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In this paper we derive a complete semiclassical description of Mossbauer spectroscopy with arbi-

trary external or internal perturbations of the active levels. The y rays are taken to be weak enough
to allow us to evaluate the linear Mossbauer response to lowest order in the intensity, in which case
the y-ray field can be treated classically. It induces transitions between level manifolds that can
have arbitrary interactions inside themselves. The nuclear system is described by a density matrix.
In principle, time-dependent perturbations can be handled by the formalism, but the equations are
easier to solve for systems that display steady-state behavior. We consider, in particular, the case of
magnetic radio-frequency modulation of the Mossbauer levels. Utilizing a matrix-continued-
fraction technique, we solve for the absorption spectrum, and we choose numerical i11ustrations
with parameters such that they describe the nucleus ' Fe. In this paper we treat mainly the case of
magnetic modulation, but other experimental arrangements are discussed too. The calculations are
able to treat both saturation and interference effects, which become important when the radio-
frequency modulation is very strong. The new feature that emerges is the occurrence of resonances
arising from the interference of different physical processes. The calculational method and its re-
sults are discussed and compared with other storks.

I. INTRODUCTION

In an early work, ' Perlow investigated how a magnetic
modulation affects Mossbauer spectra, and discussed the
physical mechanisms involved. An oscillating magnetic
field is found to distort the spectral lines or split them
into subcomponents, see Refs. 2 —7. Similar phenomena
involving optical photons have been discussed in Ref. 8.
The observed behavior may derive from several physical
effects; in addition to Zeeman modulation of the energy
levels, the spectral parameters may be affected by the
motion of magnetic domain walls or mechanical distor-
tion caused by magnetostriction.

For a magnetically soft material, a weak external mag-
netic field may become amplified at the position of the
nucleus. If the rf modulation effect can be described by a
simple periodic variation of the level spacing, a moderate
modulation frequency can be seen as sidebands on the
main resonance, but when the frequency of modulation is
increased, the spectrum first becomes distorted and final-

ly coalesces into its main components. This corresponds
to the motional narrowing limit of random-field-induced
relaxation. The occurrence of pure Zeeman modulation
was suggested by Ref. 9, and recently experimental
confirmation has been obtained in the work. ' The tran-
sients due to magnetic Zeeman modulation were de-
scribed by a purely classical phase-modulation theory in
Ref. 10.

In this work we develop a theory for Mossbauer spec-
troscopy under the influence of a rf magnetic field. The
approach is based on a semiclassical picture where all
fields are treated as classical entities, but the nuclear level
scheme is described by quantum mechanics. The spon-

taneous emission of y quanta in the presence of a radio-
frequency field was calculated in Ref. 11. We are treating
an absorber, but in the limit of low y intensity, the
emitter can be discussed in exactly the same manner. For
phenomena that occur to second order in the coupling to
the radiation field no quantum effects are expected. The
ensuing density-matrix equations are solved as matrix-
continued fractions allowing arbitrary field configurations
and polarizations. Our examples involve only magnetic
interactions, but the level scheme used can easily be gen-
eralized to include, e.g. , electric quadrupole interactions.
This case is interesting because it removes the spin degen-
eracy only partially, and we plan to discuss it in a
separate publication.

A common feature of all previous Mossbauer calcula-
tions treating a transverse rf magnetic field is that they
consider a pure rotating field or approximate their
configuration by such a field, see, e.g. , Refs. 11—13. This
so-called rotating-wave approximation does not allow the
exchange of rf photons of different polarization in the
same interaction process. Our results will, consequently,
differ from those of the earlier works, especially for large
rf amplitudes; see the examples calculated in Sec. IV. In
addition most works introduce some further
simplification in their calculated models. The observa-
tions are, however, performed with linearly polarized
transverse fields, and the rotating-wave approximation is
not applicable. In the experiments, the nucleus can ex-
change rf photons of both polarizations alternatively; this
gives rise to interference effects which have not been in-
cluded in the calculations previously. Such complicated
situations can be treated in a straightforward way by the
matrix-continued-fraction method without the introduc-
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tion of any approximations.
Because the y-ray intensity is always small, it is taken

into account only in the lowest approximation; we evalu-
ate the linear Mossbauer response under the influence of
perturbing fields. These other interactions, internal or
external, are retained exactly. Thus we obtain a new
theoretical description of steady-state spectroscopy
which allows the evaluation of the effects of various phys-
ical agents acting on Mossbauer systems. The formalism
could be utilized directly to calculate the effects of a sto-
chastic perturbation. Here we, however, apply it to the
modulation effects caused by a radio-frequency magnetic
field imposed externally. The steady-state results can be
obtained exactly, and saturation and interference effects
can be calculated. For a large enough modulation, the
latter are found to give rise to new resonances, but these
require amplitudes that are, probably, experimentally un-
realistic.

The solution utilizes continued fraction methods in an
essential way. Earlier these have been applied successful-
ly to a broad class of resonance phenomena. Using ordi-
nary continued fractions Autler and Townes' analyzed
the ac Stark effect, and Stenholm and Lamb' solved the
optical Bloch equations of a two-level atom in a standing
wave. Stenholm' ' introduced the same method in the
context of rf multiphoton resonances for incoherent

pumping of the Zeeman levels. Allegrini, Arimondo, and
Bambini' used a matrix-continued fraction to solve a
two-level problem, and Valli and Stenholm' generalized
the treatment to multilevel systems. The method is dis-
cussed in detail in the monograph by Risken.

The outline of the paper is as follows. All necessary
definitions and the formulation of the problem are found
in Sec. II. Since all fields are either periodic or constant,
we are able to write the semiclassical equation of motion
as a vector recurrence relation, which can be solved by
matrix-continued fractions. This is carried out in Sec.
III. In Sec. IV we demonstrate the method by a few ex-
amples of evaluated spectra. Finally, Sec. V contains
some concluding remarks.

the splitting. This is a tensor quantity, but for simplicity
we assume that we can take its component along the
same quantization z axis as in Eq. (1). Then the splitting
1s

eQ V„
F. = [3ml —I (I + 1)] .

2I(2I —1)

Here V„ is the electric field gradient in the z direction.
The quantities I and Q take different values in the levels 1

and 2. For substances without an internal field the main

splitting is due to the quadrupole, which is insensitive to
the sign of the magnetic quantum number mz. The quad-

rupole will make the magnetic splitting (1) asymmetric.
The coupling between the upper and lower levels of the

two manifolds is affected by an operator of the form

H12 g G/& (m
&

ml, m&, k

(3)

where aI, creates a y photon in the state labeled by k, and
G is the appropriate coupling constant. In (3) we have

only retained the energy conserving transitions, which is
called the rotating-wave approximation in spin-resonance
physics. We are going to use the coupling (3) to second

order, which implies that we will encounter only single-

particle averages of the boson operators like (ata ), and

from optical phyisics it is well known that these first-

order correlation functions can be calculated from a
semiclassical approximation. In the following we thus re-

place the boson operators by classical fields oscillating at
a frequency co in the y energy range. For our purposes it
also suffices to look at one frequency at a time; this can be

thought of as the frequency of the detector. The depen-
dence on co is equivalent with the recorded Mossbauer
spectra.

II. FORMULATION OF THE CALCULATION

We are going to discuss Mossbauer transitions between
two manifolds of levels shown in Fig. 1. The transition
1~2 is induced by y quanta of energy %coo. Within each
manifold the energy is degenerate due to the nuclear spin
I, (i =1,2). When the degeneracy is removed, the levels

split into sublevels spaced by radio-frequency energy
differences. The main source of the splitting is the rnag-
netic field B acting at the site of the nucleus. If the nu-
clear g factor is denoted by g; the energy splitting be-
comes

E,- = —
g, p~mrB

where the magnetic quantum number is

ml H I I, , . . . , I, I; pv is t—he nuclear magneton. In the
following we will usually take metallic Fe as our exarn-

ple, and here the magnetic field comes mainly from the
internal hyperfine field which is about 33T.

If the nucleus has a quadrupole moment Q, it adds to

FIG. 1. The two Mossbauer levels with spin I, (i =1,2) have
an average energy spacing %coo, which is supposed to be in the
y-ray range. Each level is degenerate and its sublevels can be
split apart by internal or externally imposed perturbations.
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We utilize a block matrix representation. When the

upper level has the degeneracy
The equation for the off-diagonal block now becomes

M =2I2+1

and the lower level the degeneracy

(4)

P22 P11D +(P)2) (13)

%=2I, +1,
the representation becomes

(M XM) (M XN}
(N XM) (N XN) (6)

E(2) 0 0 D(+)
Q+
0 E(1) +~ D( —

) 0Q
(7)

The coupling D'*' is to be obtained from the multipole
coupling between the y levels induced by the effective
semiclassical y-ray field

E =Epcos~t (8)

and the quantity ~D~ =D'+'D' ' is proportional to the
coupling between the nuclear levels including the proper
Clebsch-Gordan coeScients between the spins I,~I2.
The matrix elements depend on the multipole nature of
the transition; for Fe the transition is of the magnetic
dipole type M1. The same elements appear in the mul-
tipole expectation value induced by the y radiation.

We use a block representation of the density matrix
corresponding to the form (6) including the y frequency
explicitly

P22
(9)

In this representation the Hamiltonian we are going to
discuss follows from Eqs. (1) to (3) in the form

$p 1 0 g 2PNI2~
H

g1PNI1~

Because we need to solve the equation only to lowest or-
der in the y-ray coupling constant, we can insert the di-
agonal blocks in their unperturbed forms into Eq. (13).
As we treat the absorber case we can set p22 equal to zero
and replace p» by a constant quantity p11', which is the
steady-state distribution function for the lower level in
the sample.

Equation (13) is a linear equation in p which can be
solved formally by a linear operator Vl in the form

P
—cg(p(0)D( —

)
) (14)

A =C lm[Tr['M(p ))D' ')D'+'] j

=C Im [ Tr[p, , 'D
' 'Vl (D '+ ') ] J

= C Im(D' 'Q D'+ ') (15)

Here we have introduced the operator Q which is the
adjoint of Q with respect to the trace as a scalar product.
Because the density-matrix time evolution is not unitary
this operator is not the inverse of Q. The subscript zero
indicates that the average is taken over the equilibrium
distribution function in the lower state manifold. The
form (15) is similar to an expression derived by Fano '

and agrees with the conventional view that the observed
spectrum is the Fourier transform of the correlation func-
tion

For a time-independent problem the Fourier transform
may be used to obtain V/, for time-dependent cases other
techniques have to be developed. When (14) is inserted
into Eq. (10) we obtain the expression

p» IC (r) = (D' D )((+r))), (16)
Using Eqs. (8) and (9) we can write the absorbed energy
in the form

A =(E ) (E—Tr p=
where the operators are in the Heisenberg representation.

To show the consistency of our view we evaluate the
expression (15) for the case of no interactions in the mani-
folds 1 and 2. In this case the states can be labeled by the
magnetic quantum numbers m, and m2, and we obtain
from Eq. (13)

=C Im[Tr(D +'p, 2)] . (10)

Here ( ),„denotes a time average, and a constant of pro-
portionality C has been introduced for convenience.

The equation of motion for the density matrix is, as
usual,

2 a) —AE(m2, m()+i I

(17}

which inserted into Eq. (15}gives the expression
(11)

D'+'
2

H=A
( )

1

(12)

where the operator A symbolizes all relaxation terms
needed. The Harniltonian (7) is written in the block form

a=C y )&m)(D(-)~m2)~2
[co ItEE(m „m2)] +I—

(18)

which agrees with the conventional expression for
Mossbauer spectra. We have assumed one relaxation rate
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only; this can easily be generalized. The energy
difference is

AE(mt, m, ) =coo p—tv(g2m2
—g, m, )B +Eg ' E—g'

(19)

Q. cosQt

where both the magnetic dipole energy (1) and the quad-
rupole energy (2) have been written out. The coefficient
~D contains the Clebsch-Gordan coefficients appropri-
ate for the y transition being investigated.

In this section we have reformulated the Mossbauer
measurement in a manner which is useful for our pur-
poses in the following. In Sec. III we are going to see
how to apply this formalism to the case of periodic
modulation of the magnetic sublevels.

III. PERIODIC MODULATION

FIG. 2. Our model consist of two levels with a periodically
varying spacing; for simplicity we ascribe this to the upper level

only. The probing frequency co is detuned by the amount 50
from the average transition frequency. When this is tuned
through resonance, the response traces out the shape of the ob-
served spectrum.

B(t)=BcosQt . (20)

The observed quantities are assumed to be time averages
over a large number of radio-frequency periods. This is
also equivalent with an ensemble average taken after a
time long enough to damp out initial transients.

There are two dimensionless parameters in the theory.
If we introduce a Larmor frequency

The formulation of the Mossbauer measurement given
above is, in principle, applicable also to the case of time-
dependent Hamiltonians. However, in this case the
operator Vl of Eq. (14) becomes much harder to obtain.
For a random noise modulation, the techniques of sto-
chastic processes can be used. This was done in a slightly
different formalism by Dekker and Blume and co-
workers. In our formulation we could apply the
methods developed in laser physics to recover these re-
sults. For a strictly periodic modulation the continued-
fraction techniques' are useful.

Here we assume only one single frequency 0 in the
external modulation and use the radio-frequency magnet-
ic field

p ) (23)

where the detuning

Ao —coo ct) (24)

gives the photon's energy deficiency in affecting the y
transition. The parameter coo is the central y frequency;
by tuning the detected frequency co across this we record
the shape of the observed spectrum. The Hamiltonian
(23) is seen to be of the type (12). In perturbation theory
we assume all population on the lower level and set

pii= & p22-p . (25)

The off-diagonal density matrix element satisfies then the
equation of motion

frequency Q. We calculate the response of this as an ab-
sorber using the formalism developed above. The Hamil-
tonian is taken in the form

Ao+ QocosAt d

Oo=gP ~8/R (21) ~ a- =t p, =2(b,„—+A cOsoQt tI )p2, +—d .
at

(26)

characteristic of the spin resonances, which are all of the
same order of magnitude, we have the quantities

This equation can be solved in steady state by the use of
the Fourier decomposition

0,0r'" n (22) (27)

%'hen g is small we are in the weak modulation limit and
the response to the modulation can be obtained in pertur-
bation theory. Because the width of the nuclear levels is
I, a small value of g indicates that the modulation gives
an oscillation within the linewidth only; this is the slow
modulation case. For a large g' the frequency of the reso-
nances is displaced by more than the linewidth; this is the
fast modulation limit.

fo see an explicit example of our approach and the
physical features of the result, we look at the simple case
shown in Fig. 2. We have a two-level system, the fre-
quency separation of which is varied periodically at the

which gives the recurrence relation

(&&+~a iI ) ~+-,' —
o( k+i+ ~-i)= — ko. (28)

It is straightforward to solve this in the form of a contin-
ued fraction (see, e.g. , Ref. 16) to obtain the result of the
absorption ( l 0)

A —Imd f'p (29)

The present problem is, however, simple enough to allow
an analytic solution. Using the properties of the Bessel
functions J„(x), we easily see that the expression
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+ ~ Qo Qo 1

0 ' " 0 6+10—I
(30)

solves the recurrence relation (28). The observed spec-
trum (29) is now given by

A= J( )r „„""[(a,yr) —kg]'+1
(31)

This is the well-known result for frequency-modulated
subbands. The physical features are seen very clearly
from this expression. For a weak modulation g &&1 the
Bessel functions disappear rapidly and only the central
peak k =0 survives. The corrections come from the
terms k =+1. For a small value of g many sidebands fall
within one linewidth and the line seems to be broadened.
When g becomes large the sideband resonances become
well resolved assuming that the Larmor frequency Qo is

large enough to give sufficient sideband intensities. Phys-
ically this means that the modulation of the two-level
transition 1~2 must be faster than the rate of change of
this modulation. Only in this case can the information
about the modulation frequency 0 be transmitted to the
observed spectrum. If this modulation frequency grows,
the spectrum (31) reduces to the central line in all cases.
Because of the Bessel function sum rule

matrices I,- can be different inside the manifolds 1 and 2.
To obtain the steady-state solution for (36) we replace

the (N XM)-dimensional density matrix by a one-
dimensional array and expand this in the Fourier series

p y R (k)eikor (37)

(38)

Here we have introduced the quantity Dp', ,
' as an N XM

vector representing the equilibrium density matrix of the
lower level 1. This recurrence relation can be solved us-

ing matrix-continued-fraction techniques as applied to
these types of problems in Refs. 18—20.

Because of the imaginary part i I, the operator in the
first term of (38) can be inverted and we can write the
equation in the form

R (k)+ A (k)[R (k +1)+R (k —1)]=—L(0)DpP)'5l, o .

(39)

The matrices in (36) now become [(N XM) X(N XM)]-
dimensional matrix operators (sometimes called super-
operators}, which we denote by underlines. After the in-
sertion of (37) Eq. (36) now becomes

(kQ+H i I )R—(k)+ ,
' V[R —(k+1)+R (k —1)]

(33)

the total intensity of the spectrum integrated over the y
frequency co remains constant. This sharpening of the
spectrum towards the central line is a manifestation of
the motional narrowing phenomenon.

We generalize the present treatment by looking at the
Hamiltonian (12) with a periodically modulated part

D'+' V, 0
H=A

[ j +A 0 &
cosOt .

h,

Here we have defined

A(k) =—'L(k) V,
1

kQ+H i I—
To solve (39) we define the operators L by setting—

R (k)=L+(k)R (k —1) (k) 0)

R(k)=L (k)R(k+1) (k(0) .

(40)

(41)

The time-averaged observable requires the component
R (0), which we can solve as

V, =a;I,„+P;I;, . (34)

For simplicity we neglect the quadrupole contribution (2)
to the spectrum and write R (0}=— L(0)Dp", ,

'

1 —A(0)[L+(1)+L (
—1)]

—:UDp(] (42)
Here we have assumed that the modulation is achieved
with a radio-frequency magnetic field that can have both
a transverse (i) and a longitudinal (~~) component. The
parameters in (34) are

which defines the operator U analogously with the opera-
tor V/in Eq. (14).

From Eq. (39) we obtain the recurrence relations for
the operators L—

e, — g;P~Bq /A,

P;= g;p~B~~ /fi, (i =—1,2) . L (k)= — —
+ A(k) .

1

1+ A(k)L —(k+1)
(43)

%'ith the density matrix in the form of Eq. (9) we obtain
the equation of motion

I——co p&2
—(h] + V&cosset )p&2

—p&2(h2+ V2cosQt )
at

(36)

Here we have retained the possibility that the relaxation

These equations are easily evaluated iteratively on the
computer. To avoid convergence difficulties caused by
round-off errors, the iteration starts from a large value of
k, and all vector components outside this are set equal to
zero. Then the iteration proceeds towards the values
k =+1 which gives R (0}from Eq. (42).

Once the vector R (0) has been obtained the observable
quantity (10) becomes
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A =Im[Tr(D'+'p, z)] =Im(D", UDp', )') . (44)

The scalar product ( ) is defined in the XX M-
dimensional vector space of the matrix p, z. With these
tools we can solve the problem of radio-frequency modu-
lation of the Mossbauer spectrum completely in terms of
matrix-continued fractions. In Sec. IV we look at some
special cases of physical interest.

IV. CALCULATED EXAMPLES

=3?2= 7

I =—
1 2

M1 ao,
3 4 1 1 4 3

1
2

We next fix our numerical parameters to correspond
approximately to the specific case of the 14-keV
Mossbauer resonance in Fe. This is an M1 transition of
the type —,

" '
—,
'' ', where the magnetic dipole transition

conserves the parity (
—). The level structure is shown in

Fig. 3. The internal magnetic field splits the levels by b
&

and 52 in the lower and upper levels, respectively. With
sufficient accuracy we can take the nuclear g factors to be

g2 ———0. 1 and g &

™0.2; this implies that the levels are in-

verted with respect to the ordering of the magnetic quan-
I

FIG. 3. This shows the level scheme of the 14.4-keV
Mossbauer transition in "Fe. The splittings in the two levels
are in opposite directions, which leads to the characteristic six-
line spectrum. The parameters in the text are chosen to approx-
imately describe this case.

turn numbers in the two levels. The result is the well-
known six-line spectrum, where the dipole transitions,
with

~
b m

~

~ 1, have their strengths determined from the
Clebsch-Gordan coefficients by the equation

(I2m2 D'+'~I)m) )(I)mI D' '~I2mz) ~ g Dzq'(g, 8,0)[D'zq(p, 0,0)]'(I)Lm)M Izm2)(I)Lm')M'~I2m2) .
M, M'

(45)

exp( —Rh ) /ks T)

Tr[exp( —)rih) /kz T)]
(46)

In Fe the energy differences are given mainly by the
splitting due to the internal magnetic field of about 33 T.
This, however, corresponds to a temperature of only
about 2 mK, and consequently the experiment is usually

performed at a high temperature giving an even distribu-
tion over the internal states

(47)

Here Dkr (a,p, y) is the rotation matrix element for the
Euler angles a,p, y. In the present case the observed
Mossbauer spectrum is not averaged over the direction of
the magnetic field, and we choose the angles (I() =8=m. /2.
For Fe this gives the ratios 3:4:1:1:4:3for the line inten-
sities. In thermal equilibrium the population on the
lower level is given by the canonical distribution

trix the observable result in Eq. (44) can be written

™y —M(l —) )+k —M(I —) )+k;M((' —1)+k'—M(l' —) )+k'
k, l

k', k'

(49)

This is the equation used to evaluate the observed spectra
numerically.

We take the following parameters for the splittings:

a, /r= —2s, s, /r=so, (50)

where we have chosen the resonance linewidth
(I /2&)=106 s ' as the unit. In a given radio frequency
field configuration the ratio of the g factors gives the ra-
tios

(P)2)(~=Rm( )(+, (i E [1,MI;J'E I1,%]) . {48)

This way there is a unique one-to-one mapping between
the elements. With this representation of the density ma-

where X is the lower state degeneracy in Eq. (5). In the
observed quantity (44), the choice (47) will give a constant
prefactor only; this can be omitted in the following.

When we map the density matrix elements of p, z into
an array R as in Eq. (38), the enumeration of the com-
ponents of R can be chosen as the following:

a) /a~=P) /P2= —2, (51)

where a and p are given by Eq. (35). In order to illustrate
the method and verify that the results are intuitively ac-
ceptable, we choose the simple case a,-=0 first. This
gives a purely longitudinal rf field, which only modulates
the frequency of each sublevel without mixing the levels.
In Fig. 4 we show the spectra, when the radio frequency
is fixed at 0=10I and the longitudinal magnetic field is
increased. We label the graphs with the upper-level split-
ting P2C(0, 10), but from Eq. (34) we can see that each
level experiences a different modulation amplitude de-



3844 MARKKU SALKOLA AND STIG STENHOLM 41

pending on its magnetic quantum numbers. Because the
g factor in the lower level is twice that in the upper we
find the modulation ratios 5:3:1:1:3:5.In Fig. 4 we can
see how each line independently shows a Bessel function
sideband structure according to the result (31). The split-
tings increase and more sidebands appear for an in-
creased modulation; the effect is strongest at the outer-
most lines because these correspond to the largest quan-
tum numbers.

Next we look at the purely transverse case. Then we
have P, =0, and the radio-frequency transitions can mix
the sublevels inside the manifolds. In Fig. 5 we have
fixed the modulation coefficients at cx&= 2cx2=10I and
the radio frequency 0 is increased from the small value

20I to infinity. The latter case corresponds to no modu-
lation, as we explained in connection with Eq. (31). In
the figure we can see how an increased modulation fre-
quency complicates the pattern, but for the two values
A=50I and 25I the pattern is clear and admits an easy
physical explanation. In the former case the radio fre-
quency achieves resonance with transitions in the lower
manifold and the lines show a dynamic Stark splitting
into doublets. In the latter case resonance occurs in the
upper manifold and the lines are split into four com-
ponents. For an infinite modulation frequency the unper-
turbed spectrum is found. For the intensity used in Fig. 5
the rotating-wave approximation holds good, and our
treatment is essentially equivalent with those obtained by

I f 'f
$ ~ 0 \ %

/
T

Q. =20f

p, =2.5(

w~WL J QL
C
O

CL
L0
Ih

Q =35l

i'~ ( a m a UIL

p) =57

aJ&mc iw&()U'I
p, =7.5I

dQ'~(iuL~Uu «a(
P, = 10l~'"&aL iU«+h

-100 -50 0 50 )00
0

t

-100

Q =60f"

c JL1( aL JL
-50 0 50 100

FIG. 4. This shows the absorption spectrum as a function of
detuning from the average transition frequency, when the longi-
tudinal field amplitude P is increased. The case is simple, and
each line acquires its own sidebands with strengths determined
by the Bessel functions [cf. Eq. (31)). The other parameters are
62 = —25I, b

&

=50I, and 0= 10I, which leads to well-
resolved resonances.

FIG. 5. This shows spectra like those in Fig. 4, but for a
purely transverse field. The intensity is chosen to be such that
o. , =101, and the rf frequency is increased. The other parame-
ters are as in Fig. 4. For the two values 0=25I and 50I, the
sidebands couple the levels resonantly in the upper and lower
submanifolds, respectively. Each line is then split according to
the multiplicity of the manifold by the dynamic Stark shift.
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Hack and Hammermesh» and Gabriel. '

For larger modulation amplitudes the various effects
are less easily seen. In Fig. 6 we show a spectrum like
that in Fig. 5 but with the increase modulation intensity
a, = —2a2=50I . The same trends as seen in Fig. 5 can
be discerned in Fig. 6. It shows, however, a distortion of
the line shape and additional resonances between the
main ones. These are the multiphoton resonances known
from radio-frequency spectroscopy. ' ' In this case
they show up for large modulation amplitudes only; the
values of a correspond to a magnetic modulation ampli-
tude of up to 15T. Thus it may not be realistic to attempt
to observe them experimentally at the present state of the
art.

We have also applied the formalism to the case of a

pure quadrupole splitting according to Eq. (2). In this
case the sublevels with +m remain degenerate, and the
transition —,'~—,

' becomes a doublet with the energy split-

ting given by

6=
—,'eQV„. (52)

V. GENERALIZATIONS AND CONCLUSIONS

When, e.g. , a transverse modulation mixes the levels,
each component of the doublet is, at resonance Q=h,
split into a pair of levels corresponding to the dynamic
Stark splitting of the upper manifold 1evels, which have
become coupled by the radio-frequency field. The details
of the treatment can be worked out in a straightforward
way.

Q= 25l

MLJ @JILL JL J0WU~
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FIG. 6. This figure shows the same spectra as Fig. 5 but for
the stronger rf field a, =50I; all other parameters are the same.
A comparison shows that the spectra have become more com-
plex; in some parameter ranges additional resonances are seen.
These features derive from interferences between various physi-
cal processes that acquire additional importance when the field
amplitude is increased.

The calculations above contain several assumptions.
Some of these are harmless because they are essential to
the physical situation characterizing Mossbauer spectros-
copy. In common with optical spectroscopy is the fact
that the frequency of the radiation is the largest frequen-
cy parameter of the problem by a large factor. Hence all
contributions proportional to any power of co

' can be
neglected; in particular the rotating-wave approximation
for the y radiation is excellent. The linewidth is narrow
and the various radiative transitions are well separated.
It is thus possible to separate a single pair of level mani-
folds and consider y transitions between them without in-
terference from other y active levels. Finally there are
only a few y quanta present at any one time. Thus the
gamma intensity is always low, and no saturation effects
need be considered. The radiation is also incoherent, and
no definite phase relationship between the y radiation
and the radio-frequency field must be introduced. In the
present semiclassical calculation the observable results
must be independent of the phase of the radiation.

Some other assumptions are inessential; they are intro-
duced only to simplify the calculations. We have as-
sumed a simple periodic time dependence of the type (20).
This leads to the simple recurrence relation (38), which
allows the continued-fraction solution. The method in it-
self is valid for a more general time evolution. It only be-
comes a more complicated problem to evaluate the opera-
tor 0 of Eq. (14). The other simplifying assumption is
the high-temperature form (47) of the lower-level distri-
bution function. The result is trivially generalized to the
thermal distribution (46). It is also possible to calculate
the lower-level distribution function p'„' in the presence
of the oscillating radio-frequency field. One can solve for
the steady state with the field using a continued-fraction
method, which gives a full series of elements p',t'(k), one
for each Fourier component k. The inhomogeneous term
on the right-hand side of Eq. (38) then becomes nonzero
for all values of k instead of for one single component
only. The equation can, however, be solved with the
continued-fraction Green's function method. The nU-

merical work rapidly becomes rather involved, and we
have chosen not to employ this method here. In the
high-temperature limit, used here, the relaxation process-
es may be assumed fast enough to retain the totally in-



3846 MARKKU SALKOLA AND STIG STENHOLM

coherent distribution (47). We have chosen to look at the
internal magnetic field splitting and the quadrupole split-
ting separately. Our method of approach does, however,
allows us to include both without any additional compu-
tational complications. The ensuing spectra only become
more complex. To facilitate interpretation we have
chosen the numerical parameters such that the important
physical features emerge in a transparent way. Especially
our example Fe derives its splitting from the internal
field. In cases with small intrinsic split tings the
Mossbauer components coalesce, and the interpretation
of the spectrum becomes obscure. Also, less propitious
parameter choices make the line shapes very complicated
and the basic features mix into an unanalyzable multitude
of features.

We have treated the case of a Mossbauer absorber. For
the case of an emitter the treatment is analogous. The
roles of the lower and upper levels are only interchanged,
and the initially nonvanishing population is found in the
distribution p22 instead of in p» as assumed here. The
algebraic treatment remains unaffected.

In conclusion, we have presented a density-matrix for-

mulation of the theory of Mossbauer spectra. The y-ray
intensity is treated in lowest-order perturbation theory;
we evaluate the linear response of the y rays, and other
perturbing effects are included in an exact way. The
cases which reach steady state can be solved, and for a
periodic external modulation the solution emerges as a
matrix-continued fraction. This technique is applied to
the case of magnetic modulation of Mossbauer spectra.
The case of Fe is treated as an example. Our solution
includes saturation and interference effects due to large
modulation amplitudes, and their effects on the spectra is
evaluated and discussed.
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