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A general scheme is presented for calculating the nonlinear optical response in condensed phases
that provides a unified picture of excitons, polaritons, retardation, and local-field effects in crystals
and in disordered systems. A fully microscopic starting point is taken by considering the evolution
of the quantized radiation-matter system described by the multipolar (p.D ) Hamiltonian. For a
molecular system with localized electronic states we derive equations of motion in which the instan-
taneous intermolecular interactions are explicitly recovered and the interaction with the Maxwell
electric field is of the p E' type. It is shown that with total neglect of retardation, these equations
lead to the usual expressions for nonlinear optical susceptibilities in terms of equilibrium correlation
functions of the polarization field of the molecular system. A mean-field approximation for these
equations of motion yields the commonly used local-field expression. Finally, a procedure is pro-
posed for calculating the optical response that fully accounts for retardation, based on a hierarchy
of equations of motion for polaritons.

I. INTRODUCTION

The theoretical calculation of the nonlinear optical
response of condensed phases is an important step to-
wards the interpretation of the many experimental stud-
ies performed in this field. Often, the response is ex-
pressed in a convenient way by means of susceptibili-
ties, ' which are the expansion coefficients of the ma-
terial polarization field in terms of the average Maxwe11
(internal) electric field. The calculation of the optical sig-
nal then follows from using these susceptibilities in con-
junction with the Maxwell equations and the appropriate
boundary conditions. Traditionally, susceptibilities are
considered purely material quantities, given by equilibri-
um correlation functions of the polarization field of the
material system with instantaneous Coulomb interactions
between its constituents. " This result is usually de-
rived by performing response theory on the material sys-
tem with respect to the external laser fields and by notic-
ing that the transverse Maxwell field is equal to the exter-
nal field if retarded interactions are neglected. Howev-
er, the picture of the material system with Coulomb in-
teractions being perturbed by the external fields is micro-
scopically not justified. In general, the transverse radia-
tion field must be considered a degree of freedom and the
evolution of the coupled radiation-rnatter system should
be studied in the description of optical processes. In con-
trast to the common belief that susceptibilities are insen-
sitive to retardation, it has recently been shown both ex-
perimentally and theoretically that in crystals at low
temperature the susceptibilities contain damping con-
stants which are given by scattering rates of mixed
material-radiation eigenstates (polaritons) on phonons.
Many other nonlinear optical experiments on semicon-
ductors, molecular crystals, ' ionic crystals, "' and
solutions' are currently interpreted in terms of creation,

propagation, scattering and detection of excitonic or vi-
bronic polaritons. An example is the creation of pi-
cosecond phonon-polariton pulses in ammonium chloride
and their detection at a different point of the crystal using
time- and space-resolved coherent anti-Stokes Raman
spectroscopy" (CARS). The concept of susceptibilities is
not used in the phenomenological explanation of these
experiments; in fact, the usefulness of susceptibilities in
situations of strong radiation-matter coupling should be
doubted. On the other hand, there are many experimen-
tal situations (see Sec. VI) in which polaritons cannot
play a role and the susceptibilities are useful measures of
the optical response. The connection between these two
regimes is an important problem, which can only be ad-
dressed by treating them from a unified starting point.

Even if the role of the radiation field is totally neglect-
ed, the actual calculation of susceptibilities in dense sys-
tems is not trivial. Namely, the application of response
theory requires the knowledge of the eigenstates of the
material system with instantaneous intermolecular in-
teractions, which for many systems, in particular for
disordered media, cannot be obtained. One therefore
often resorts to the local-field approximation. ' This is
a mean-field theory in which one focuses on the response
of a single molecule to an eff'ective (local) electric field
which contains the effects of the electrostatic interactions
with the environment. The susceptibilities are then sim-
ply given by the single-molecule hyperpolarizabilities
(which are obtained from time-dependent perturbation
theory) multiplied by appropriate local-field correction
factors.

In this paper, we derive equations of motion which
serve as a general starting point for calculating the opti-
cal response of an arbitrary molecular system with local-
ized electronic states, and we discuss several practical ap-
proximate ways to exploit these equations. We consider
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the time evolution of the complete system consisting of
the molecules and the radiation field, which allows us to
describe retardation effects. As in an earlier publica-
tion, ' we use the multipolar (p D } Hamiltonian. ' ' In
contrast to Ref. 15, however, our present approach is
technically much less involved and, moreover, the results
are valid for arbitrary configurations of multilevel mole-
cules. Advantages of the multipolar Hamiltonian over
the often used minimal coupling (p A) Hamiltonian' '
are (i) the appearance of the electric displacement field in
it rather than the vector potential, so that it is inherently
gauge independent and, moreover, the equations of
motion obtained from it lend themselves better for nu-

merical propagation (Maxwell-Bloch equations); (ii) the
possibility to define, under certain approximations, a lo-
cal field (see below). The drawback of the inultipolar
Hamiltonian is the absence of explicit intermolecular in-
teractions in it; these are carried through exchange of
photons. The interactions may be recovered by eliminat-
ing the radiation field, ' but this procedure does not
make a clear separation between retarded and instantane-
ous interactions and, furthermore, it is impossible to de-
scribe mixed material-radiation eigenmodes after this
elimination. The approach that we present in this paper
recovers in a straightforward way the instantaneous in-
teractions (Sec. II}, and still allows for the treatment of
polariton states (Sec. III). It is shown under what condi-
tions susceptibilities can be calculated by using response
theory (Sec. IV), and when these susceptibilities can be
obtained from a local-field approach (Sec. V). In Sec. VI,
we discuss in what situations susceptibilities are no longer
expected to be useful and how in that case, too, our equa-
tions may be exploited to calculate the optical response.
Finally, Sec. VII contains a summary and some conclud-
ing remarks.

This paper focuses on conceptual problems in formu-
lating the theory of nonlinear optical response. Our pur-
pose is to show how from a unified and fully microscopic
starting point different limiting regimes, some of which
have been well explored in the literature, can be reached.
To make sure that the main line of reasoning does not get
buried in massive algebra, we outline most derivations
very brieAy or refer to analogous cases in the literature.

II. EQUATIONS OF MOTION

We consider an arbitrary system of multilevel mole-
cules with localized electronic states coupled to the radia-
tion field. In the dipole approximation, the multipolar
Hamiltonian for this system reads (a caret denotes an
operator)' '

8= gH +H„,d —fP(r) D (r)dr

+2' g f ~P (r)~ dr,

where H is the Hamiltonian of the isolated molecule m

and A'„d is the contribution from the free radiation field.
In second quantization, both can be expressed in the usu-
al way in creation and annihilation operators. ' '
The third term in Eq. (1) gives the interaction between

We stress that in the multipolar Hamiltonian, D (r) is
the conguate momentum of the vector potential
A (r), ' ' so that in second quantization it is totally ex-
pressed in terms of radiation creation (& i,i, ) and annihila-
tion (&i,z) operators only. Explicitly, we have

1/2

y (agie +& gi, e )equi, (4a)
v~„

2Mcok
D (r)=i+

' 1/2

(4b)

with V the quantization volume, e&& (A, =1,2} the trans-
verse unit polarization vectors belonging to the wave vec-
tor k, and &ok ——~k~c the vacuum photon dispersion rela-
tion. The operators 8 k& and &kz obey the usual Bose
commutation relations

t&~i. & ~i. I —&i,i &u.

and, of course, they commute with all material operators.
Finally, the last term in Eq. (1) is a self-energy, in which
P (r) is the transverse polarization field caused by mole-
cule m only. For two-level molecules this term is an
infinite constant which does not contribute to the evolu-
tion, so that it is often omitted completely from the Ham-
iltonian. For the more realistic case of multilevel mole-
cules, however, this term is not a constant and is essential
for the proper description of the Lamb shift. ' Using the
identity Ja (r) b (r)dr= fa(r) b (r)dr for arbitrary
vector fields a and b, and Eq. (2), we rewrite

2m g f ~P (r)~ dr=2m g p .P (r ) . (6)

The basis for calculating optical response is the time
evolution of the coupled radiation-matter system. From
the Hamiltonian Eq. (1) we may derive the Heisenberg
equations of motion for arbitrary operators. The equa-
tion for the photon annihilation operator reads (all opera-
tors taken at time t)

1/2
da gg 27TAcok

RQ)gai g E P(k).e„i,
i dt V

with P(k) —= J dr P(r)exp( —i k r), the spa. tial Fourier
transform of the polarization field. From Eq. (7) and its

the radiation and the molecules. P(r) is the polarization
field in the medium, which in the dipole approximation
may be written as

P(r)= gp 5(r —r ) . (2)
m

Here p, denotes the total dipole operator of molecule m

(position r ), which can be expressed in terms of the
molecular dipole matrix elements and exciton creation
and annihilation operators. D (r), the transverse part
of the electric displacement field at position r, is related
to the Maxwell electric field operator E(r) by

D (r)=E'(r)+4~P (r) . (3)
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Hermitian conjugate for & && the Maxwell equations in
the electric dipole approximation are easily obtained:

with

Bo= gH + —,
' g'P T(r „)p„, (13)

E (r, t)= ———A (r, t),
c Bt

4 ()~
V — E (r, t)= P (r, t) .

c2 gt2 c2 gt2

(8a)

(8b)

= g [H, Q]+2ng[P. P (r ), Q]

,' f dr—[[P(r),Q] D (r)+D (r)'[P(r), Q]I

(9)

(all operators taken at time t). The two contributions in
the last term of this equation are equal, because D (r)
commutes with all material operators. The reason for the
symmetrization used here will become clear below. After
substituting Eqs. (2) and (3) into Eq. (9), we get

= g [B,Q]+2m. g [P P (r ), Q]

—2m g I [/, g] P (r )+P (r ) [P,Q]I

(10)

The transverse 5 dyadic may be used to rewrite

P (r )—:J 5 (r —r) P(r)dr,

with

( 1 la)

5 (r}=—'15(r) — T(r),3
4m

T(r)—= (r 1 —3rr)/r' .

(1 lb)

(1 lc)

The unit tensor is denoted by 1. We now split the trans-
verse polarization field P (r ) into a contribution from
molecule m only and a contribution from all other mole-
cules by substituting Eq. (2) into Eq. (lla). We then find
that the second term in Eq. (10) is exactly canceled by theA
contribution from P (r ) in the third term, whereas the
contributions from all other molecules can be cast into
the form of the instantaneous dipole-dipole interaction
[this is a direct consequence of the symmetrization used
in Eq. (9)]. Details of the algebra involved in these steps
can be found in the Appendix. Explicitly, we obtain

—,. d,
=[IIo Q] —

—,'Q I[& Q] E'{r
m

+E (r ).[p,g]I, (12}

We do not present the derivation here, as it is very simi-
lar to the one given in Ref. (15}(the restriction to a lattice
of two-level molecules in that reference is not essential
for these equations). Next we consider the Heisenberg
equation of motion for an arbitrary material operator Q
acting in the Hilbert space of the molecules,

m, n

where r „—:r —r„and the prime on the summation ex-
cludes the terms with m =n, Equation (12) is our basic
result. We note that this equation is an exact representa-
tion of the Heisenberg equation for Q. The great merit of
writing the equation in this form, is that it clearly
separates the contribution from Bo, which is usually con-
sidered the unperturbed material Hamiltonian when per-
forming response theory with respect to the electric
field. Furthermore, the interaction with the trans-
verse Maxwell electric field has the familiar p E form.
In Eq. (12), however, the electric field still appears as an
operator and may not be considered an external quantity
to which response theory can be applied. Moreover,
E (r) is not a pure radiation operator; in second quantiza-
tion it should be expressed in both radiation and material
creation and annihilation operators by using Eqs. (3),
(4b), and the second quantized form of the polarization
field. Consequently, the ordering of the operators used in
Eq. (12) is important. In the remainder of this paper, we
outline several practical ways to make use of the equa-
tions of motion derived in this section.

III. DEFINITION OF POLARITONS

Because Eq. (12) is a time-local operator equation, it is
possible to define combined matter-radiation excitations
from it. This is not the case in, e.g. , the superradiant
master equation, ' which is another equation for material
operators in which starting from the multipolar Hamil-
tonian intermolecular interactions are recovered. The
reason is that this master equation is obtained by formal-
ly integrating the radiation operator equations of motion
and performing a Markov approximation, so that it only
contains radiation operators at some initial time.

For a rigid lattice of molecules, the calculation of po-
laritons from Eqs. (7) and (12) is analogous to Hopfield's
original derivation, ' which was carried out within the
minimal coupling (p A) Hamiltonian. ' ' We just out-
line the general method here, without showing the actual
algebra. One works in second quantization for both the
radiation field and the material excitations. ' ' As usu-
al in the theory of polaritons, the creation and annihila-
tion operators for the material excitations are assumed
to obey Bose commutation relations (lineariza-
tion). ' ' Then, the right-hand side of Eq. (12) for
any of these operators is a linear combination of these
operators themselves and of the transverse electric field.
The latter must be expressed in both radiation and matter
creation and annihilation operators as explained above.
Combining the thus obtained equations with Eq. (7) and
its Hermitian conjugate for & k&, we obtain a closed
linear set of equations, whose eigenmodes are the polari-
tons. Formally, it is a detour to make the steps that lead
to Eq. {12)in order to obtain this set, since the linearized
material equations may equally well be obtained directly
from the Hamiltonian Eq. {1). There is, however, an im-
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portant advantage to using Eq. (12) as a starting point,
which finds its root in the explicit separation of the inter-
molecular Coulomb interactions in it. To define polari-
tons, one works in momentum (k) space. The equations
of motion are local in k modulo reciprocal-lattice vectors
(G) and couple material operators at wave vector k to ra-
diation operators at k+G for all G. Hopfield' argued
that the k components of the transverse electric field out-
side the first Brillouin zone (umklapp processes) may be
neglected. Within this approximation the equations are
totally local in k, which greatly simplifies the eigenvalue
calculation (cf., e.g. , Ref. 25, where this assumption was
not made). It is important to note that in the p A Ham-
iltonian (i) intermolecular interactions are explicitly
present and (ii) E is the conjugate momentum to the
vector potential, ' ' so that neglecting umklapp contri-
butions in E is equivalent to neglecting radiation
creation and annihilation operators outside the first Bril-
louin zone. This is not the case in the multipolar Hamil-
tonian, where the high-wave-vector radiation operators
are essential to carry the intermolecular interactions.
The most straightforward way to solve for polaritons in
the multipolar Hamiltonian is to neglect umklapp contri-
butions in D; then, the derivation of Eq. (12) is not
necessary. Alternatively, we can work with Eq. (12) and
neglect umklapp contributions in E . Of course, the two
approximations are not equivalent and it turns out that
the former leads to the incorrect polariton dispersion re-
lation, whereas the latter yields the expected dispersion
relation with poles at the transverse exciton frequen-
cies. ' ' ' We illustrate this briefly with the case of a
lattice of N nonpolar two-level molecules (transition fre-
quency A, transition dipole p). Creation and annihilation
operators for an excitation on molecule m are denoted by
B and B, ' respectively, and from these, exciton
operators are defined by B&=g 8 exp( i k r —

) l&N
and by the Hermitian conjugate for B k. For simplicity,
we only consider polaritons with wave vector klp and
polarized parallel to p. Suppressing the polarization in-
dex in the radiation operators, we obtain (k in the first
Brillouin zone)

dpi
i coi, &&+

—(nPQcuk )
' (8&+8 k),dt (14a)

dBk
i QB„(mPAcui—, )' '(8„——a „)dt

iir[J(k)+—2irPA](Bi, +8 i, ) . (14b)

with p =X/ V the average density of molecules in the lat-
tice. The lattice Fourier transform of the dipole-dipole
interaction (for the case kJ.p) is denoted J(k) and defined
through

If umklapp contributions are neglected in D, these equa-
tions apply with K=O; for neglect of umklapp terms in
E, we have a= l. The parameter P is a measure of the
oscillator strength per unit volume introduced by
Hopfield' and is defined as

P=2pp'/A'0,

iriJ(k)= g p.T(r ) pe
m (+0)

Together with the equations for a „and 8 i„Eqs. (14a)
and (14b) yield polaritons through a simple diagonaliza-
tion, analogous to the one performed by Hop-
field. ' ' From the secular equation of this eigenvalue
problem, the dispersion relation of the polaritons is ob-
tained as

4nPQ
~ +0 +2xQJ(k)+(ir 1)4—nPQ

(17)

where co is the frequency of the polariton with wave vec-
tor k and e(k, co) is by definition the crystal's transverse
dielectric function. Equation (17) shows explicitly that
from neglect of umklapp terms in E (it= 1), the usual
form for s(k, co) is obtained, with a resonance at the trans-
verse dipolar exciton frequency. ' ' ' Neglect of um-

klapp contributions in D (lr=o) does not recover this re-
sult. The underlying reason for this is that the instan-
taneous intermolecular interactions (the 4mP contribu-
tion to D ) are dealt with exactly in the derivation of Eq.
(12) and are not affected by the neglect of umklapp terms
in E . Inclusion of umklapp processes in E only intro-
duces small corrections in the polariton dispersion rela-
tion, caused by the effect of retardation on the (trans-
verse) exciton frequency. ' ' Of course, retardation
does play a crucial role in the dispersion of polaritons. Its
primary effect, however, is accounted for by finding the
coupled eigenmodes of the Coulomb excitons (eigen-
modes of Ho [Eq. (13)])and the first Brillouin zone elec-
tric field modes only, and is reflected in the appearance of
cuk =ke in the dispersion relation Eq. (17). The physical
rationale for the unimportance of retardation in the
high-wave-number radiation modes is that these are relat-
ed to short length scales. Therefore, their primary role
can be incorporated in the instantaneous interaction in
the material Hamiltonian Ho. This observation is not
limited to a lattice, but applies to disordered systems as
well. This is the basis for the success of the partitioning
of D which lead to Eqs. (12) and (13).

As a further advantage to our scheme, we note that the
explicit appearance of the Coulomb interactions in Eq.
(13) allows us to incorporate lattice phonons in the stan-
dard way, ' namely, by expanding the interactions in the
deviations of the molecular positions and orientations
from their equilibrium values. We then obtain a material
Hamiltonian Ho which explicitly contains phonon contri-
butions. By contrast, if we do not separate the polariza-
tion contribution to the displacement field as has been
done in deriving Eq. (12), the inclusion of phonons is
much less straightforward.

IV. CALCULATION OF SUSCEPTIBILITIES

In order to obtain susceptibilities, the expectation
value of the polarization field must be expanded in the
average Maxwell electric field
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(P(k, n)) =y"'(k, co) (E(k,co))+fdk, f den, fdk, fdes~'"( —k —co;k, co, , k,co, ):(E(k,, co, ))(E(k,, to, ))+
(18)

Here, the nth order susceptibility y'"' is a tensor of rank
n +1, and the space and time Fourier transform for the
electric field is defined as

=[A,a(t), Q],

with the time-dependent Hamiltonian given by

B,tt(t)=80 —gp (E (r, t)) .

(23a}

G(k )
kk —(co/c) 1

k —(a)/c +i 0+ )
(21)

E,„, denotes the external field„which is a c number, since
it is independent of the state of the system. Subtracting
from Eq. (20) its expectation value, we arrive at

E=(E}+G.(P —(P}) . (22)

In momentum space, the transverse part of this equation
is easily found by multiplying with 1 —kk/k . We then
find that E equals its expectation value up to a contribu-
tion of the order (co/c) . In other words, if we totally
neglect retardation (ro/c =0), Eq. (12) may be written as

E(k, co)= f dt fdr E(r, t)exp( ik r—+inst) . (19)

The polarization field P(k, co) is defined in an analogous
way. If the electric field in Eq. (12) would be an external
c number (say Eo}, an expansion in Eo could be obtained
in the following way. We substitute in Eq. (12) the polar-
ization field for Q and take the expectation value of the
equation. This relates (P) to Eo, but also to the averages
of other material operators generated by the commuta-
tors (to describe nonlinear optics, we of course no longer
use Bose commutators for the material operators). We
proceed by calculating the equations of motion for these
new averages in the same way, etc. This generates an
infinite hierarchy of equations of motion which has to be
truncated at some point to be useful (in Ref. 8, e.g. , this
was done by invoking a factorization approximation).
Now assume that expansions in terms of Eo exist for all
introduced material variables. Substitute these expan-
sions into the generated equations of motion and solve
those iteratively order by order (cf. Ref. 8). This yields
all expansion coefficients and in particular the susceptibil-
ities. In Eq. (12), however, E is an operator, so that the
equation for ( P ) involves averages of products of materi-
al operators and the electric field operator. Therefore,
susceptibilities cannot be obtained through the above
procedure, unless the ad hoc approximation is invoked
that the expectation value of such products factorizes
into the product of the expectation values of the material
operator and the transverse electric field. There is an al-
ternative, more systematic way to view this factorization.
To this end, we consider the formal solution to the
Maxwell equation, which reads

E=E,„,+G-P . (20)

The Green function G reads in momentum-frequency
representation

(23b)

The iteration described above can now be applied to Eq.
(23a) to find an expansion like Eq. (18), but in terms of
(E }.This is easily converted to an expansion in terms
of (E) by using for every Fourier component
E (k, co)=(1—kk/k )E(k, co). We thus conclude that
susceptibilities can be defined if retardation is neglected.
This is equivalent to ignoring polariton effects since the
operator nature of the electric field is neglected. An al-
ternative description of the material evolution is obtained
by changing from the Heisenberg picture to the
Schrodinger picture and giving the equation of motion
for the reduced material density operator
p (t):—TrRp(t), with p(t) the total density operator and
Tr~ the trace over the radiation field. Exploiting the
same technique as used in Ref. 30, Eq. (23a) may be con-
verted into the following Liouville equation for p (t):

(24)

This is the most common starting point for the calcula-
tion of optical response. ' Transforming to the interac-
tion picture, the susceptibilities are obtained from Eq.
(24) as equilibrium multitime and multiposition correla-
tion functions of the polarization field for the material
system described by the Hamiltonian 80. From the
above it is clear that this common definition of suscepti-
bilities completely ignores retardation. Some retardation
effects may, however, still be incorporated into the sus-
ceptibilities. First, in low-temperature crystals the effect
of polariton-phonon scattering can approximately be ac-
counted for by adjusting the phonon damping rates of the
excitonic variables in Ho, as has been shown in Ref. 8.
Second, the complete expression Eq. (22) can be substitut-
ed into Eq. (12), instead of just the unretarded (E } con-
tribution. Although formally correct, it is not clear how
to implement this procedure, because the Green function
G is not time local, so that only a hierarchy of equations
of motion coupling expectation values of material opera-
tors to multitime correlation functions can be generated.
At best, the equations may be made time local again by
invoking a Markov approximation similar to the one in-
voked in the usual derivation of the superradiance master
equation. ' In analogy to this literature, dissipative con-
tributions, similar to superradiant interactions and single
molecule radiative decay, must then be expected to enter
the equations of motion. These dissipative terms are re-
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tardation effects (they vanish if the velocity of light is tak-
en to be infinite), which will affect the susceptibilities.

V. LOCAL-FIELD APPROXIMATION

Et(r, t)=(E(r, t))+ (P(r, t)) . (25c)

Our derivation clearly shows what approximation needs
to be made in order to obtain the local field. The
significance of Eqs. (25) is that within the mean-field ap-
proximation we may focus on the multilevel Bloch equa-
tions for a single molecule in order to find the optical
response of the total system. The effects of intermolecu-
lar interactions are incorporated in the local field. Sus-
ceptibilities expressing the system's polarization in terms
of Ez are then simply given by the single molecule hyper-
polarizabilities. It is well known that [using Eq. (25c)]
these can be converted into the susceptibilities with
respect to (E) by multiplying with the appropriate
local-field correction factors and by accounting for cas-
cading. ' ' We note that the present form for the
local field differs from the expression we obtained earlier
for the special case of a lattice of two-level molecules
[Eqs. (43) and (44) of Ref. 15]. The result in Ref. 15 is
more rigorous in the sense that there we accounted for (i)
retardation effects and (ii) the lattice structure, which
gives rise to finite effective exciton masses (spatial disper-

Let us for the moment neglect retardation, so that Eq.
(23a) holds and susceptibilities may be calculated by
iteratively solving a hierarchy of equations of motion. As
pointed out above, we are faced with an infinite hierar-
chy, so that exact solutions are difficult to obtain. Alter-
natively, this problem amounts to finding the Green func-
tion corresponding to the Hamiltonian 80 for the total
material system. ' The calculation of the Green function
involves the eigenstates of the material Hamiltonian 80,
which for many systems are not known. If the inter-
molecular interactions are neglected, the susceptibilities
are given by single-molecule hyperpolarizabilities. These
are relatively easy to obtain if the number of molecular
states that one wants to account for is not too large.
This motivates one to consider mean-field theories. Sup-
pose that in the hierarchy based on Eq. (23a) we make a
mean-field approximation by factoring the expectation
values of products of operators acting on different mole-
cules. It is easily shown that within this approximation
the equation of motion for any operator Q acting on
molecule m only may be replaced by

x dQ. =[8,Q ]—[P,Q ] Et (r, t), (25a)
i dt

with the local field

E (rtt)= (Et(,r, t)) — x T(r„„)tt„(t)) . (25b)
n (Wm)

If we now completely ignore spatial correlations, take
this expression to momentum space and exploit that the
Fourier transform of T(r) is given by T(k) =4m(kk/k
—1/3), we arrive at the celebrated form for the local
field

sion). Spatial dispersion can also be incorporated in the
above derivation, by using a hard-sphere cutoff in the in-

tegrals over the intermolecular interaction; this is the
simplest way of accounting for spatial correlation effects.

In spite of the success and widely spread use of the
local-field approximation, it certainly has its limitations.
One of these is its incapability to describe exciton trans-
port in four wave mixing experiments. This depends in a
crucial way on the form of the spatial dispersion of the
third order susceptibility, which cannot be recovered

by the simple local-field correction factors, even if spatial
correlations are incorporated in the local field as de-

scribed in the previous paragraph.

VI. RETARDATION: BEYOND SUSCEPTIBILITIES

Although, as discussed at the end of Sec. IV, some re-
tardation effects can be incorporated into the susceptibili-
ties, the concept of susceptibilities is one which by
definition separates the radiation field and the material
system. This is most clearly illustrated by the fact that
the resonances of the susceptibilities, by the very nature
of their calculation, occur at eigenfrequencies of the ma-
terial system described by H0 (excitons) only. Ovander
used this as an argument against the introduction of sus-
ceptibilities. He reasoned that it is the coupled matter-
radiation field which responds to the external laser fields,
so that any experimental signal should show resonances
at eigenfrequencies of this coupled system, i.e., at polari-
ton frequencies. The electric field and the polarization
should thus be treated on equal footing, rather than try-
ing to expand one in terms of the other. First, it should
be noted that the fact that susceptibilities have poles at
the exciton frequencies does not mean that the signal has
the same resonances. A careful analysis of the boundary
condition problem for the Maxwell equations can intro-
duce polariton effects in the resonances. ' Second, in
many experimental situations susceptibilities are very
useful quantities serving as intermediates between the mi-
croscopic dynamics and the macroscopic calculation of
the signal. At high temperatures or in disordered sys-
tems, the coupling of the material excitons to other de-
grees of freedom (phonons, vacancies, etc. ) is stronger
than the exciton-radiation coupling, so that polaritons
cannot play an important role. Let I „be the exciton
damping constant due to other degrees of freedom, which
may be found from a single-photon (linear) absorption ex-
periment. From Eqs. (14) is follows that the exciton-
radiation coupling is (close to resonance) characterized
by &vrPQ. We thus find that polaritons must play an im-

portant role and the usefulness of susceptibilities must be
doubted if 2'»(I,„/0) . ' Typical situations where
this condition is met include low temperature pure crys-
tals. In recent years, several experiments on such systems
have been performed. The series of experiments by Small
and co-workers on naphthalene crystals could still be
fitted using susceptibilities with exciton resonances, but
the width of the resonance had to be identified with the
phonon scattering rate of polaritons rather than excitons.
The transient-grating (TG) experiments by Fayer and co-
workers' provide an even clearer example of polariton
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effects. TG experiments are traditionally believed to
probe diffusion of excitons. Starting from the Haken-
Strobl model ' ' of exciton dynamics, a fully micro-
scopic calculation of the grating signal can be given
showing how the signal's decay rate depends on the exci-
ton group velocity. ' ' ' In the experiments on an-
thracene, ' however, an unusually high decay rate was
observed, which could be explained' ' ' by assuming that
incoherent propagation of polaritons, which move much
faster than excitons, destroys the grating. From a funda-
mental point of view this seems not surprising, but a fully
microscopic calculation of the grating signal incorporat-
ing polaritons and showing how the polariton group ve-
locity plays a role has so far not been given. We remark
that the observation of diffusive polariton propagation
can only be expected in crystals with very high density of
oscillator strength, such as anthracene. The reason is
that diffusive behavior occurs at high scattering (dephas-
ing) rates of the polaritons, which automatically implies a
strong coupling of excitons to other degrees of freedom
(because polaritons only scatter through their exciton
component). As argued above, in materials with low os-
cillator strength this coupling easily reduces the
significance of polaritons.

The cw analog of the TG is the degenerate four wave
mixing (DFWM) experiment. If the polariton dispersion
plays a role in the TG signal, the same must be expected
for the DFWM signal. In the incoherent limit, within to-
tal neglect of retardation, the two signals have been
shown to be related by a Fourier transform. The
DFWM signal is usually identified with ~y '~, where y'
is the appropriate component of the third-order suscepti-
bility. This quantity, however, only contains exciton res-
onances; no polariton dispersion (an explicit calculation
is given in Ref. 35). As mentioned above, the DFWM
signal may still turn out to contain polariton effects when
carefully solving the boundary value problem for the
Maxwell equations. However, this example is a proto-
type situation in which a more direct and probably more
fruitful approach exists in addressing the response of the
coupled material-radiation system to the external laser
fields, instead of using susceptibilities.

The first formulation of nonlinear optics entirely based
on polaritons was proposed by Ovander. In his ap-
proach the total Hamiltonian is expressed in polariton
operators and the nonlinear signal is obtained by apply-
ing the Fermi golden rule to the anharmonic terms in this
Hamiltonian. Drawbacks of this procedure are the com-
plexity of the Hamiltonian in terms of polariton opera-
tors and the fact that it uses the Bose approximation for
the exciton commutators, which is not consistent with
the goal to study nonlinearities. Recently, Hanamura
presented a theory of phase-conjugate FWM in crystals,
in which he considered the perturbation of the crystal's
polaritons by the external field. He divides the space into
a part occupied by the crystal, where polaritons are the
eigenmodes, and the outer space with the external field.
Instead of solving the boundary-condition problem con-
necting the two subspaces, he describes the creation of
polaritons on the crystal's surface by adding to the Ham-
iltonian an interaction term between the external field

—0~k fk =& [~(ki) —~(k2) ilk k~ (26)

with co(k) the polariton dispersion relation. For the non-
linear part, we have to generate a new equation of
motion, etc. We thus obtain a hierarchy of equations for
products of polariton operators. Eventually, we are in-
terested in the expectation values of higher-order polari-
ton creation and annihilation operators (e.g. , ((i, +z ))

1 2

in terms of the external field, because the nonlinear polar-
ization [(P(k, +k2))], and thus the signal, can be ex-
pressed in these expectation values. In the present ap-
proach, the only connection to the external field ampli-
tudes can be made through the expectation values of the
"first-order" polariton operators, which have been
matched on the sample's surface. In order to exploit this,
we take expectation values of all the generated equations
and propose to truncate the hierarchy by factorizing at a

and the polaritons [Eq. (7) of Ref. 40]. Although intui-
tively appealing, this procedure cannot be justified micro-
scopically. Moreover, Hanamura does not explain (or
give) the commutation relations which he assumes for the
polaritons, so that it is unclear what the (microscopic)
origin of the nonlinearities in his theory is.

We propose a procedure to formulate nonlinear optics
in terms of polaritons which daes address the boundary-
condition problem, instead of assuming an interaction be-
tween the external field and the polaritons. We start
from Eqs. (7) and (12) for the radiation and material (ex-
citon) creation and annihilation operators, respectively.
The nonlinearities are contained within the comrnutators

[p,Q] in Eq. (12); the radiation equations are linear. We
split this commutator into a linear part (as if excitons are
bosons) and the exact nonlinear rest term. As explained
in Sec. III, the linear part combined with the Maxwell
equations yields the polaritons as eigenmodes through a
simple diagonalization. The external field falling on the
sample creates polaritons which may be called "first-
order" polaritons. For example, an external field com-
ponent with frequency ~ and wave vector k creates a po-
lariton with frequency cu and wave vector k' determined
by the sample's dispersion relation and Snell's law. The
expectation values of the creation (gi, ) and annihilation

(gi, ) operators of the "first-order" polaritons can be found

by matching the boundary conditions, and are propor-
tional to the external field. (If a finite effective exciton
mass is included, two different wave vectors k' are possi-
ble and the problem of additional boundary conditions
has to be addressed. '

) The nonlinear term in the
equations of motion can always be written as a sum of
products of polariton creation and annihilation operators
at certain wave vectors, and gives rise to the generation
of polaritons at sum or difference wave vectors of the
"first-order" polaritons. For each of the operator prod-
ucts we may again write an equation of motion, which
also contains linear (bosonic) and nonlinear parts. The
linear part is simply given by the same operator product,
multiplied by sums (or differences) of polariton frequen-
cies. For example, the linear part of the equation of
motion for g k gi, reads

1 2



41 NONLINEAR OPTICAL RESPONSE IN CONDENSED PHASES: 3819

certain level the expectation value of the nonlinear term
in the equation into the expectation values of lower-order
products, and single polariton operators. In this way a
closed set of equations is obtained which may eventually
be solved in terms of the expectation values of the "first-
order" polariton operators, and thus yields the signal in
terms of the external field amplitudes. An important as-
pect of this procedure is that the linear term at every lev-
el of the hierarchy is treated in an exact way and fully ac-
counts for the proper polariton dispersion. Therefore,
this method is guaranteed to give signals with resonances
at (sums or differences of) polariton frequencies. A
specific application to DFWM and TG experiments, illus-
trating the proposed scheme, will be given elsewhere.

VII. SUMMARY AND CONCLUSIONS

In this paper we discussed the theoretical calculation
of nonlinear optical response from a fully microscopic
starting point for both the material system and the radia-
tion field. The various procedures and approximations
discussed can be depicted in a schematic way as in Fig. 1.
The general starting point is the multipolar Hamiltonian.
As a step common to all procedures we derive from this
Hamiltonian the Maxwell equations for the field opera-
tors and an exact equation of motion for arbitrary materi-
al operators [Eq. (12)]. This material equation explicitly
contains the instantaneous intermolecular Coulomb in-
teractions, which turns out to be very advantageous. We
showed that in the case of total neglect of retardation
(polariton effects), susceptibilities can be calculated from
Eq. (12) in the usual way, namely, as equilibrium correla-

tion functions of the polarization field of the molecular
system with instantaneous Coulomb interactions. The
optical signal is then calculated by substituting the ex-
pansion Eq. (18) into the Maxwell equations. Further-
more, we showed that by applying a mean-field approxi-
mation to the material system, these susceptibilities can
be obtained from single-molecule polarizabilities through
the well-known local-field approach. ' ' On the other
hand, it is clear that for systems in which retardation is
important (e.g. , low-temperature crystals) an approach
which directly addresses the mixed radiation-matter
eigenstates (polaritons) is favorable. The problem one has
to face in such approaches is that the coupling of the po-
laritons to the external laser fields occurs at the boundary
of the sample and cannot be incorporated in the Hamil-
tonian. Consequently, a simple response theory is not
possible. We proposed a scheme based on a hierarchy of
equations of motion for polariton operators, obtained
through Eqs. (7) and (12), which is truncated by a factori-
zation approximation in the nonlinear terms. The cou-
pling to the external field is made through the boundary
condition. This procedure yields nonlinear signals with
resonances determined by the polariton dispersion, and
not by the exciton dispersion (as in the susceptibilities).

As discussed in Sec. VI, there are many experimental
situations in which polariton effects cannot play a role
and susceptibilities are useful measures for the nonlinear
response. On the other hand, there are also many current
nonlinear optical experiments ' ' in which polariton
properties are probed. It is therefore useful to see how
approaches dealing with these different regimes are ob-
tained from a unified starting point.

MULTIPOLAR HAMILTONIAN

NO INTERMOLECULAR INTERACTIONS

MAXWELL EQS. &. MATERIAL EQS.(12)
WITH INTERMOLECULAR INTERACTIONS
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APPENDIX

NO RETARDATION:

SUSCEPTIBILITIES

RETARDATION:

POLAR ITON

H IERARC I3Y

In this Appendix, we expand on the derivation of Eq.
(12) in the main text from Eq. (10). We concentrate on
the second and third terms in the right-hand side of Eq.
(10):

I =2' g [P P (r ) Q]

MEAN FIELD:

SUSCEPTIBILITIES
IN LOCAL-FIELD

APPROXIMATION

2' g j[P—, Q] P (r )+P (r ).[p,Q]] .

(Al)

Working out the commutator within the first sum and
separating P (r ) in the second sum into contributions
from the individual molecules, we obtain

FIG. 1. Diagram illustrating how the different approaches to
calculate nonlinear optical response discussed in the text derive
from a common root.

I =I]+Iz
with

(A2a)
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and

2—7r g I [ls, Q].P (r )+P (r ).[p,g] I

(A2b)

Iz= 2tr—g g I[ls,g] P„(r )

m n (Wm)

(A2c}

Clearly, the second term within the 6rst sum of I, cancels
the first term in the second sum. Using Eq. (A3b) and the
fact that 5 is a symmetric tensor, the two remaining
terms in I, (P [P (r ), Q] and P (r ) [p,g]) are
also found to cancel each other, so that I& vanishes iden-
tically. %e now turn to the evaluation of I2. To this end
we substitute Eq. (A3b) into Eq. (A2c) and use the expli-
cit form for the transverse 5 dyadic, given in Eq. (11), to
obtain

m n (Wm)

P„(r)=P„5(r—r„), (A3a)

Here, P „(r) is the transverse part of the polarization field

caused by molecule n only, evaluated st position r. The
total polarization field due to molecule n is given by [cf.
Eq. (2}]

(A4)

with r „=r —r„. In the second term of Eq. (A4) we
now interchange the dummy labels m and n and we use
the properties T; (r „)= T; (r „)and T( —r) =T(r) to ar-
rive at

so that with Eq. (11a) we find for its transverse part

P „(r)=5 (r —r„)P„.
m n (Wm)

(A3b) Substituting this result into Eq. (10}yields Eq. (12).

(A5)
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