients in the wiggler magnetic
field are also discussed. The conclusions are given in Sec.
V.

II. COLLAPSED SOURCE FUNCTIONS

The paraxial wave equation can be expressed

2ifk, + E~ =S(x,y, z),
dz Qp

where f is the harmonic number, E~~ is the transverse
electric field phasor of the fth harmonic, and k, =2~/A. ,
is the wave number of the fundamental. Bunching of the
electron beam gives rise to coherent radiation that is
driven by the source term S(x,y, z) given in cgs units by
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t 8'irfks + s —if(k, t c—u, r)S(x,y, z)= — dg Ji(x,y, g)e
Asc z

where J~ is the transverse current defined by the discrete
electron distribution. The integral in this equation can be
interpreted as the projection, out of the total transverse
current, of the transverse driving current at the optical
wavelength.

A rigorous expression for the transverse current in-
cludes the transverse drift velocities of the individual
electrons. Such an expression has the form

varying transverse symmetry, the contribution to the ra-
diated power from that portion of the transverse current
(Ji ) caused by the transverse drift velocities' is
insignificant, as shown in Appendix A. However, the
transverse drift velocities modify the axial electron veloc-
ity and the electron's phase in the optical wave. These
modifications are incorporated in Eq. (9) below and are
defined in the expressions of Appendix B.

With the caveats of Appendix A in mind, the trans-
verse current can be approximated by

x a
J„(x,y, z)= —ec g 5(z z;—(t))5(x —xp;)

i=1
N

Ji(x,y, z) = —e g vt;5{z z, (t))—5(x —xp; —p„p;z) X5{y—
yp,

—y, sin(k„z)) . (7)

X5(y —
yp;

—
P~p, z —y, sin(k z)),

(3)

Substituting Eq. (7) into Eq. (2), the integration over g
can be performed. Examining this expression for the ith
electron we have

where (xp;,yp; ) and (P„p;,P p, ) are the transverse guiding
center position and normalized drift velocities of the ith
electron, respectively. Here e is the magnitude of the
charge of an electron such that its sign is expressed ex-
plicitly. The summation limit N represents the number of
electrons in an optical ( more precisely, ponderomotive)
wavelength. The transverse velocity v~; is given by

i87refk,
S;(x,y, z, ) = 5(x —xp; )

S

X5(y —
yp;

—y; sin(k z;))

a~(»y) if(k, z,
—~, i)

X cosk z;e
Vl

(8)

a„;
vi, =xp„p;c+y +p p, c,

Yl
(4)

where a, =[a (x,y, z)], is the wiggler magnetic vector
potential at the guiding center of the ith electron which
incorporates both axial and transverse field dependences.
As seen from the third 5 function in Eq. (3), it has been
assumed that the wiggler magnetic field is the x direction
with the dependence B=xB sin(k z) such that the elec-
trons wiggle in the y direction. Assuming y&&a, the
betatron wavelength will be much greater than the
wiggler wavelength, and betatron motion can be linear-
ized over a wiggler wavelength. An electron's transverse
position is then given by

y =yp;+y; sin(k z)+P„p,z,
x =xp; +p~p;z

(5)

a (xp yp )
Xj

y, k
(6)

is equal to the oscillation amplitude of the ith electron to
0(1/y ). The linearized betatron drifts in Eq. (5) oscil-
late as the electron executes a betatron oscillation. When
considering well-matched electron beams with smoothly

I

As discussed in Appendix B, the expression for the
electron's axial position can be split into two terms
z;(t)=z, (t) M(t), —where z, (t) is the axial location as-
suming the electron has uniform axial velocity (as it
would in a helical wiggler) and i()z(t) is the oscillating
correction term arising from the plane-polarized wiggler
magnetic field, given by

bz(t)= sin[2k z, (t)]+ sin[k z, (t)],
S S

(9)

where ( is the interaction strength parameter defined in
Eq. (B14), and o is the angular coupling parameter
defined in Eq. (B15). The Z parameter defined by Colson,
Dattoli, and Ciocci is equal to our parameter o if one as-
sumes P, = 1 and only small-angle misalignments (sin
8= 8) in the wiggle plane are being considered. Nonzero
o. is caused by misalignment of an individual electron's
guiding center trajectory with the wiggler axis. Such a
misalignment can arise as a result of gross electron-beam
misalignment into the wiggler, focusing of the electron
beam, wiggler field errors, and betatron motion.

One can see from Eqs. (8) and (9) that the single-
electron source function is periodic in z, , with period A, .
By averaging over this length we can obtain a "col-
lapsed" rnultipole single-electron source function that is
distributed over the electron's wiggle amplitude in the y
direction. Using Eqs. (B8) and (9) in (8), the y-dependent
source function becomes

i g~efk,
S;(y)= 5(x —xp,. )f dz, 5(y —

yp,
—g; sin[k (z; +M ) ] )

S W

a (x,y)
X cos[k (z, +bz)] exp[ if[k, z, —/sin(2k z,—) —o sin(k z,. ) co, t]I, —

l
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where fdz;(t) indicates an integral of z;(t) over a complete wiggler wavelength. As shown in Appendix B, the k bz
correction term in the cosine and 5-function arguments can be ignored so that

i8me
S;(y)= a (xo, ,y)5{x —xo, } ItI dz, 5(y —

yo,
—y, sin(k z;))

W S

cos(k z;)
exp[ —if [(k, +k }z;—a), t]j

X exp[if [/sin(2k z;)+o sin(k„, z, )+k z, ]j,
where we have subtracted and added ifk z, in the two exponential terms, respectively. The first exponential term can
be recognized as the resonant phase of the ith electron or

g, =(k, +k )z, (t) cg, t—, (12)

which is constant at resonance. Assuming y; does not change significantly over a wiggler wavelength, we can pull it
and the resonant exponential outside the integral giving

i8nefk,
S, (y)= a (xo, ,y) 5(x —xo, )

X f dz;5{y —
yo,

—g, sin(k z;)) cos(k z;) exp[if [(sin(2k z;)+cr sin(k z;)+k z, ]j .

To evaluate the z;(t) integral we use the relation

5(z —z, )
5(f (z))= g

(z„)
dz

(13)

(14)

where the sum indicates a sutnmation of all the roots off (z) =y —
yo;

—y, sin(k z; ), so that

i8~efk,
S;(y) = '

a (xo, ,y)
ill S Yl

5(z; —z„;) cos(k z;)
5(x —xo;) f dz; g exptif [(sin(2k z;)+o sin(k z;)+k z, ]j.

cos(k z, )i

(15)

At this point we split the integral into two subintegrals to eliminate the ratio of cosines and account for the two z roots
at each transversey location. Since the cosine ratio is negative between A, /4 and 3A, /4, we have

i4efk,
S, (y) = '

a (x„,y)
s Xi Vi

3A, /4
X —I dz;5(z; —zz;)expIif[gsin(2k z;)+o sin(k z;)+k z, ]j

/4
+ f dz;5(z; —z„)exp[if [(sin(2k z, )+o sin(k z;)+k z;]j 5(x —xo;} .

N

From Eq. (5a) we see that the roots are given by
T

1 . ) J Ioiz„= sin
k Xf

(16)

(17)

in the region —
A, /4 to A, /4 and by

1 . )
3' 3'oi

Z2; = 7T Sin
k (18)

in the region 1,„/4 to 3A,„/4. The transverse source function can now be written as

i 4efk,
S, (y)= a (xo, ,y) ( —expIif [/sin(2k zz, )+o sin(k zz;}+k zz, ]j

s +i Vi

+ exp I if [g' sin( 2k z „)+ tr sin( k z „.) +k z„]j )5(x —x 0; ),
or defining

(19)

3'o
0, = sin

Xi
(20)
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we have

S,.(y)= a (xo, ,y) 5(x —xo; }exp[if[/sin(28, )+o sin8;+8;]j ~s'

$ +l71

Now, since sin [2(m —8„)]= —sin(28„}, the previous equation becomes

(21)

S;(y)=
i4efk, ifo sinO,

a (xo, ,y) 5(x —x)( exptif [(sin(28„)+8„]j—exp[ —if [)sin(28„) m—+8„]j )e
$

(22)

Using Eq. (6) and noting the implicit dependence of 8„on
y through Eq. (20), the single-electron source at the odd
harmonics becomes

igefk, k
S (y) = e '5(x —xo, )

S

and for the even harmonics

Sefk, k
S,'(y) = — e '5(x —xo, )

$

X sin[ [g sin(28„)+8„]j e (24)

X cos[f [(sin(28„)+8„]je (23) As seen from Eq. (20), these equations are only valid for
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FIG. l. (a)—(d) Plots of the normalized transverse source dependence in the limit cr =0 for the fundamental and first three harmon-

ics. The three curves in each plot represent the source for /=10 ' (solid curve), g= —,
' (dotted curve), and g= —' (dot-dashed curve).

These values of g correspond to a values of 0.01, 1, and oo, respectively.
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yo,
—y; ~y ~yo;+y, (since this is the spatial range of the

ith electron). It was assumed in going from Eq. (22) to
Eqs. (23) and {24) that a (xo„y&&;)=a„(xo,,y). This is a
good assumption since the electron wiggle amplitude is
much smaller than the transverse wiggler field gradient
length. The gradient of the transverse wiggler field also
produces coupling to the even harmonics. The extent of
this coupling is explored in Appendix C and is shown to
be small for conventional FEL's. These equations express
the explicit radiation source amplitudes as a function of
transverse position for a single electron. It is interesting
to note that in the limit o.~0 the resonant source func-
tions [the term in bold parentheses in Eq. (22)] go from
complex to purely real or purely imaginary quantities.
Insight into this characteristic can be gained by noting
from Eq. (22) that the source function is complex at each
transverse y location (even for cr =0). However, the elec-
trons traverse each y location twice (but at different z lo-
cations) per wiggler wavelength, and it is the sum of the
source functions for these two di6'erent axial locations
that forms the resultant source function at each trans-
verse location. In the limit 0.=0, the electron has the op-
posite transverse velocity at the second location relative
to the first, such that the source functions at the two lo-
cations are complex conjugates. As a result, their sum is
no longer complex at any transverse position.

Note that Eqs. (23) and (24) have no exhibited depen-
dence on the wiggler magnetic vector potential. This
dependence is hidden in g, 0, and H„as one can see from
Eqs. (B14), (B15), (20), and (6).

The source functions can be plotted to obtain the exact
transverse radiation pattern for each harmonic for a
specific interaction strength g. Figures 1(a)—1(d) give the
normalized transverse source dependence in the limit
0.=0 for the fundamental and first three harmonics. The
three curves in each plot represent the source for
/=10 (solid curve), g= —,

' (dotted curve), and (=—,
'

(dot-dashed curve). These values of g correspond to a
values of 0.01, 1, and ~, respectively. Plots of the source
functions including angular effects with o =(=—,

' are
given in Figs. 2(a) —2(c) for the fundamental, second, and
third harmonic. Since the source functions are now com-
plex, we have plotted their real and imaginary parts with
dot-dashed and dotted lines, respectively. For reference,
the solid line plots the source function for o =0. Note
that the real part of the source function is only slightly
modified from its o. =0 value despite the large value of o.

assumed for these calculations.

III. RELATION OT THE COUPLING COEFFICIENTS

(c)
FIG. 2. (a}—(c) Plots of the source functions including angu-

lar effects with u =g= —' for the fundamental, second, and third

harmonic. The real and imaginary parts have been plotted with
dot-dashed and dotted lines, respectively. For reference, the
solid line plots the source function for sr=0. Note that the
large imaginary part introduces a source with opposite symme-
try from the o =0 reference case.

To link this theory with the simplified coupling
coefficients derived by others we take the integral of the
transverse source function for an individual electron over
its range. The integral over x is trivial due to the 5-
function dependence, leaving

S,-= dyS, y (25)
&ot

where we do not normalize the integral since we are in-
terested in the net source, i.e., the area under the curve.
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Now, since we are assuming y
—

yo; —-g; sin0„[see Eq.
(5)], we can make a change of variable to 0„where
dy =y;cosO„dO„. The integral limits become

0, = sin '( —1)= —m. /2,

S'
l

S
i 8efk, k„

X f y, cos0„d0„—m/2

02= sin '( 1 ) =1r/2,

(26)

where the l and 2 subscripts represent the beginning and
end of the integration, respectively. Now, substituting in
from Eqs. (23) and (24) gives

cos
X ' . . '[f [/sin(20„)+0„]I

J

lfa Sin0„
(27}

where the upper (lower) operator should be used to evalu-
ate the odd- (even-) harmonic result. From symmetry
considerations we have

S'
l

S l

i 8efk k —fe '/2 COS Cos
e 'y,. f cos8„d0„X ' . '[f [(sin(20„)+0,]I X ' . (fos'ing„)

s

i8efk, k y;;I& Re
e 'X

I
S

e '+e " if[/»~[&, ]+~„]
(8„-(e„

e "X' . ' crsi 0n„
2

—sin

i4efk, k~y;
e

Re
Im

i (f +1)8„ i(f —1)8„ if''sin(28„)"X ' ' fosin0„sin
(28)

Using the expansion

if/sin(28„) i2n8
(29)

Eq. (28) becomes

S 0
l

S'
l

i4e~k k Ref s wXi if'/i, —
g J (fg)

n/2 (f(2n+1+) 8 ((f+Zn —1)8 COS

Im n —n/2
—sin

(30)

Again invoking symmetry we have

S'
Se

l

i4efk, k y, n /2 COS cos
e ' g J„(fg) f d0„X ' '[(f +2n +1)0„]X' (fo sin0„)'

S n = —oc

n/2 cos
+ f d0„X ' [(f+2n —1)0„]X '

cos
'(fo sin0„) (31)

and evaluating the integrals" gives I= c,eN
(3&)

we obtain the final expression for an ensemble of elec-
trons

i 4mIfk, a, „.e ife-
S= ' "

m,")(g,o) '
C e

(36)
(32)

i4vrefk, k y;
S, = e '( —1)/+'

J.(f4)[J2n+ f+1(f& }+J2n+ f 1(f&}]—

~ ~ ~ ~ ~ ~ (33)

%I '(g, o)=( —1)/ g J„(fg)[(—1) J2„+I (fo)

which is valid for both even and odd harmonics. Making
the following definitions:

which agrees with previous lD theories. The coupling
coefficient in Eq. (34) is in agreement with that in Ref. 3
for m =1 and o ~ —o (required due to the different
phase convention between the wiggle and drift motions}.
Et is interesting to note that coupling coefficients can also
be expressed in terms of a sum of two generalized Bessel
functions, ' i.e.,

J2 +I+ (fo)]
(34)

'(g, o ) =C/+ (fo,f$,0)+ C/ (fo,fg', 0), (34')

where the expression for Ci)r(a, b, 0) is given elsewhere. '
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The dependence of the source function on the angle an
electron makes with the wiggler axis appears only in the
coupling coefficients defined in Eq. (34). In the limit of
zero transverse drift, o ~0 and Eqs. (34) and (34') be-
come

+f (4) ( } [J(f —1)I2(f0) J(f +1)I2(f4) ]

which only has nonzero amplitude at the odd-harmonic
frequencies. Thus, for aligned systems, the even-
harmonic radiation has been averaged away. In the next
section we described a process by which the even-
harmonic interaction is retained.

IV. MULTIPOLE SOURCES

I dyo, n (yo, ) =1 . (39)

Assuming that n (yo, ) is slowly varying over an electron's
wiggle amplitude y, , the density can be expanded in a
Taylor series so that

v+x,
'Ay)= J S(y —yo;)[n(y)+(yo, —y)n'(y)

X,

the resultant source at position y must be given by
S(y —y2). Therefore, for arbitrary n(yo;), the resultant
source must be given by

V+X,
&(y)= f S(y —y„)n(y„)dy„, (38)

V

where n (yo, ) is the normalized transverse density such
that

+ ]dyo, . (40)
In Sec. III we showed that by averaging the collapsed

transverse source function over y we obtained the 1D
coupling coefficients. In this section, we want to retain
the multipole nature of the single-electron radiation pat-
tern in a form that is amenable to numerical simulation.
To model the "collapsed" source terms in Eqs. (23) and
(24) we can convert the smoothly varying analytical form
into a discrete 5-function multipole source term that can
be more efficiently modeled on a transverse grid. To ex-
actly model the analytic source function requires an
infinite sum of discrete multipole sources. We will show
that under certain conditions (generally satisfied in prac-
tice) only the lowest-order multipoles need be kept. The
resultant transverse source will then be determined by the
discrete source function for each electron and the distri-
bution of the electrons in transverse space, i.e., the trans-
verse density n (y). Since the electrons only wiggle in the

y direction, we assume the transverse source in the x
direction to be singular (5-function source located at the
electron positions in x) while the source is distributed in y
due to the electron wiggle motion. Simulation of the har-
monic radiation from a helically polarized FEL requires a
distributed source in both x and y. Since the x analysis is
identical (within a phase factor) to the derivation for a
distributed source in y, we will not complicate the
analysis by including it here.

To determine the y dependence of the resultant source,
we impose two conditions in order to make a discrete
multipole source equivalent to the analytic source. First,
the electron density must be smoothly varying over the
amplitude of the electron's wiggler motion. This condi-
tion is easily satisfied for high-y FEL s where the
electron-beam wiggle amplitude is much less than the ra-
dius of the electron beam. The second condition requires
that the proper weights be given to each of the 6-function
poles. The appropriate weights can be calculated by
evaluating the resultant source obtained using the con-
tinuous source functions given in Eqs. (23) and (24) and
equating them with the results obtained using discrete 6-
function multipole sources.

We want to find the resultant source ()(y} due to a
transverse density n (yz, } and a distributed single-electron
source S(by) as depicted in Fig. l. If we imagine a
singular transverse density of n (yo,. )=5(yo; —y2), then

The first term in this series has already been evaluated in
another form in Eq. (32) of Sec. II, with the result

4') = —i Cn (y)y—,Af' '(g, cr ), (41)

where we have grouped the constant coefficients into the
C term given by

8iefk, k„,
(42}

and Af"(g, o) has been defined in Eq. (34). The 1 sub-
script in Eq. (41) signifies that this is the source due to the
first term in the expansion.

The discrete source for the odd harmonics is applied
on the numerical grid at the guiding center position of
each electron. This source is given by

S)=W)5(y —
yo, ), (43)

where the dagger superscript identifies the discrete nature
of the source. This expression can be substituted into Eq.
(38) and the integral performed to obtain the resultant
source for the first term in the density expansion yielding

=)W n)( )y. (44)

4, =i 2efk, a,
I

Af"(g, o )5(y —yo;) . (45)

Note that for perfect alignment (o ~0) the coupling
coefficients exist only at the odd-harmonic frequencies.
The source for the even harmonics contributed by the
first term of the series vanished due to the odd symmetry
of their distributed sources.

One must evaluate the second term of the density ex-
pansion to obtain the dominant source term for the even
harmonics in the absence of misalignment. From Eqs.
(23) and (24), the single-electron sources, including
misalignment effects, are given by

Solving for W, from Eqs. (41) and (44), and substituting
back into Eq. (43) gives

—if',
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ifo sinO, (y —
yO,- )

Xe

+8,(y —yo;) } )

Using Eq. (46) in (40) gives

cos
S, (y —yo;)=CX ' . '(f I(sm[28„(y —yo;)]

(46)

y+y, cos
e=C f '

. .
I f[gsin28„(y —

yo,. )+8„(y —
yo, )])

I

Xe
ufo sln[O (y —y )]r Ot

X [n (y)+(yo, —y)n'(y)+ - ]dyo, . (47)

Concentrating on the second term in the expansion gives

r

4'2=Cn'(y) ' . . '[f (g sin28„+8„)]e "y;sin8„g;cos8„d8„
l Sln

cos sin
i C—n '(y ) f ' '[f (g sin28„+ 8„)] X ' '(fo sin8„) sin28„d 8„.

2 — /2 Sln cos

(48)

2

S2= —iCmn'(y) Rf '(g, o ), (49)

The integral in Eq. (48) is very similar to that in Eq. (27)
and can be evaluated in an analogous fashion yielding

the coupling term becomes

(gqo'~0)=( 1 ) [J(f p)yp(fs)

J(f+2)n(A)] (50)

where A& '(g, o ) is defined in Eq. (34). In the limit cr ~0,

~(5'—Xo )

which only gives coupling at the even harmonics.
For the discrete 5-function dipole source, the resultant

source is given by
y+~,

& (y)= f S (y —y„)~(y„)dyo, . (51)

With Fig. 3(a) in mind, we choose the discrete source for
the second harmonic to be two 5 functions of equal mag-
nitude and opposite sign separated by a distance 2y, ,
where y~ has yet to be defined. This is depicted in Fig.
3(b). We assume the transverse electron density is slowly
varying over a electron's wiggle amplitude as shown in
Fig. 4. Mathematically we have

S2(3 —
yo, ) = ~2[&(y —

3 0;
—yl ) —&(y —

3 0, +yl )]

Now, using Eq. (52) to evaluate the second term of Eq.

n(yo;)

v

(b) I"e
' yo-

FIG. 3. (a) —(b) Analytic and discrete dipole source functions,
respectively. The 5-function sources have been positioned half
the distance from the guiding center to the wiggle extrema.

FIG. 4. Typical transverse electron-beam distribution. The
electron-beam radius r, is assumed to be much larger than the
electron-beam wiggle amplitude y.
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(51) gives

x+x;
4'2(y)= W [5(y —y, —y, )

—&(y —3;+3»]n (3 o, )d3 o;

= W [n(y —y, ) n—(y+y, )] . (53)

Again expanding n (y) in a Taylor series gives

Sz(y) = W2 j [n (y) y,—n'(y)+ ]

—[n (y)+y, n'(y)+ ] I

= —2Wzy, n'(y) . (54)

To obtain the same resultant source for the discrete
source as was obtained with the exact analytic source we
equate Eqs. (49) and (54) yielding

2W,y, =i c3(,'x—f"(g,~), (55)

and choosing

y& =X ~2

gives

W =2i Cy—JY' '(g 0)77

(56)

(57)

Therefore, using Eqs. (1), (33), (35), (42), (52), (56), and
(57), the even-harmonic wave equation for an ensembl f

1

eo
e ectrons modeled as discrete dipole sources becomes

2tfk, + E~~
dz Qp

4vrIfk, a,S Wl ~(2)(( )
C

X-,'[&(y —
yo,

—X~2)—&(y —yo;+X~2)]
lf0

X
e

(58)

Evaluation of the third term in the expansion which
gives rise to tripole radiation is conducted in Appendix
D. Note from Eqs. (54) and (D10) that the higher-order
multipoles depend on higher derivatives of the transverse
electron density profile. Thus, for smoothly varying
transverse density profiles, suScient accuracy can be ob-
tained by including only the lowest two or three mul-
tipoles.

In order to model the coherent spontaneous emission
of various FEL experiments, the distributed source model
was implemented in the 3D code FELEx. The most
striking aspect of the simulation results is the odd sym-
metry of the transverse profile of the even harmonics. An
example of this profile is given in Fig. 5 for the second
harmonic of the Stanford Mark III oscillator. Bamford
and Deacon' have measured the power radiated at the
first six harmonics of the Stanford FEL. Good agree-
ment between their measurements and the distributed
source model results was achieved as reported in their pa-
per. A more detailed description of harmonic simula-
tions using the distributed source model and how they
compare with experiment has been published elsewhere. '

P. 15 -O. tg

g0.0 9

7g O

60.0

o „~0

0.0

60.O

3O O

ao tS.O

0 ~

FIG. 5. Transverse electric field magnitude of the second harmonic at the wi ler exit for the
negative amplitude of one of th l b h b

e wigg er exit or t e Stanford Mark III oscillator. The
ne o e o es as een inverted for plotting purposes.
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V. CONCLUSIONS APPENDIX A

(59)

where the three multipole source terms on the right-hand
side are given by (i) the monopole term

S)(y) =iaaf")(g, a )5(y —
y(), ), (60)

(ii} the dipole term

We have derived a formalism that more accurately de-
scribes the radiation in a free-electron laser at the funda-
mental and harmonic frequencies. Modifications to the
harmonic radiation caused by transverse gradients in the
wiggler magnetic field and misalignments of the electron
guiding center trajectory with the wiggler axis have been
included in the theory. The model assumes the electron
radiates at only discrete frequencies. The radiation
source is distributed over the transverse wiggle amplitude
of each electron. When the distributed source function is
averaged over transverse space, the simplified 1D results
are recovered.

A discrete (5-function) source function has been pro-
posed for numerical modeling purposes. The discrete
model requires the transverse-electron-beam density to be
smoothly varying. The paraxial wave equation for the
discrete model can be written

()2
2ifk, + E~~

Q p
2

—if(k z —cu t)
S I S (Al)

where the source has now become a vector quantity such
that electric field amplitudes in both transverse directions
will be generated. Specializing to sources caused solely
by transverse drifts we have

i 8mefk,
S)Q'(x, y, z, )= '

5(x —xo P o z)
S

X5(y —
yo,

—p 0;z —y, sin(k z;))

X [xP p +yP&p ]e (A2)

We expect the radiation from this mechanism to be small.
Therefore we are interested in only the dominant (mono-
pole} lowest-order term. Integrating over transverse
space to project out this term gives

We evaluate the radiation contribution from the trans-
verse drift terms (p„o, ,p o, ), and show that often their
contribution may be neglected. Substituting Eq. (3) into
Eq. (2) gives

i &efk,
S;(x,y, z;)= 5(x xo P Oz)

S

X5(y —
yo,

—
P~o, z —g; sin(k z, ))

Q
X xP, (), +y cos(k z, )+P~o,

71

i 8vrefk, —(f(k z —~ ()
S~o;(z, ) = (xP„O;+yP~o; )e

S

(A3)

-5(y —y., +X/2)],

and (iii) the tripole term

$3(y) = i [%'f"(g,o ) %'f—'(j,o)]—
X I 5(y —

yo; }——,
' [5(y —

yo;
—X/2 }

(61) where the bar denotes the transverse average. Using Eqs.
(88), (9), and (12) this becomes

i 8nefk, .
S)0 (z )= [xP p +yP~o;]e

S

X exp I if [(sin(2k z; ) + cr sin(k z; ) +k z; ]I,
+5(y —

yo, +y/2)] I, (62) (A4)

and the expression for the coupling coeScients is given in
Eq. (34). Additional monopole source contributions due
to magnetic field gradients and mismatching of the elec-
tron beam have also been derived in Eq. (A8) and (C5),
respectively. The distributed source model predicts the
generation of even-harmonic radiation with odd symme-
try in the electron wiggle plane (for perfectly aligned sys-
tems) and odd-harmonic radiation patterns with even
transverse symmetry. Simulations of harmonic emission
for present FEL devices show good agreement with ex-
perimental measurements.

and with the help of Eq. (29)

i 8rrefk,
S)0 (z )= e '(xP () +yP () )

S

Xe ' g J(f()e

X g J {fo)e "' ' . (A5)

Keeping only nonoscillating terms gives
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X g J„(fg)J (f+q„)(fo ),

and defining a new drift coupling coefficient

(A6)
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Sf((,cr )=2 g J„(fg)J )f +2~)(fcr )

we have

S LUl l

(A7) a modulation of the electron beam inside the wiggler.
Since the resultant source from the electron ensemble is
proportional to Mf, the intensity of the radiation will be
proportional to Mf. Therefore the drift sources are only
important when the inequality in Eq. (A13) is not satisfied
and the factor Mf has order unity. For these cases the
source in Eq. (A8) should be added to the sum in Eq. (59).

where pio; =xp„o; +ypzo; is the transverse drift velocity.
Note that the single-electron source in Eq. (A8) is pro-

portional to the ratio of drift velocity to wiggle velocity.
Defining the unnormalized emittance for an azimuthally
symmetric electron beam as

APPENDIX B

Following Colson, ' the energy of the ith electron can
be given in units of its rest mass as

E=mrP„=mkttr (A9) y
—2-1 p2 p2 (Bl)

where k&=a k /y is the betatron wave number, and
assuming an electron with pro; =p„ to be representative
of the average electron in the beam, one can write

where the i subscripts throughout this derivation have
been dropped. From conservation of transverse momen-
tum we know

—2k~re && 1,a;/y (A10) p2— a (x,y, z)
cos(k z}+P o +P„o, '(B2)

where we assumed r =r, . Since the electron-beam size is
typically much less than the wiggler wavelength, the
magnitude of this term for each electron will be small.

An additional comparison should be made between the
magnitude of the drift coupling in Eq. (A8) and the dipole
of Eq. (61). For dipole coupling to dominate drift cou-
pling we must have

Af '(g, cr ) ))2k„«,%'f(g, o ),
2re

(Al 1)

where we approximate the normalized derivative created
by the dipole 5 functions of Eq. (58) by y/r, . Using Eq.
(6) this criterion for a single electron becomes

a /y Rf(g, o)
4(k «, )' %'f"(g, o)

(A12)

where the ratio of the coupling coeScients can be evalu-
ated using Eqs. (34) and (A7). Using Eqs. (B12), (B14),
(A9), and (A10), this criterion may be rewritten as

Rf(g, o)))—

In most cases the dipole source given in Eq. (61}will

continue to dominate the drift source of Eq. (A8) even
when Eq. (A13) is not satisfied. In modeling the radiation
due to an ensemble of electrons (that make up a macro-
scopic electron beam) the individual electron sources
from Eq. (A8) can destructively interfere with one anoth-
er. If we make the assumption of a matched (constant ra-
dius) beam with transverse symmetry, then the resultant
drift source from the electron ensemble will be vanishing-
ly small due to the cancellation of electrons with opposite
transverse velocities at any specific transverse location.
To quantify the magnitude of an electron-beam
mismatch, we can define a modulation factor Mf, where

Mf =0 for a perfectly matched unmodulated beam, and

Mf =1 for a beam with 100% modulation. Mismatching
of the electron beam at the wiggler entrance gives rise to

where the wiggler vector potential is defined

mc k
(B3)

and p„o and p~o represent electron drift velocities in both
transverse directions. Substituting Eq. (B2) in (Bl) and
solving for P)) gives

P2 —
1 y

—2
1 +y2P2

2
a (x,y)

+y cos(k z)+P 0
y

P))-I — [I+a cos (k z)r'
+2yP oa cos(k z)+y Pio], (B5)

where pro=(p„o+p 0)'~ is the transverse drift speed.
Note that the electron drift in the x direction does not
produce any additional sinusoidal fluctuations in the elec-
tron axial velocity as does the drift in the y direction.
This is due to the fact that there is no wiggle motion in
the x direction. However, this drift must be retained
since it modifies the expressions for the ponderomotive
phase and the resonance condition.

Averaging Eq. (B5) over a wiggler wavelength we ob-
tain the average axial velocity

(1+a.' /2+ y'P'„)
2y'

(B6)

where y now represents the average y over the wiggler
period. We use the same symbol here since this
difference is negligible for most cases of interest. Using
Eqs. (B5) and (B6) we can write

(B4)

and assuming y )) 1 and a (x,y) =a (xo, ,yo; )=a, we
can write
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Qw
cos(2k z)—

a po
cos(k z),

r
and integrating to find the axial position gives

z (t) =z(t) h—z (t),

Substituting Eq. (B12) in (Bl1) gives

bz = sin[2k z(t)]+ sin[k z(t)],
S S

(B8) where

(B13)

where, by judicious choice of the integration constant,
2

Qw

4(1+a /2+@ Pio)
(B14)

and

z(t)= f dt ep =ct 1 — (1+a l2)
r

II 2 2

'2

bz(t)= f dt c cos[2k z(t)]
0 2r

+ cos[k„z(t)]
a po

r

(B9)
and

(B10)

2a yP0
1+a /2+y Pjo

APPENDIX C

(B15)

Qw

2r

2
sin[2k z(t)] a P~o+ sin[k z(t)] . (Bl 1)

2 w r w

To evaluate b,z we keep terms to order I /y where we as-
sume I/y «1 such that z(t) can be replaced by z(t)
yielding

To determine how the harmonic radiation is affected
by a gradient in the transverse wiggler magnetic field we
can take the transverse average of the single-electron
source function as was done in Sec. III, but now include a
transverse cosh dependence of the wiggler vector poten-
tial. The transverse dependence of the wiggler field is
given by

Using Eqs. (B2) and (B5), and assuming )/)) I, we can
solve for the resonance condition including angular
effects, given by

a (xo, ,y)=a (xo, ) cosh(k y), (Cl)

k = (1+a /2+y pjo) .
2r'

(B12)

and since the electron beam is small with respect to the
transverse wiggler wavelength, we can expand the cosh in
a power series giving

a (xo, ,y)=a (xo, )[1+k'y'/2+ ]

=a (xo; )[1+k~ (g; sin8„+yo; ) l2+ ]

k=a (xo;) 1+ [yo;+2y, yo, sin8„+y; sin 8„+ . ]2

2 2

=a (xo;) 1+ +k y, yo; sin8„+y~ Oi

2
(C2)

i8efksk~ —jfy 2
cos . ifasine„

e 'k g;yo;sin8„X
' . . '[f [(sin(28„)+8„]]e

S

where we have replaced a (xo, ,y) on Eq. (22) by a (xo;,yo;)k y;yo; sin8„. In the limit a ~0, this expression gives rise
to even-harmonic radiation with even transverse symmetry and odd-harmonic radiation with odd transverse symmetry.
In the high-r regime we typically have gfr, « 1 so that the radiation caused by the transverse gradient of the wiggler
field will be small. Therefore the dominant contribution will be given by the monopole (transverse average) term. This
average is given by

S,'-
& 8efk, k —fp /2'

e '
dg~X—m/2

sin(28, ) cos i sin
k~y;yo, . X ' . '[f [/sin(28„)+8„]] X ' (fjJsin8„)'

where we used Eq. (5) and keep terms to order O(y). Note that we have dropped all explicit transverse drift velocity
terms for reasons discussed in Appendix A. The term in large parentheses affects only the magnitude of a at the
electron s guiding center position, and only slightly modifies the amplitude of the source functions in Eqs. (23) and (24).
The second term produces a modulation on an optical time scale that induces additional harmonic radiation. This in-
duced even-harmonic emission has the form

S'
l

(C3)Se
'

l

4efk, k jfp ~/z cos sin
yiyo;e

' f d8„sin(28„)X ' . '[f [/sin(28„)+8„]I X ' (fjr sin8„) . '

S
(C4)
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This integral is identical to the one in Eq. (48) so that

i4mefk, a (x0;) —k,'y, y„mI' '(g, ~)S'=
1

(C5)

The terms in Eq. (C5) have been grouped so that the term
in large parentheses expresses the difference between the
harmonic sources due to transverse wiggler field gra-
dients and those due to the transverse gradient in the
electron beam [see Eq. (58)]. Note that this term vanishes
when the guiding center of the electron approaches the
wiggler axis (y0;~0). Since this term has a nonzero
transverse average, it will radiate primarily as a mono-
pole instead of a dipole pattern as was observed for the
electron-beam density gradients in Sec. IV. To get an
idea of the magnitude of this radiation source we can
look more closely at the term in large parentheses in Eq.
(C5) containing the ratio of the electron wiggle amplitude
to the transverse wiggler wavelength

term in Eq. (40) is given by

p++, cos
+, =C f '. 'If[/sin(28„)+8„]j

I

3'p~ 3 f sin8„( — )
X e "n (y)dy0, ,mf

(D 1)

where (m) superscript denotes the mth derivative with
respect to y and C is defined in Eq. (42). Using Eq. (5)
(without the drift term) this becomes

( l )mn ™(y)ym+1i-m+1 mt

XC f ' . . '[f[gsin(28„)+8„]I

ifo sin8,
X sin 8, cos8„e 'd 8„.

) a.2 a.
2 ~'~" =Z 2 I WV

akr,
8y

(C6)
For m = 2 (the tripole term) we have

(D2)

where we assumed y0; —r, l2. —
The even-harmonic term in Eq. (58) of Sec. V contains

a difference of 5 functions which scale like

—,
' [5(V —

y0; —X/2) —5(y —
V0; +X/2) ] X ~1[cos8„—cos(38„)]

Clw

2r, 2yk r,
(C7)

ifcr sin 8„Xe

Evaluating the integrals as before yields

(D3)

Since the harmonic power scales roughly like the cou-
pling coefficient squared, the radiation caused by gra-
dients in the wiggler field will be [A, /(mr, )] tim. es weak-
er than the radiation caused by gradients in the electron-
beam density. This is what one would intuitively expect
since the wiggler field gradient caused by the large sepa-
ration of the wiggler magnets is much smaller than the
density gradient inside the narrow electron beam.

APPENDIX D

The multipole coupling due to the mth derivative of
the electron density can be evaluated as follows. Each

(D4)

To model this effect we assume a discrete tripole of the
form

~3(y)= Wit5(y —30;)——,'[5(y —30;+1/2)

+5(3 —
3 0,

—X/2)] I (D5)

so that, using Eq. (46), the discrete resultant source for
the third term in the Taylor series expansion of the densi-
ty is given by

x+x,
$3(y) = f W3 [5(y —

y0; ) ——,
' [5(y —y0;+y/2)+5(y —

y0;
—y/2)]In (y0; )dy0;

l

= W3 I n (y) —
—,
' [n (y 3t /2)+ n (y +y/2) ]I—
1= W3 n (y) —— n (y) — n'(y)+ n "—(y) — . + n (y)+ —n'(y)+ n "(y)+
2 2 8 2 8

1
2= W n (y) ——2n (y)+ n "(y)—3 2 4 (D6)

and keeping only the lowest-order term gives

W, 3t' n "(y)
&3(y) =

8 (D7)
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Solving for W3 by equating Eqs. (D4) and (D7) gives

W, = ——Cy[R& '(g, o ) —RI"(g, o )],
so that the discrete single-electron source given in Eq. (D5) becomes

S, (y) = ——Cy[R&"(g, o )
—%'&"(g,o )]IS(y —

yo; )
—

—,'[Sly —
yo;

—y/2)+6(y —yo;+g/2)] I .

Higher-order multipoles can be obtained through similar analysis. However, for slowly varying density distributions,
the higher mu1tipoles will not have a significant contribution due to their dependence on the higher-order derivatives of
n (yo;).
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