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In the preceding paper we developed a formalism based on the true modes of the universe con-
taining a leaky cavity to analyze the relationship of quantum noise inside that cavity to that outside.
We illustrate this formalism here by studying several active systems. We analyze both an ordinary
laser and a laser operating in the phase-locked regime. We calculate the extracavity quadrature
variances for the phase-locked laser and find that the spectrum of noise reduction in the squeezed
quadrature is Lorentzian. Our formalism is also applied to a two-photon correlated-spontaneous-
emission laser. We find the familiar result that with 50% squeezing in the phase quadrature of the
field inside the cavity, one has nearly 100% phase squeezing outside the cavity. However, under
different conditions the phase quadrature of the intracaUity field is nearly perfectly squeezed, but the
extracauity field shows almost no squeezing in its phase quadrature. We also analyze the effect of
finiteness of measurement time on the extracavity quadrature variances.

I. INTRODUCTION

In the preceding paper' (henceforth referred to as pa-
per I), we have developed a formalism to relate the quan-
tum noise in the optical field inside a leaky cavity to the
noise in the output field. This formalism is based on the
rigorously defined modes of a larger, perfect cavity
(which we call the "universe" in the limit of infinite
volume) that encloses the leaky cavity completely and has
perfectly reflecting ends. In this formalism, the inside
and the outside of the cavity of interest are quite natural-
ly coupled to each other via the modes of the universe.
We have shown how one may derive in this formalism the
spectrum of squeezing of the output field. We also
presented a simple physical picture that encompasses the
two essential elements of the inside-outside problem: the
correlation of the input field and the intracavity field aris-
ing at the leaky mirror and the fact that the output field
is the sum of the transmitted cavity field and the reflected
input field.

In a recent letter, some of us have shown that a two-
photon correlated-spontaneous-emission laser (CEL) can
generate bright squeezed light. The analysis involved
coherently pumped cascade three-level active atoms in-
teracting with a single mode of the radiation field inside a
high-Q cavity, which allows multiple passes and thus a
large effective interaction length necessary for high gain
and squeezing. However, the question of how the degree
of squeezing of that intracavity mode relates to that of
the field observed outside at a detector was left open. We
address such a question in this paper, basing its answer
on the analysis of paper I.

In this paper we further discuss the general formalism
of paper I by analyzing some properties of an ordinary

laser and a laser exhibiting phase locking, such as the
two-photon CEL. We shall also address the issue of
signal-to-noise ratio for the specific case of measurement
of a very small phase difference. For this case we shall
also derive some useful expressions to calculate the level
of noise reduction in the output of a broad class of laser
devices in which the intracavity field is described by a
Fokker-Planck or master equation. We shall see that in
certain situations the degree of intracavity squeezing can,
in fact, exceed that of squeezing of the detected field,
which may seem surprising at first glance. However, we
shall see that this result may be understood, in accor-
dance with our physical picture, in terms of the unusually
high decay rates of intracavity phase correlations in such
regimes of operation.

In potential applications, such as gravitational-wave
detection, the total measurement time is often quite limit-
ed. We shall take into account here the finiteness of mea-
surement time, which modifies the detected "spectrum of
squeezing" as well as the signal-to-noise ratio of mea-
sured quantities. We shall see that for measurement
times comparable to or lower than the intracavity corre-
lation time, the degree of observed squeezing can be quite
substantially lower than possible with infinitely long mea-
surement time.

The layout of the paper is as follows. We shall analyze
in Sec. II measurements of small phase or frequency
changes for an ordinary laser and calculate the extracavi-
ty phase noise for a phase-locked laser. These analyses
will be based on the mean values and normally ordered
variances of quantum operators for which classical
Langevin equations may be written down. The c1assical
Langevin equation formalism will be replaced in Sec. III
by the alternative Fokker-Planck formalism for the calcu-
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lation of the spectrum of squeezing. In Sec. IV we apply
this general Fokker-Planck formalism to the two-photon
CEL. We shall see that by dispensing with one-photon
resonance and initial atomic coherences involving the
middle level, the maximum squeezing of the intracavity
mode is 50% while the detected field can be almost per-
fectly squeezed. Almost the exact reverse holds, howev-
er, if exact one-photon resonance and initial atomic
coherences involving the middle level are present. In
particular, the intracavity field may be perfectly squeezed
while the outside field is then not only unsqueezed in the
same quadrature but has, in fact, increased noise in the
conjugate quadrature. In Sec. V we shall briefly analyze
the effect of finite measurement time on quadrature vari-
ances. Finally, in Sec. VI the conclusions of the paper
will be presented.

5$(t)=(b,v)t . (2.5)

Using this expression in Eq. (22) and then substituting
into Eq. (I.3.17), which is

1 /2

A,„, (5')= 2I
T

resonance mode 5' =0 of the detected field. We shall see
in Sec. III that this mode has, in general, the largest noise
reduction. However, modes with 5co&0 may also be
treated in a very similar way.

Consider the example of an ordinary laser, in which a
small frequency change is to be measured. This measure-
ment is limited in precision by phase noise. The phase
change inside the cavity is

II. PHASE MEASUREMENTS:
SIGNAI. -TO-NOISE RATIO INSIDE

AND OUTSIDE THE CAVITY

In many situations (e.g. , ring laser gyros, gravitational
wave detection} we are interested in measuring a small
phase change. If the field quadratures a& and a2 are
defined relative to the initial phase $0 (for a full discus-
sion of phase and amplitude fluctuations in terms of the
a, and a2 quadratures, see Ref. 4),
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fiQT
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2I n0

T f (bv)tdt
0

1/2
2I no (Qv)2 2

T 2

we find a 5( A2(0}) at the detector
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(2.1a)

(2.1b)

(2.1c}

then the small phase change 5$ mostly changes ( a& )

5&a, & =(a, &5y=+n, 5y, (2.2)

assuming that the amplitude of the field is well stabilized
and large ((b,a, )'/ (((a, )). A similar equation then
relates the fluctuations in a2 to the fluctuations in P. The
signal-to-noise ratio is then

5&a, )

((gy2) )I/2 ((ga2 ) )i/2
(2.3)

where no-—(ai ) inside the cavity. Equation (I.3.17)
may in turn be used to calculate the signal 5( A z(5') ) at
the detector as a function of the intracavity 5(a2). In
this section, we restrict our discussion to the on-

From Eqs. (I.3.25) and (I.3.20) (equations in paper I are
referred to here by affixing I to the equation numbers) we
can relate the photocurrent noise for the phase quadra-
ture at the cavity line center, which is (b, J2(0)) from
Eq. (I.3.27), to the phase fluctuations in the cavity

2I n0
&a J',(0)&=—+

4 T

X dt' dt":b, t' 6 t": „„,
(2.4)

where T is the measurement time. This is the signal, and
the noise is given by Eq. (2.4}.

To evaluate (2.4), we note that the normally ordered
expectation values of intracavity field operators can be
evaluated from a Fokker-Planck equation or from the as-
sociated classical Langevin equation. The Fokker-Planck
approach will be discussed later. Here we use the simpler
approach, which is to ~rite for the evolution of the phase
a stochastic equation

P=F~(t),
where the correlation function for F& is

(Ft(t)Ft(t')) =2Dt~5(t t')—
(2.7)

(2.8)

(Dt& is half of the laser linewidth). By integrating Eq.
(2.7) from 0 to t, taking its second moment, and using Eq.
(2.8), one may easily show that

(:bP(t')bP(t"):)„„=2D~~t (, (2.9)

where t & is the minimum of t', t". Substitution of (2.9)
into (2.4) gives the "noise"

(b 2 p(0) ) = ,'+ ', I noDtt, T—— (2.10}

Since Dtt, -I /'no, the second term in (2.10) is much
larger than the first provided I T »1. In this limit, the
signal-to-noise ratio (2.3) becomes [using (2.6) and (2.10)]

S 3T
2 2D~~

(2.1 1)

Thus by equating the signal to noise, we find that the
minimum detectable (hv) is hv;„=2+2Dt& l3T, as ex-



41 TREATMENT OF THE SPECTRUM OF. . . . II. 383

pected from the phase-diffusion noise. Note that inside
the cavity 5ttt=b, vT [by (2.5)] and ((b,P &)'

=[2Dtt, T+(4no) ']' [by (2.9)], so in the limit I T»1
the signal-to-noise ratio inside the cavity is

cav

T=Av
1/2

(2.12)

P=dt, (ttt)+Ft (P, t), (2.13)

which differs from (2.11) by a factor v'3/2=0. 87. This is
not a large difference, but it shows that the detection pro-
cess, and the accompanying filtering, must be considered
in every case (a point also shown by Gea-Banacloche,
Scully, and Anderson for the same problem with a
different detector model).

The method by which (2.11) was evaluated —through a
Langevin equation for a classical variable {{) associated
with the normally ordered Fokker-Planck equation-
may be readily generalized to lasers and masers with
phase locking (to $0). For such cases we have

III. QUADRATURE VARIANCES OUTSIDE
THE CAVITY IN THE LIMIT T~ 00

In this section we will derive, in the long-
measurement-time limit ( T~ Oo ) explicit expressions for
the quadrature variances outside the cavity via the
Fokker-Planck equation approach. The effect of finite
measurement time on quadrature variances outside the
cavity will be discussed in Sec. V.

As the measurement time T~~, the normally or-
dered quadrature variances of the field outside the cavity
are given by Eq. (I.3.26), which involves normally or-
dered two-time correlation functions inside the cavity.
These normally ordered two-time correlation functions
may be found by using the Fokker-Planck equation for a
normal-ordering distribution function, say the Glauber-
Sudarshan P function, describing the intracavity field.
For any specific problem such a Fokker-Planck equation
may be obtained from the master equation for the field.

Corresponding to Eqs. (2.1b) and (2.1c) we define c-
member quadrature variables as

where d& is responsible for the phase locking and Ft,
satisfies

t', =(t e '+t 'e ')/2, (3.1a)

(Ft,(ttt, t)Ft, ($, t') & =2Dtt, (P)5(t t') . — (2.14) 8~=(t e ' —6 "e ')/2i . (3.1b)

Linearizing about the steady-state laser phase $0 that
satisfies d&(ttto) =0, we find

In terms of the quadrature variables 8, and 82, the
Fokker-Planck equation for P(C, 8",t) may be rewritten
as

d
dt

Defining

ad tt
bttt+Ft, (go, t) .

a Po
(2.15)

(2.16)

a = a a a'
P(8„@~,—t) = — d, — dq+ q D),

a2 a2
+ ~D22+2 D(q P(8), @2,t),

at'~ 1 2

(3.2)
we can solve (2.15) to obtain

it ttt(t)=httt(0)e '+ J e ' Ft,(f„t')dt' .
0

The correlation function is then found to be

(:~p(t )~p(t ):&..„
D$4t(ko) y&~t' t"

~

——y (—t'+t")
(e ' —e ' }

Vp

+&:~y'(0):&,.„e "

(2.17)

(2.18)

&:&.,': &,.„=((~~, )'&,

(:4a (t)ba, (0):&„„=& b @,(t)t@,(0) &,

(3.3a)

(3.3b)

where d, and d2 are the drift coefficients and D„, D22,
and D&z the diffusion coeScients. According to the prop-
erties of the Glauber-Sudarshan P function, normally or-
dered moments of the quadrature operators a, and a2
may be directly evaluated from P(6'„82,t). For exam-
ple, it follows from Eqs. (2.1) and (3.1) that (a~ &

= ( e~. &

and

which is stationary if we choose (:hP (0):&„„to have the
steady-state value Dt t, (go) /y t,.

In any case, when (2.18) is used in (2.4) one finds, for
sufficiently long times (yt, T »1),

where b, 6 .= t, —( t & and j= 1,2. The equations of
motion for the first- and normally ordered second mo-
ments of the quadrature operators are readily found by
using the Fokker-Planck equation (3.2},

41 noD~~(ttto)
AA 2(0) =—+

4 rt,
(2.19)

—„&@,&=(d, &,

—((bt, ) &=2(djb, b', &+2(D, &,
dt

(3.4)

(3.5)

and thus when Dtt, ($0) is negative, we have squeezing.
The same result will be derived in Sec. III from the
Fokker-Planck equation, after which it will be applied to
the specific problem of the two-photon CEL in Sec. IV.

with j=1,2.
We shall now investigate the statistical properties of

the field in the long-time limit when steady state has been
more or less attained for the mean values and fluctuations
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of the field. It follows from Eq. (3.4) that the steady-state
locking point (or mean value) (Cip, 82p) satisfies the fol-
lowing deterministic equations:

d (Cio @2p)=0, j= 1,2 (3.6)

For simplicity, we assume in the following discussion

t}d,(8,p, 82p) t}d2(@ip,C~p) =0
t}@~o t}Bio

(3.7}

5(ej&,
j 0

(3.8)

where use has been made of the stability conditions at the
locking point (8ip 82o}

t}dj
aej,

t}dj(t io @2o) (0, j=1,2.
J

(3.9)

According to the quantum regression theorem, ' the
two-time correlation functions of the system obey exactly
the same dynamical law of evolution as the one-time
functions. Thus it follows from Eqs. (3.8} that for t & t ',

namely, that the steady-state fiuctuations in the a i (am-
plitude) and a2 (phase) quadratures are decoupled [cf. Eq.
(3.12)]. Considering small fluctuations around the lock-
ing point (Cio, 82p), we expand Cj and d in Eq. (3.4)
around the steady-state locking point (4',o, 82o) up to first
order in deviations from it. Using Eqs. (3.6) and (3.7), we
find that in the long-time limit the deviation 5( 6 ) of the
mean value ( Cj ) at time t from its steady-state value Cjp
evolves according to the law

d t}d (@lp @20)
5 8 = 5

:&J(5'):=yf (6@J(t)ACJ(0))cos(5rpt)dt

2ylad, /aejl,
IM /t}C

I +(5')
r Dj, (@io @zo) j =1,2

lad, /ae, l,'+(5 )'

(3.13a}

(3.13b)

:sj(0):=(:aJ,'.(0):)=
I

~ (:a,")„„. (3.14)

For the a2 quadrature the result is the same as Eq. (2.19),
since D22( @,o, 4 2o) =noD&&((()o) and It)d2/t}@g I p

=y&. Equation (3.14) gives the relation between the nor-
mally ordered quadrature variance (:ha:)„„inside the
cavity and the minimum of that outside the cavity. They
differ by a factor of 2y/It}d /BC lp, which is twice the ra-
tio of the cavity intensity loss rate y to the locking
strength It)dj/t}A'Jlp. In other words, whether there ex-
ists more squeezing outside the cavity than inside or not
really depends on this factor. Besides Eq. (3.14), another
relation connecting the inside and outside variances can
be found from Eq. (3.13a)

1 :S N:6 co =: 0: „, j=1 2.

where y=2I is the cavity intensity decay rate. Equa-
tions (3.13) are Lorentzian centered at the cavity mode
frequency 0 (i.e., 5rp=O} with full width at half max-
imum (FWHM) 2lt)dj/t}@jlo. When DJJ(Bio, @2p)(0
(j= 1 or 2), squeezing of the jth quadrature occurs both
inside and outside the cavity (see Fig. 1}, and the
minimum noise outside the cavity is obtained at the cavi-
ty mode frequency 0 (i.e., 5ro=O):

d
(&@J(t)&—@,(t') ) = — (&@j(t)&@j(t')) . (3.15)

The solution of Eq. (3.10) is simply

(&@J(t)&@J(t')& = ' ' ' ((&@J)'),

(3.10}

(3.11)

IO
CV

O

(:+ . :)„„=((b@.) ) = Djj(@10 @20)

Bd,-/B6,.
(3.12)

Substituting Eqs. (3.3b), (3.11), and (3.12) into Eq.
(I.3.26), we obtain the spectrum of squeezing outside the
cavity

where ((LLCJ} ) are normally ordered quadrature vari-
ances in the steady state [see Eq. (3.3a)]. These normally
ordered variances can be found from Eq. (3.5) by setting
d/dt=0 and expanding d and D J around the locking
point (6,o, 8zo) up to first order in bC;=8; —8;p
(i = 1,2),

f- 0

M

True Vacuum

CV

O
-5

1

SCALED DETUNING

FIG. 1. Spectrum of squeezing for the a2 quadrature vs the
scaled detuning 5co/IBd, /M'J Io. The dashed line represents the
noise level S2=0 for the true vacuum. The Sgure is plotted by
assuming perfect extracavity squeezing, which resembles the sit-
uation of the two-photon CEL (see Sec. IV A).
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In the next two sections we will only calculate the
minimum in the spectrum of squeezing (bA J(0))
=

—,'+:SJ-(0):.

IV. T%'O-PHOTON CORRKLATKD-
SPONTANKOUS-EMISSION LASER

In this section we apply the general formalism for the
quadrature variances outside the cavity obtained in Sec.
III to the two-photon CEL, i.e., a laser with coherently
pumped cascade three-level atoms interacting with a
single-mode radiation field (see Fig. 2). We consider the
situation that the jth atom is injected into the laser cavity
at time t- with initial populations p„, pbb, and p„and—ivt.
initial coherences p,'b(tj )=g, (t& )'=p, be ', p{„(t )

=p'b(tj)'=pb, e ', and p,', (tj)=p'„(tj)'=p„e
where a, b, and c refer to the top, middle, and bottom lev-

els, respectively, v is the actual laser frequency, and p,b,
pb„and p„are the same for all atoms. We assume per-
fect two-photon resonance co„=2v and denote the
atom-field detuning for the one-photon transition by
b, =to,b

—v=v —cob, . Here fico; is the energy difference
between levels i and j (i,j =a, b, c}. In the following, we
discuss two cases (A) b,%0, pb& =p,& =pb, =0 and (B}
b =0, p,&%0,Pi„%0, separately.

A. 08'-resonant two-photon CKL

When the two-photon CEL is off-resonant with the
one-photon transition (b,%0}and the middle level b is not
populated (i.e., pb&

=p,&
=pb, =0), the master equation

for the reduced density operator of the intracavity field of
the two-photon CEL in the linear approximation may be
obtained by using the density matrix approach of the
quantum theory of the laser,

FIG. 2. Energy-level diagram for the two-photon correlated-
spontaneous-emission laser. 6 is the atom-field detuning for
one-photon transition.

p={ ,'a[p,—Q—(aa p apa)—+p„X (pa a —apa )

+p„X(aap
—

a pa)+p„X'(paa —apa)]

—
—,'y(pa a —apa )+H.c. ) i(Q—v)[a—a,p],

(4.1)

with the linear gain coefficient a=2r, g /I, the cavity
(intensity) loss rate y, and X= I /(I —ib, ). Here r, is the
atomic injection rate, g the atom-field coupling constant
(for simplicity, taken to be the same for the a band b--c

transitions), y„ the atomic decay rate (same for all lev-

els), and Q the cavity quasimode frequency.
Converting the master equation (4.1) into the Fokker-

Planck equation (3.2) for the Glauber-Sudarshan
P(gi, Cz, t) function, one finds explicit expressions for the
drift and diffusion coefficients

d& =
—,'6i{a~X{[p„—p„+2(b/yz)~p„~sin(8„—2PO)] —yI

+ —,
'

82{a)X ~
(b /y „)[p„+p„—2(p„(cos(8„—2/0)]+2(Q —v)),

d2 =
—,
' @z{a~X

~ [p„—p„—2(b /y „)~p„~sin(8„—2/0)] —y I

—
—,'8, {al& (~/y„)[p„+p„+21p„Icos(8„—2/0)]+2(Q —v)J,

Di&
=

—,'a/2
/ {p„—/p„/X [cos[8„—2$0+arctan(b /y z )]I,

Dzz =
—,'a{X

[ {p„+ /p„/X [cos[8„—2$0+arctan(h/y z )]J,
D, i = —

—,'a~P„X{sin[8„2$0+arcta—n(h/y „)],

(4.2a)

(4.2b)

(4.3a)

(4.3b)

where 0;~ =argp, - .
There exist two stable laser phases' $0 satisfying

8„—2/0= —,
'n. sgnb, mod2n . (4.4)

Assuming that the injected atomic coherence does not
afFect linear mode pulling, we find

Substituting Eqs. (4.4) and (4.5) into Eqs. (4.2}, one sees
that Eq. (3.7) is satisfied in the current linear theory.
Consequently, we may use results obtained in Sec. III.

The linear gain G of the two-photon CEL may be
identified from Eq. (4.2a) and is approximately equal to
the cavity loss y in the current linear theory, i.e.,

v= Q+ —,'a ~X ~ 5/y „. (4.5) G =alXI'(p..—p„)+2olX I'Ip.,tl/y „=y . (4.6)
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= —2alXI'lp. ,al /y „&O,
=-,'al&l'(p. .—Ip.,~l/y, ) .

(4.7a)

(4.7b)

Substituting Eqs. (4.7} into Eq. (3.12) we find the intra-
cavity variance in the phase quadrature of the laser field
to be

(~~', &,.„=&:~u,':),.„+-,

,'( I+-p..y ~ /PI. ,~I » (4.g)

which is the same as no((5$) ) found in Ref. 2. Substi-
tuting Eqs. (4.7) into Eq. (3.14) and using Eq. (4.6), we
find the quadrature variance outside the cavity to be

& 5A', (0) &
= &:b,A ,'(0):& +-,'

Paa+Pcc+Paa(Paa Pcc )3 A /Ipac~l
(4.9)

sip.,~l/y,
In the one-photon far-off-resonant limit lb, l/y z »1, we
obtain simultaneously minimum noise in the phase quad-
rature both inside and outside the cavity, ( b,az )„„=—,',
(&& i(0))=yz/(glp„hl)« —,'. Namely, we find 50%
squeezing inside the cavity and nearly 100% squeezing
outside the cavity for the two-photon CEL (see Fig. 1).

To gain physical insight into this result, it is important
to note that (i) this result is obtained near threshold'
since Eq. (4.6) is used, and (ii) IBd2/B@zl =G =y in the
limit Ib I/y„»1 as is evident in Eqs. (4.6) and (4.7a).
Consequently, this result follows directly from Eq. (3.14)
since the ratio 2y/Ic}d2/84'2IO in Eq. (3.14) is 2. In terms
of the physical picture developed in paper I for the
inside-outside problem, this regime of operation of the
two-photon CEL is exactly identical to that obtained for
the degenerate parametric oscillator just below thresh-
old, " with the e parameter in Eq. (I.4.6) taking on the
value —,'.

B. Resonant two-photon CEL

When the one-photon resonance condition is satisfied
(i.e., b, =o) and pbb%0, pab%0, pbcAO, there is no fre-
quency pulling v =0 from symmetry considerations.
There exists only one stable laser phase. When 8,~ =8&„
the stable phase is

$0=8,b
—

—,
'm=

—,'(8„—m) .

The drift coeScients can be found as

(4.10)

d, =-,'[a(p„—p„) y]@ +(—.g/I )( lp. I+ Ip, I ),

di =-,' [a(p..—p„)—y]@2,

and the relevant diffusion coef5cient is

4 a(p..+pbb Ip., I }

(4.11a)

(4.11b)

(4.12}

Using Eqs. (4.4) and (4.6) in Eqs. (4.2b) and (4.3b), we
have

M2 =
—,'a I& I'(p..—p„—2lp.,~ I /y ~ ) ——,

' ya 2

p.,+2pbb +p„—2lp„ I
+y /a

4(p„—p„+y/a)
(4.13)

The variance outside the cavity is found from Eqs. (3.14),
(4.11b), and (4.13) as

(sJ,'(0)) =-,'+(:ai,'(0):)

2(p..+pbb
—

Ip., I )y /a
4 (p„—p„+y/a)'

For the initial atomic populations

p„=—,
'

I 1 —[2(2A, +1)y/a]'~ —(A, —1)y/aj,

Pbb
——

A,y /a,
p„=—,

'
I 1+[2(2A, + 1)y /a]' —(A, + 1)y/a ),

(4.14)

(4.15)

and coherences lp; I=(p,p")'~ (ij =a, b, c) with
(y/a)'~2&&1, the noise in the phase quadrature inside
and outside the cavity becomes

(baz )„„=—,'[2(2A, +1)y/a]' (4.16a)

(aJ,'(0)) =-,'— r
2(2k+1)a

' 1/2

(4.16b)

In other words, there is nearly perfect intracavity squeez-
ing, but a very small amount of squeezing outside the
cavity. This is a somewhat surprising result in that there
is more squeezing inside than outside. This is a result of
the unusual conditions of this example, namely, (i) al-
though 6&0, there is no real threshold here since the
initial atomic coherences p,b and p„act as a driving
force [see Eq. (4.11a)], and (ii) IB12/c}@zl= —,'IGI=[(A.
+ —,')ay]'~ &&y, so that the ratio 2y/IBd2/B@ilo in Eq.
(3.14) is much smaller than l. In terms of the physical
picture developed in paper I, this result may be under-
stood as follows. Since the cavity fluctuations damp out
much faster than input vacuum fluctuations enter the
cavity, the reflected input vacuum (unsqueezed) fluctua-
tions will dominate the transmitted cavity fluctuations in
the output-field fluctuations, regardless of the degree of
cavity quasimode squeezing. Thus one expects hardly
any squeezing of the output field. The e parameter in Eq.
(I.4.6}takes on a value close to zero here.

Obviously Eq. (3.7) is satisfied and the results in Sec. III
apply here too.

When the linear gain is smaller than the cavity loss,
i.e., G:—a(p„—p„)& y, steady-state laser amplitudes
(@,o, @2o) can be found by substituting Eqs. (4.11) into
Eq. (3.6) ( 6'20=0), and the locking is stable [satisfying Eq.
(3.9)]. In this case the laser intensity no=@,o»1 is
maintained by the atomic coherences p,& and p&, involv-
ing the middle level b, so that the resonant two-photon
CEL is still an active device. It follows from Eqs. (3.12),
(4.11b}, and (4.12) that the intracavity variance of the
phase quadrature of the field is

& ~u,'&,.„=(:au,'.&,.„+-,
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10

SCALED MEASUREMENT TIME
20

FIG. 3. Correction factor g(T) due to Rnite measurement
time T as a function of the scaled measurement time

T)dd, /N', (0. The dashed line indicates the long-measurement-
time limit.

V. EFFECT OF FI¹lKNESS OF MEASUREMENT TIME

where

(52)

is a correction factor due to finiteness of the measurement
time T [see Eq. (3.14)]. We plot rl(T) in Fig 3. On.e sees
that the finiteness of the measurement time tends to
reduce the amount of outside squeezing. To obtain larger
squeezing we have to increase the measurement time T.
To approach the largest outside squeezing given by Eq.
(3.14), the condition T~ M /BC ~o && 1 must be met.

In this section we study the effects of finite measure-
ment time T on the degree of squeezing achievable at the
detector. We will focus on the minimum in the spectrum
of squeezing &:AA z(0):) found in the limit T~ao in
Sec. III.

It follows from Eqs. (I.3.22), (3.3b), and (3.11) for finite
measurement time T and for a stationary field

&:a~,'(0):)=) T 'f 'f-'&Se, (r)S@,(t ) &dr dt

We have further studied in this paper the spectrum of
squeezing of a one-sided leaky cavity from the general
formalism developed in the preceding paper. For
measuring a small phase change by using an ordinary
laser, we have calculated the signal-to-noise ratios both
inside and outside the cavity via classical Langevin equa-
tion approach. The extracavity quadrature variances of
the lasers exhibiting phase locking are studied by using
the Fokker-Planck equations (also by using the classical
Langevin equations) describing the intracavity field.
When the intracavity variances in the amplitude and
phase quadratures are uncorrelated, the spectra of
squeezing for the two quadratures of the output field are
found to be Lorentzian, one of which is an inverted one if
there exists squeezing. We have applied the general for-
malism for the spectrum of squeezing to the two-photon
CEL. For the off-resonant two-photon CEL studied in
Sec. IVA, for which there exists a threshold, maximum
intracavity squeezing (50% in the phase quadrature)
transforms to nearly perfect phase squeezing outside the
cavity. For the resonant two-photon CEL discussed in
Sec. IVB, for which there is no threshold as the initial
atomic coherences play the role of a driving force, nearly
perfect intracavity phase squeezing amounts to a very
small amount of squeezing outside the cavity. Both these
results may easily be understood in terms of the physical
picture developed in paper I, as we have seen here Fina. l-
ly, we have analyzed the e8'ect of finite measurement time
T on the detected degree of squeezing. We find that to
achieve large squeezing one needs to increase the mea-
surement time T such that T~Bd, IM', ~o&&1.
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