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Nonlinear problems in quantum optics can be described by an infinite hierarchy of ordinary
differential equations for the moments. We discuss different truncation schemes involving cumu-
lants. For illustration the method is applied to second-harmonic generation. We prove that all but
second-order cumulants are equal for any quasiprobability distribution P, especially for the P, Q,

and W functions.

I. INTRODUCTION

Nonlinear processes are among the most interesting
problems in quantum optics and have been discussed by
many authors. Optical bistability' or subharmonic gen-
eration? are only two important examples. Unfortunate-
ly, there exists no general computational method to solve
these problems. Very few exact solutions are known.
Linearization works only well away from threshold. Ma-
trix continued fractions,® though very successful in many
cases,* cannot be used for problems involving more than
a single complex field mode. The complex P representa-
tion® has been applied successfully only to some special
systems. Finally, the positive P representation,5 a
method designed to work in a straightforward fashion,
still awaits an explanation of the wrong results it gives for
some particular models.® 8

We want to discuss another approach, based on mo-
ment hierarchies, which, though it shares the property
that it does not work in all cases, sometimes can be ap-
plied with success where all other methods fail.

The paper is organized as follows. Section II intro-
duces the notion of moment hierarchies for different
operator orderings and shows relations between them. In
Sec. IIT we review the Gaussian approximation which
consists in assuming that only first- and second-order cu-
mulants are nonzero. Cumulants corresponding to
operator products of different ordering are defined. Sec-
tion IV extends the approximation to higher orders. The
consistency of this approach as well as its limits are dis-
cussed. In Sec. V we try to find an improved approxima-
tion by considering different orderings, which leads to a
theorem about cumulants. A proof is given as well as
some implications. In Sec. VI, we apply the method to
second-harmonic generation, a problem which is un-
solved so far in the parameter regime we consider.

II. MOMENT HIERARCHIES

Our starting point is a master equation for the density
matrix p where the atomic degrees of freedom have been
adiabatically eliminated:

dp

E’Bz_i[
dt

dr 7Pt

(1)

irr

The Hamiltonian H describes the linear and nonlinear in-
teractions between the field modes, whereas the irreversi-
ble term includes damping via the interaction with an
external reservoir. An example for the explicit form of H
and (dp/dt);, can be found in Sec. VL.

In general, it is impossible to solve the operator equa-
tion (1) directly, except for some simple cases. If p is ex-
panded in Fock states in the case of two field modes, even
moderate photon numbers will lead to matrices that do
not fit into the memory of the biggest computer. This is
why one introduces the concept of quasiprobabilities. Be-
ing c-number functions, they obey partial differential
equations of the following form:

9 = |9 (... 3 ...y4 0 .
atPS(Ot,oz ,t) aa{( )+ aa*( )+ a0[2( )
+ - |P(a,a*,t), (2)

where P, stands for the one-parameter family of general
quasiprobability distributions introduced by Cahill and
Glauber,” and the complex variable a corresponds to a
field mode described by Bose operators a and al. Equa-
tion (2) is easily generalized to more than one field mode
(Sec. VI).

P, can be used to calculate the following expectation
values:

([a™ma"] ) ()=(a"ma")p (1)
=fd2aa*'"a"PS(a,a*,t) , (3)

where the s-ordered operator products [at”‘a"]s are
defined as

fmonq 0" 0"
[a™a", =
A(ip*)™ aip)"
Xeiﬁ*a++iﬁu—(s/2)BB* @)

B=p*=0"

The expression [a’L"‘a"]0 is called the symmetrically or-
dered product, and the corresponding quasiprobability
W(a) =Py(a) is the Wigner function. Using the Baker-
Haussdorf theorem, one finds normal ordering for s = —1
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[at"’a"]_lz—am - eiﬁ*“*e"B"
8(1,3*)'" a(lﬁ)n B:ﬁ*:o
=qtmgn , (5)

and antinormal ordering for s = +1

[aTman]1= a™ a" eiBa iB"‘aJr
3(iB*)™ Aip)" gt —o
=a"a™ . 6)

Normally and antinormally ordered products are related
to the diagonal P function P(a)=7"'P_,(a) and to
Q(a)=P,(a), respectively.

With the appropriate choice of P, we can now use par-
tial integration to derive from Eq. (2) hierarchies of linear
ordinary differential equations for moments of any order-
ing. For the diagonal P function, we get

d
dt

(atman>P=71d7<aTman>=zci3pn<atiaj)P , 7)
ij

and for the Q function

d d o
E(a*’"a")Q=E(a"ah")=i2jd,~;?'"(a*’a/)Q : (8)
At first glance, it might appear confusing that one can
transform a general nonlinear problem into a set of linear
equations like (7) or (8). But the important point is that
these sets are infinite, which means that one cannot solve
them using the standard theory of linear initial value
problems. In fact, no general method of solution is
known. The method of Carleman embedding'® can be
used only in some special cases. So one must try to find a
suitable approximation scheme, which is the purpose of
Secs. IIT and IV.

Moment hierarchies like Egs. (7) and (8) can also be de-
rived directly from the master equation (1). One only has
to remember the definition of expectation values in terms
of the density matrix p, e.g.,

iiﬁana*m

dr 9)

i(a"a"'"):?‘ili;Tr(pa"a*'")=Tr

This means that Eqgs. (7) and (8) must be equivalent, al-
though they may look quite different. It is always possi-
ble to calculate the coefficients ¢,/ from the d/7'" and vice
versa by using the commutation relations between a and
a . In the general case, when arbitrary powers of a and
a’ are involved, the following explicit formulas are help-

ful:

min(m,n) m

a"™a"="3" (—1k! k] a" kg'm ok
k=0

(10)
min(m,n) m n
tm b=k n—k
a"a "= kéo k! k am  Kg" T,

These formulas, which can be proven by induction, do
not appear to be in the literature. Similar results hold for
any operator ordering, i.e., for any P,.
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If we use the positive P representation Pp instead of
the diagonal P, the only thing which changes in Egs. (2)
and (3) is that we have to replace a* by the independent
variable B and P by Pp. Therefore, the moment hierar-
chy derived from the positive P representation is identical
to Eq. (7), which is a general result. In a recent publica-
tion,'! this was derived only for mean and variance and
only in a linearized approach. From this, the authors
conclude that the use of Pp instead of the diagonal P
presents no advantage. This, of course, is true only in the
framework of linearization, because one can find exact
solutions to linearized problems in any representation
(see Ref. 12 for an example where P is expressed in terms
of distributions). But until now, little has been known
that could be used as a general tool to treat nonlinear
problems including quantum noise, which is the aim of
the positive P representation. In cases where the Hamil-
tonian H is at most bilinear in the fields, the problem is
linear and Eq. (7) does not link moments on the left-hand
side to higher-order moments on the right-hand side. So,
for any order, one obtains a closed finite system of linear
equations for which an exact solution can immediately be
written down. As was already mentioned above, only
very few exact solutions to infinite hierarchies are known.
This means that in the general case, we have to recur to
some simplifying assumption in order to truncate the
hierachy. Such a truncation procedure will turn the
problem from an infinite set of linear equations into a
finite set of nonlinear equations which can be solved nu-
merically by some standard algorithm for initial value
problems.

III. GAUSSIAN APPROXIMATION

Let us first define s-ordered cumulants. They are
denoted by double brackets in order to stress the close
formal analogy to the definition of the corresponding mo-
ments:

la™a", N = Ka*™a" N p
_
a(ip*)™ aip)"
XIn[xp (8,8*)] . (11)
5 B=p*=0

*

Here, ¥ P, denotes the family of characteristic functions:
Xp,(B,B*)=Tr(e " *+iBa=(s/268% )
:fdlaexﬂ*a*+iﬂaPS(a’a.) . (12)

Cumulants of order n can be expressed by moments of or-
der less or equal to n. An example for a normally or-
dered cumulant is

Ka™a)=(a™a)—2¢(a")Y(a'a)
—(a™Y(a)+2¢(a")¥a) . (13)

One method of truncation of Eq. (7) consists in assuming
that P is a generalized Gaussian at all times.!> By gen-
eralized Gaussian we mean a distribution which is not
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necessarily Gaussian, but which has a Gaussian Fourier
transform. For such a distribution, only the first- and
second-order cumulants are nonzero. The vanishing of
all cumulants higher than second order now means that
we can express all moments of order higher than two by
first- and second-order ones. So, we get a closed set of
equations for the mean and variance of our distribution.
These equations are nonlinear. From this it follows that
the Gaussian approximation is not equivalent to a lineari-
zation where we would also get a Gaussian distribution,
but with mean and variance obeying linear equations. So
we expect the truncated set of equations to be able to de-
scribe a more general behavior than linearization.

One could ask which kind of partial differential equa-
tion corresponds to this truncated set of equations. How-
ever, it is easily shown that in the general case, the as-
sumed time-dependent Gaussian distribution does not
even obey a generalized Fokker-Planck equation contain-
ing higher-order derivatives.

This crude approximation works astonishingly well
even in cases where the distribution is quite far from be-
ing Gaussian, e.g., where it is doubly peaked. On the
other hand, there is presently no known way to predict
whether it will work for a particular problem or not.
More precisely, one does not know how to estimate the
numerical error one makes when using it.

An example where it does not work is shown in Sec.
VI. The question how the truncation scheme can be im-
proved is explored in the following two sections.

IV. HIGHER-ORDER APPROXIMATION

It is tempting to extend the method described above by
allowing for nonzero third-order cumulants and setting
equal to zero fourth- and higher-order ones. We will talk
about “nth order truncation” if n is the order of the
highest nonvanishing cumulants. In this sense, the
Gaussian approximation is a second-order truncation.
Third-order truncation is discussed for the field of tur-
bulence theory in Ref. 14; there it is called ‘“‘quasi-normal
approximation.”

One intuitive justification of higher-order truncation
comes from the idea that in a physical system, correla-
tions should become less important with increasing order.
This should be reflected by cumulants becoming smaller
with increasing order. Unfortunately, this is not true in
all cases, as is shown by an example in Ref. 3.

Another difficulty is related to the Marcinkiewicz
theorem.'> This theorem states that a function with a
finite cumulant expansion cannot be positive if the order
of the highest nonvanishing cumulant is larger than 2.
This alone would not imply that such a function cannot
be a quasiprobability because quasiprobabilities are not
necessarily positive. However, there exists a generaliza-
tion of the Marcinkiewicz theorem'® which can be put in
the following form: a quasiprobability with a finite cu-
mulant expansion must be a generalized Gaussian. For a
simple proof of this generalization, see Sec. V. In other
words, any higher-order truncation is inconsistent in the
sense that the underlying approximate distribution can-
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not be a quasiprobability, as it was the case for the
Gaussian approximation.

Of course, this does not mean that higher-order trunca-
tion is always a bad approximation. For example, a func-
tion which assumes small negative values in some re-
stricted interval can be an excellent approximation to a
probability distribution for many purposes. Although
higher-order truncation has no systematic mathematical
foundation, it can be justified by the often very good re-
sults it gives. These can be checked in cases where in-
dependent methods of solution are known. In Sec. VI the
method is applied to the problem of second-harmonic
generation. Unphysical features of the Gaussian approxi-
mation to this problem, e.g., that the solutions do not be-
come stationary, are removed if the order of truncation is
increased. As in the parameter regime we consider, i.e.,
above the bifurcation to a limit cycle in classical dynam-
ics, no other method has been applied successfully, the
truncated moment hierarchy proves to be a useful tool.
Since the size of the equations becomes very large for
more than one field and for higher orders, a symbolic ma-
nipulation program for performing the tedious calcula-
tions is almost indispensible.

In cases where the distribution is suspected to be
sharply peaked at a single point, the assumption that
higher-order moments simply factorize can lead to a valid
truncation scheme. Reference 17 compares both schemes
in a simple one-dimensional case.

V. CUMULANTS AND COMMUTATION RELATIONS

In Sec. IT we had seen that the moment hierarchies for
the P function [Eq. (7)] and for the Q function [Eq. (8)]
are equivalent. As it is well known that the Q function is
usually smooth and much better behaved than the P func-
tion, one could come to think that Q is better approxi-
mated by a Gaussian than P, and expect to get a better
approximation by setting equal to zero Q cumulants than
by setting equal to zero P cumulants as it is done in Sec.
VI. The use of Q would imply that one has to work with
antinormally ordered products. However, physically
measurable quantities which correspond to normal order-
ing can easily be obtained from the latter, e.g., with the
help of Eq. (10).

But if one works out this idea for a particular problem,
e.g., in the case of Sec. VI, one finds a surprising result.
After applying the commutation relations, one gets exact-
ly the same numerical values for the moments as before.
Both approximation schemes are completely equivalent.
The following theorem shows that this is a general
feature.

Theorem. Only the second-order cumulants ([aa], ))
depend on the ordering parameter s. All the other cumu-
lants are identical for different values of s. More
specifically,

(la'al, N =41—s)Ka"a)+L(1+s) aa") —(a")(a)
for any s (—1=s=1) (14)

and
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(la™a", »=«[a""a"]. )
for any s,s’' (—1<s,s'<1)if n5*1 or m¥*1 .
(15)

The quasiprobability functions P, in particular P, W, and
Q, therefore differ only in their second-order cumulants.
A generalization to more than one field is straightfor-
ward.

The next example is given to illustrate the theorem.
We write down the definition of an antinormally ordered
third-order cumulant, e.g.,

(aa™)=(aa™)—2(aa")(a")
—(a){a™)+2¢(a)(a")?,

then we apply the commutation relation in the first and
second term

Kaa™?W=(aa+2a")Y—2¢ata+1)(a")
—(a)(a™)+2¢a)(a")?,

and after noticing that the additional terms cancel, we
rediscover the definition of the normally ordered cumu-
lant [Eq. (13)]

Caa™N=(a"a)) .

This, at first glance, is an astonishing result as the
definition of cumulants has nothing to do with quantum
mechanics and commutation relations. However, the
proof is very short.

Proof. Equation (15) follows immediately after insert-
ing Eq. (12) into Eq. (11):

(la"a"), )= _on_

ﬁ* a(ip)"
X[—(s/2)BB*
+1nTr(eiB*“++‘B“p)]

For n =m =1 one finds

(la'al, W =s/2+[ata]l,)
=s/2+{a'a+1)
=(s+1)/2+(ata)—(a")(a)

which is equivalent to Eq. (14).

This theorem has some interesting implications.

(i) The singularities that are often encountered when
using the diagonal P function do not reflect any higher-
order effects. They are entirely due to negative second-
order cumulants, i.e., negative variances. We do not ex-
pect any new insight when switching between the singu-
lar P and the very smooth Q. The choice of a particular
P is entirely a question of taste.

(ii) There still remains some doubt whether it is con-
sistent to keep third-order derivatives in the partial
differential equation for the Wigner function W [Eq. (2)]
when performing a linearization. This procedure
presents no difficulty when performed for the P function
for which one gets either a Gaussian or a generalized
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Gaussian, i.e., a function with a cumulant expansion that
stops after the second order. Therefore, the Wigner func-
tion must also be Gaussian, and its linearized equation
cannot contain third-order derivatives.

(ii1) The fact that the Marcinkiewicz theorem (see Sec.
IV) also holds for nonpositive quasiprobability functions
can now be deduced effortlessly: as it can be applied to
the Q function which is always positive, one sees immedi-
ately that it remains valid for P, W, and the whole family
P,.

VI. APPLICATION

Here we want to apply the cumulant method to the
problem of second-harmonic generation. We will use the
following Hamiltonian? in the interaction picture:

ﬁX(alaz_azal)+lﬁ( lFl_alFT)

+ifi(alF,—a,F}), (17)

where al,a‘; and az,a;r are the Bose operators describing
the fundamental and second-harmonic modes, respective-
ly. F, and F, are the corresponding classical driving
fields, detuned by 8, and §,, respectively. Damping is in-
cluded via coupling to a reservoir of zero temperature.
This leads to the well-known irreversible term in the mas-
ter equation (1) of the form

dp

di __[alaPal]+

irr

[alp’al]

[az,paz]+ [azp,az] (18)

Partial integration of the quasi-Fokker-Planck equa-
tion for the diagonal P function on the one hand or trac-
ing over the master equation on the other hand leads to
the following moment hierarchy:

1

S0

photon number

0

time

FIG. 1. Photon numbers in the fundamental mode (solid line)
and the second-harmonic mode (dashed line) as a function of
time (in dimensionless units). The parameters are F,=20,
F,=0, x=0.4, y,=7,=1, and 6,=58,=0. (For these parame-
ters, the threshold of bifurcation to a limit cycle in the classical
dynamics is F; =15). Result of a simulation of the Langevin
equations derived from the positive P representation. The
spikes are due to nonphysical instabilities of the method. The
number of trajectories is 2000.
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i(aﬂ‘ t1

Tk
kallatal ) =Tr —Eal allalal
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=—[k(y,—i8)Fl(y,—id)+m(y,;+id)+n(y,+id,) at*allamay)

+k(x(alk

+1

k+1, t1 -1
+m(x{al Yat

_l(a‘rk 1 m+2

+n 1 4,4,

+k(k—1)X (a ”‘_7 ﬂ“a]a;’)—i-m(m

-1 ‘rl+1am+1 n>+F (a

ai ™' )Y+F {a

t
“lallaTal))

X ¢ Thk+2, -1 kg ‘r1—1 myn
—2(a*" a3 " laPay ) +F,(a; atal
thot
]kazla‘ a;))

aj ‘)+F2(a1ka;”a,a2_‘)l

—I)X—Z(a“‘ 1

nl
kaylaT 2att) .

(19)

These equations do not look very nice, and things get only worse when one applies second- or third-order truncation,
which can be seen by a brief look at a typical fourth order cumulant:

(ata?a, Y =(alala,)—(a}){a%a,)—(ala})(a,)—2(ala,a,)(a, Y—2(ala,)(a,a,)
—(ala,)(a?)+2¢al)(a?)a,) +4{ala,)(a;)(a,)+4(a})(a;)(a,a,)

+2(ala,)(a,)?*—6(a})(a,)*a,) .

Handling those equations seems only possible by using an
algebraic manipulation program. We derived the trun-
cated moment hierarchies with the help of a program
written in REDUCE, consisting of two main parts. The
first one expresses cumulants in terms of moments for a
given number of variables and for a given order. It is
based on a general formula given by Meeron'® and estab-
lishes rules for replacing moments by lower-order ones.
The second part starts from a moment hierarchy given in
the general from of Eq. (19), writes down the particular
equations for all moments up to a given order N, i.e., re-
placing k, I, m, and n by numbers such that
k +1+m +n <N, and truncates these equations with the
help of the rules established in the first step. As we want
to find a numerical solution, the equations finally are au-
tomatically converted into a FORTRAN subroutine which
can directly be used in a Runge-Kutta implementation.
Aside from saving a lot of boring work, these programs
considerably reduce the probability of an error.

S0

photon number

0

t ime

FIG. 2. As in Fig. 1, but for the solution of the moment
hierarchy Eq. (19) which was truncated after the second order
(Gaussian approximation).

(20)

As an illustration, we will now calculate the dynamical
behavior of the photon numbers in the case of second-
harmonic generation where only the fundamental mode is
pumped, i.e., F;70 and F,=0. The figures show the
photon numbers in both fundamental and second-
harmonic modes, I, ={ala,) and I,=(ala,), as a func-
tion of time. The initial state (¢ =0) is the vacuum.

For comparison, we first repeated the simulations of
Ref. 6 where this problem was treated using the positive
P representation.’ In that approach one introduces extra
space dimensions in order to obtain a Fokker-Planck
equation with a positive semidefinite diffusion matrix,
which can be transformed into an equivalent Langevin
equation. The latter can now be solved by computer
simulation. The result is shown in Fig. 1. One observes
unphysical “spikes” which are due to single trajectories
escaping far into the extra dimensions. It is impossible to
get rid of these spikes by averaging over a larger number
of trajectories. Explanations of this wrong behavior have

1

S0

photon number

0

t ime

FIG. 3. Asin Fig. 1, but here the moment hierarchy is trun-
cated after the third order.
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been attempted by several authors,*®!° but until now no
remedy could be found. So one must conclude that the
positive P representation does not provide reliable results
for the problem of second-harmonic generation with a
large driving field.

In Fig. 2 where the solution was obtained using
second-order truncation of the moment hierarchy Eq.
(19), we find a smooth behavior. Although this
represents some progress when compared to the simula-
tion, the result is still not satisfactory because the mo-
ments do not become stationary. One sees oscillations
which reflect the existence of a limit cycle in the classical
dynamics of the problem.® However, as we are looking at
mean values, their effects should be smeared out in the
course of time when approaching the stationary regime.
This difficulty might be overcome by going to a higher-
order truncation. The results of third order truncation
are shown in Fig. 3. Here, the spurious oscillations have
disappeared and the solution becomes stationary. So it
seems that one needs the contributions of nonvanishing
third-order cumulants to describe the dynamics of
second-harmonic generation correctly. We find that the
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higher-order truncation scheme leads to qualitative
features the Gaussian approximation fails to show.

VII. CONCLUSION

Those quantities that can be measured in experiments
are the expectation values of quantum-mechanical opera-
tors. Usually, expectation values are calculated from the
density operator p or from some discrete or continuous
representation of p. However, there is a more direct way
which consists in writing down the hierarchy of equations
of motion for the moments themselves. As no solutions
to the full, infinite moment hierarchy are known for most
nonlinear problems, one has to truncate the hierarchy in
some way. In this work, a truncation scheme based on
cumulant expansions has been presented. The applica-
tion of the scheme to the problem of second-harmonic
generation shows that in some cases the extension of
truncation to a higher order is needed and leads to new
results. It has also been shown that only second-order
cumulants depend on the operator ordering.
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