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%'e consider the dynamics of a collection of atoms interacting with a coherent field and a broad-
band squeezed vacuum. We obtain an exact solution of the master equation and study in detail the

types of nonequilibrium steady states that can be generated. We show that in the absence of
coherent drive the atoms are in a state whose properties are similar to those of the squeezed vacuum

for photons. %'e demonstrate that the steady state for certain discrete values of the external field

strength and detuning is a pure state which is the eigenstate of the non-Hermitian operator
cosh(~(~)S +sinh(~g~)S+, where g is the squeezing parameter associated with the input radiation
field. These eigenstates play a very fundamental role in the theory and satisfy the equality sign in

the Heisenberg uncertainty relation ES„bS» 1/2~ &S, ) ~. We also present detailed numerical re-

sults for the characteristics of the field generated by the collective system.

I. INTRODUCTION II. BASIC EQUATIONS

The interaction of squeezed radiation with atomic sys-
tems results in some unusual properties: for example,
Gardiner' has shown that the two components of the di-
pole moment associated with a single atom in the field of
broadband squeezed radiation decay very differently.
This difference leads to the phase sensitive characteristics
of the resonance fluorescence spectrum. This in turn re-
sults in the narrowing of the central component of the
Mollow spectrum. The two-photon absorption rate by an
atom in the field of squeezed radiation has some unusual
properties like linear dependence of the rate on the inten-
sity. The squeezed radiation has also been shown to
affect considerably the nature of the vacuum field Rabi
splittings, etc. Much of the existing work deals with the
interaction of a single atom with squeezed radiation. In
what follows we discuss the interaction of a collection of
atoms ' with squeezed radiation. The atoms may, in ad-
dition, be driven by a classical field. The organization of
this paper is as follows. In Sec. II we discuss the model
and derive the basic equation describing the dynamics of
the atomic system. In Secs. III and IV we obtain the ex-
act solution for the atomic state in the long-time limit for
no drive, for resonant driving field, and for off-resonant
driving field. We also discuss briefly the case when the
frequency of the field pumping the squeezed bath and
that of the atom are different. A very important role in
the theory is played by the eigenstates of the non-
Hermitian operator cosh(~g~)S +sinh(~g~)S+. In Ap-
pendix A we give the detailed properties of such states.
We present numerical results for the atomic inversion,
phase sensitive properties of the atomic system, and for
the radiation which would be emitted by the atomic sys-
tem irradiated by broadband squeezed radiation.

—[(d E/A')S+exp( i co, t)+H.—c. ]
+A' f dco[g (co)S+a (co)+H.c.], (2.1)

where d is the atomic dipole moment and E is the electric
field. Here S—,S' are the angular momentum operators
corresponding to the spin value N/2. The atom-field in-
teraction is given by g (to). The annihilation and creation
operators a (co) and a (co) satisfy the usual commutation
relations [a(co, ),a (co2)]=5(co,—co2). The field is in the
squeezed vacuum state defined by '

~ [0}),q=exp —f [a (to~+a)a (co& e)g(e)—1

—a (co~+a)a (co~ —e)g*(e)]
~ IO} ),

(2.2)

where
~ [0}) is the normal vacuum, a (co~ )~ IO} ) =0 for

all to, and where ((e) will give the amount of squeezing.
The squeezed vacuum is such that the field modes corre-
sponding to ~ +e and co —e are correlated. Note that
g(e) is a symmetric function of e. Using (2.2) one can
prove the following properties:

&a(to) & =,q& [0}/a(co)I [0}&,q=0, (2.3)

Consider a system of N identical two-level atoms of fre-
quency coo interacting with broadband squeezed radiation
and with an external field of frequency co&. The total in-
teraction Hamiltonian can be written as

H =fitooS'+If dcoa (ro)a(co)
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(a (coi )a (co2) ) =cosh[ ~((co&
—

co~ )
~
]sinh[

~ g(co&
—

co~ ) ~ ]

Xg(co, —co )/ig(co, —co )i

X5(coi+ co&
—2coz ),

(a (co, )a(co2)) =sinh [~g(co, —co~)~]5(co,—co2),

(a(co2)a (co, )) =cosh [~g(coi —co~)~]5(co, —coq) .

(2.4)

(2.5)

(2.6)

p= —I (S+S p
—S pS+ —pS S++S+pS )

—I.+(S+S-p—S-PS++pS-S+ —S+PS-)
—I (S+S p

—2S+pS++pS+S+ )+H.c. , (2.8)

I + = lim —J ([B(t+r},B (t)]+ )dr
taboo 2 0

(2.9)

where I"s are the correlation functions for the squeezed
vacuum defined by

We next eliminate the degrees of freedom associated
with the squeezed vacuum and derive the equation for the
reduced density matrix of the atomic system. This can be
done by using the standard master equation methods.
To derive the master equation we first drop the external
field terms and write (2.1) in the interaction picture:

I 0= lim — 8 t+~,8 t + d~
taboo 2 0

(2.10)

Here [ ]~ stands for the anticommutator or commutator
of the operators in the bracket. On substituting
(2.4) —(2.6) in Eqs. (2.9) and (2.10) and on ignoring the
small principal part contributions, we get

H, (t) =[S+B(t)+H.c.],
B(t)=f dco[g(co)a(co)exp[ i(co—coo)t—]j .

(2.7)

I =(ir/2) ~g(co, ) '=I /2,

I =(I'/2)cosh[2~((co —co ) ~ ],
I 0= (n /2)exp[ 2i (c—o coo)t]g (—coo)g (2cop —coo)

(2.11)

In order to derive the master equation we will make
the Born and Markov approximations assuming that the
interaction is weak and that the field B (t) is broadband.
The master equation for the reduced density matrix can
be written in the form

X sinh [2
~ g( coo

—
co~ )

~ ]g(coo —
co~ ) /

~ g( coo co~
—
)

Note that g (co) is essentially a flat function of co. On sub-
stituting (2.11) in (2.8) we can write the master equation
in the form

p= —1(1+n)(S+S p
—2S pS++pS+S )

—I n(S S+p —2S+pS +pS S+)
—I m (S+S+p—2S+pS++pS+S+ )exp[ 2i (co——coo)t]

—I m /(S S p
—2S pS +pS S )exp[2i (co~ coo)t], —

where

n =sinh ( / g/ ), /
m

/

=sinh(
/ g /

)cosh( [g'/ ),

(2.12)

(2.13)

and the phase of m is related to the phase of g(co).

We can now write the complete density matrix equation taking into account the interaction with the external field e.
We also work in a frame rotating with the frequency co] of the external field. Thus the final master equation becomes

p= ib[S',p]+i[[—(d e hi)iS+ +H. c. ],p] —I (1+n )(S+S p
—2S pS +pS+S )

—I n(S S+p 2S pS—+pS S+)—I m (S+S+p—2S+pS++pS+S+ }exp[ 2i(co ——co, )t]

—I m ~(s S p —2S pS +pS S )exp[2i (co~ —co, )t], b =coo co, . — (2.14)

We now absorb the phase of m in the definition of S—,i.e., if m = ~m ~exp(i/} then we can introduce new S+ related to
old by S+exp(iP/2). Also, on writing —d e/A= ~A~exp(iy) we can rewrite Eq. (2.14) as

p= —i 6[s',p)+i [~A~exp(ig)S++ ~Q~exp( irg)s, —p] —I (1+n )(S+S p
—2S pS++pS+S )

—I n(S S+p —2S+pS +pS S+)—I ~m~(s+S+p —2S+pS++pS+S+)exp[ —2i(co —co, )t]

—I ~m~(s S p
—2S pS +pS S )exp[2i (co~ co, )t], P=g ——$/2 . (2.15)

This is the key equation which describes the dynamics of
a collection of atoms interacting with broadband
squeezed radiation and with an external drive. In the fol-
lowing sections we discuss the steady-state solution of
(2.15). We will assume for simplicity that co =coi (or

I

cop coQ if there is no external drive }. Some results for the
case when co Wco0 will be given in Sec. VI. Note that
even in the absence of a drive the master equation (2.12)
implies that the populations (S,m~p~s, m ) are coupled
to the two-photon coherences (S,m —2~pcs, m ),
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(S,mlplS, m +2), etc. , i.e., the squeezed vacuum two-

photon coherences. Clearly the transition probabilities
now depend on two-photon coherences.

III. EXACT STEADY-STATE SOLUTION
IN THE ABSENCE OF COHERENT DRIVE

We first consider the type of steady state that can be
generated by a collection of two-level atoms interacting
with broadband squeezed radiation. In the absence of the
coherent drive Eq. (2.15) reduces to

has a solution 1)po) for A, =0, then the solution of (3.4) is

1+o) = Aoexp(HS')exp( —its /2)10), (3.9)

(3.g)

Thus the steady state can be a mixed state or a pure state
depending on the existence or otherwise of the eigenstate
1+o) of the operator R, . The properties of the eigen-
states of R, have been studied in the literature' '" and
for completeness we list some important results in Ap-
pendix A. Equation (A7) shows that if N is even then

p= —I (1+n )(S+S p
—2S pS++pS+S )

—I n(S S+p —2S+pS +pS S+)
—I Iml(S+S+p —2S+pS++pS+S+ )

—I lml(S S p
—2S pS +pS S ), (3.1)

where 10) is the eigenvalue of S' corresponding to the ei-
genvalue m =0 and Ao is the normalization constant.
For an odd number of atoms the solution is given by (3.6)
which can be written in terms of eigenstates of lgz ) as
follows:

where we have assumed that the frequency of the field

pumping the squeezed bath is the same as the atomic fre-
quency. We treat the case of idealized squeezed radiation
whence

q= —Sp= —S

S S
p=D(R, ) g I)II, &&+, l(R,') ' y lc)q)&q',

I

(3.10)

Im =n(n+1),
and set

(3.2)
where Eq. (A4) has been used. On simplification (3.10)
reduces to

n =sinh (lgl) . (3.3)

p= —2I (R,R,p —2R,pR, '+pR, R, )sinh(21/1),

where the non-Hermitian operator R, is defined by

(3.4)

For (=0, we have the interaction with the vacuum of the
radiation field. The master equation (3.1) can now be
written in the form

—N/2~p, q ~N/2, N =odd . (3.11)

It should be borne in mind that the overlap (4 14 ) is
nonzero for all p and q.

Let us now compute the matrix elements of (3.9)

q, —= (mls, &

R, =([S cosh( lgl }+S+sinh(lgl }]/v'2 sinh(21(1);
(3.5)

S = [R,cosh(
I g I ) R, sinh(141) ]&2 sinh(21(l ) .

Clearly the steady-state solution of (3.4) depends on the
existence of the inverse of the operator R, . The steady
state is given by

= Aoexp(m 8)( m
l
exp( its /2—)10)

= Aoexp(m8)d' o(n. /2),
where the coefficient d'

o (~/2) is given by'

(s) [(S+m }!(S—m )!S!S!]'~
mO

2S

(3.12)

p=D(R, ')(R, ) (3.6)
S —m

(
—I}

(S —p)!p!(p —m )!(S+m —p)!
(3.13)

R, l)p ) =k 1)p & (3.7)

provided that the determinant of the operator matrix R,
is nonzero. Thus if the eigenvalue equation Note that by changing the variable of summation p to

S+m —p and adding the resulting expression to (3.13)
we can write

(s) [(S+m }!(S—m )!S!S!]' ~™
mO

2S+1
1 y[1+( 1)S+m —

2P]

(S —p)!p!(p —m)!(S +m —p)!
(3.14)

Clearly

d' o(7r/2)=0 if S+m is odd,

and thus

=0 if S+m is odd .

(3.15)

(3.16)

I

such that the states IS, m ), m = —S+ (2p + 1),
p =0, 1,2, . . . are unoccupied, i.e., the squeezed bath
leads to pairwise excitation of atoms.

Note further that the states 1)t) ) have the property
that

Thus we have proved that for even N the steady state is (3.17)
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i.e., these states lead to equahty sign in the Heisenberg
uncertainty relation. Other mean values can be obtained
from (3.12); e.g., the inversion is given by

S
(S') = Ao g [m~d' o'(n/2)~ exp(2m8)] . (3.18)

m= —S

Thus for even N we have proved the following results.

040-

0.30-

(i) The steady state is an eigenstate of the operator
cosh( ~g~ )S +sinh( ~g~ )S+ with zero eigenvalue.

(ii) The x component S"is squeezed.
(iii) The atoms are excited in pairs. This provides two-

photon coherences

0.10 -.

0.00
-20 -10 10 20

pm, m +2 +Om +O, m +2+ (3.19)

These properties of a collection of atoms are equivalent
to the corresponding properties of the squeezed vacuum
of the photons,

FIG. 1. The probability p of occupation of collective atom-
ic states ~m ) as a function of m for no external drive and for
b =0. Curve A is for the atoms interacting with squeezed bath
with n =5 and curve B is for the atoms interacting with an ordi-
nary thermal reservoir having a mean number of five photons.

~g) =exp[( —pa+ +g'a )/2]~0), (3.20)

which is an eigenstate of cosh(~g~)a+sinh(~g~)a and
which leads to squeezing in the x quadrature. Further,
(3.20) leads to two-photon excitations' since p is a super-
position of the states ~0), ~2), ~4), . . . , etc. In view of
the foregoing we can interpret

~ fp & as the squeezed vacu-
um for a collection of an even number of two-level atoms.
The foregoing analysis also shows that the interaction of
a collection of two-level atoms with broadband squeezed

I

(m~%~ ) = A exp(m8)d'z'(m/2)

where

(3.21)

radiation prepares the atoms in the squeezed vacuum
state.

The situation is different for an odd number of atoms.
For example, for N = 1, the steady state is the same as in
the absence of squeezed broadband radiation. The matrix
elements of p in the basis ~S, m ) can be obtained by using

[(S+ rn )!(S rn )!(S+—p)!(S=p)!]'
mp 2S

S

s (S —p —q)!q!(q+p —m)!(S+m —q)!
(3.22)

In Fig. 1 we exhibit the nature of the atomic excitation
probabilities p defined by

p =(S,m~p~S, m ) . (3.23)

Note that the range of permitted values of m is
—S &m &S. We compare the probability distribution
(3.23) with that obtained by replacing the squeezed radia-
tion by thermal radiation, i.e., by setting m =0 in Eq.
(3.1) in which case

The figure shows clear distinction between the steady
states obtained in the two cases: in the case of the atoms
interacting with squeezed vacuum p exhibits oscilla-
tions. Similar oscillations have been predicted for the
case of the squeezed states of a photon field. ' ' Note
that Fig. 1 is for an even number of atoms. However, the
plot ofp as a function of m for an odd number of atoms
has a behavior similar to that shown in Fig. 1 of Ref. 5.

p,„~exp( —PS'), n = [(exp(P) —1)] (3.24)

and the corresponding probability distribution is given
b 13

IV. EXACT STEADY STATE FOR A SYSTEM
DRIVEN BY COHERENT FIELD ON RESONANCE

pm n+1

S+m
~ (1+n ) 1—

n+1

' 2S+1 —1

(3.25)

%'e next examine the type of nonequilibrium steady
states that can result if the atomic system is driven by a
coherent field. On introducing the operators (3.5), Eq.
(2.15) with b =0 can be written as

p = i &2 sinh(2—
~ $ ~

)
~
0

~ [[cosh(
~ g ~ )exp( —i P) —sinh(

~ g ~
)exp( i f )]R, +H. c.,p ]

2I'(R, R,p 2R,pR—, +pR, R, )sin—h(2~(~ ), (4.1)
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where P is the phase difference

P—/2, m = Imlexp(ig), Q= IQlexp(iy) .

We can also rewrite (4.1) in the following useful form:

p= —2r sinh(2lgl)(A Ap 2ApA—'+pA A),

where A is the operator de6ned by

A=R, +ilQI[cosh(lgl)exp(i@) —sinh(I/I)exp( —ig)]/[rv'2sinh(2lg'I)] .

The density matrix equation is now in a form whose steady-state solution can be written by inspection as

p=DA '(A+ )

provided that A ' exists. The existence of A ' depends on the eigenvalues of A which are given by

m +i
I
Q

I [cosh( I(I )exp(i g) —sinh( I(I )exp( —i g) ]/[r&2 sinh(2I(l ) ] .

If there exist values such that

m 0+ iI 0 I
[cosh( I/I )exp(ig) —sinh( I)I )exp( —if)]/[rv'2 sinh(2I g'I )]=0,

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

then the steady-state solution will be

p=DI+

For 1(
= km /2, (4.6) leads to

mo =+
I
Q

I exp(
I gl ) /[ I v'2 sinh(2 I(I ) ] .

(4.7)

(4.8)

For /=0 the solution (4.5) goes over to the standard re-
sult. ' ' The expectation values of the dipole moment
operator and the inversion operator can be obtained by
expressing these in terms of R +, R„R,, etc. For exam-
ple, using (3.5}we get

Thus the condition (4.6) can be satisfied for IQ
I

such that

sr''2 sinh(21(l }exp( —
I (I ) . (4.9)

Therefore we have proved that the steady state is given
by (4.5) except for a set of N+1 discrete values of IQI
given by (4.8}. The eigenfunction expansion of (4.5) is

p=D g (p+if) '(q if') 'l%—'~&&0' I&@~I@~&
p, q= —S

(4.10)

where

f =IQI[cosh(lgl)exp(ig)
—sinh( lg'l)exp( —it/)]/I v 2 sinh(2lg'I ) . (4.11)

S»q = —S

X & 4~ I 4» &
v'2 sinh(2 I

g'I )

X [p cosh( I
g'I )—q sinh( I(I )] . (4.12)

Discussion of the numerical results will be given in Sec.
V.

V. EXACT STEADY STATE FOR A SYSTEM
DRIVEN BY COHERENT FIELD OFF RESONANCE

In this section we derive the exact steady-state solution
of Eq. (2.15) when the external field is off resonance with
the atoms. Unlike the preceding case such a solution is
more diacult to derive. The full density matrix in terms
of the R operators reads

p=i(I 50/2)[R++R, p] i&2 sin—h(2lg )IQI[[cosh(lg'l)exp( —ig) —

sinh(I)I�)exp(i@)]R,

+H. c. ,p]
2I (R, R,p 2R,—pR, +pR, R—, )si h(2nI(I), h, =b, /r . (5.1)

We expand the steady-state solution in terms of the eigen-
states I%' & and I4

where

(m —1+if* iso/2)C i=(m —+if *+iso/2)C

c.„le &&+„l&e le„&. (5.2) (5.4)
m, n= —S

We will next derive a recursion relation for C „'s. The
details are given in Appendix B where it is shown that

(m +1+if*+i60/2)C +, =(m +-if * ib, /2)0C—

(5.5)

C „=C C„*, (5.3) These recursion relations are easily solved in terms of one



41 COOPERATIVE BEHAVIOR OF ATOMS IRRADIATED BY. . . 3787

0.00- 0 30--

-0.10- 0.20--

&'S'~ -0.20-
N

b, =O
6=2
d =5
6=10

t

F 0.10--
X

-0.30- 0.00--

-0.40
0.0 0.5 1.0

2[Ql

Nr

1.5 2.0

FIG. 2. The atomic population inversion (S*)/N as a func-
tion of 2l Ql /NI for P=m /2, n =5, and for different values of

-0.10
00 2.00.5 1.0 1.5

2iQi
NI

FIG. 4. The squeezing in the x component, F„,of the emitted
radiation as a function of 2lQl /NI' for g=rr/2, n =5, and for
different values of A.

unknown which is fixed by the normalization condition

S c.„(e„lq.&&c.lc„& .
m, n= —S

(5.6)

p +Im(f) =0, Re(f) =do/2,

then

(5.7)

Note that if the phase g, field strength
l
Ql, squeezing pa-

rameter g, and the detuning are chosen such that for
m =p =integer,

of discrete points in the (b,o, l
0

l ) plane.
In Figs. 2 —4 we show the detailed characteristics of the

steady-state solution (5.2)—(5.5) for given values of
n ( = 5 ), P( =n /2), and different values of b. We evaluate
a number of expectation values like the mean inversion
(S')/N (Fig. 2), the intensity I =(S+S )/N (Fig. 3)
of the emitted radiation, the parameters F„(Fig. 4) and

Fy which characterize the amount of squeezing in the two
quadratures of the field emitted by the collective system

F.=[(&S.)' —l&s'&I/2]/s',

C =0, Vm)p . (5.8) F =[(ES )
—l(S') l/2]/S

(5.10)

Note further that for certain integer values of m one mane may
encounter a pole in C with a small imaginary part, i.e.,

m+1+Im(f)=0, Re(f)= —b,o/2 . (5.9)

Clearly each of the conditions (5.7) and (5.9) leads to a set

It may be mentioned that the degree of squeezing may
also be given in terms of parameter D; =2(bs;) I l(S ) lI Z

(i =x,y) in which case D; & 1 implies squeezing in the ith
quadrature. The oscillations are observed around the
values of lQl for which condition (4.8) is satisfied. Note

0.30--

0.25-.

h, =O
h, =2

0.30-

0.25--

0.20--

0.15--

0.10--

0.20--

0.15--

0.10--

/
/

/ ~ ~

/ /
/ /

/ //I /'/ /, ~

/
/'

y=P
LJI = K(6i

y = nj4l

l[/ = K/2i

0.05
0.0 0.5 1.0

2(Q)
Nr

1.5 2.0
0.05

0.0 0.5 1.0
2)a[
NI

1.5 2.0

FIG. 3. Thhe intensity I of the emitted radiation as a function
of 2l 0 l

/NI for P= m /2, n =5, and for different values of h.
FIG. 5. Th. The intensity I of the emitted radiation as a function

of 2l 0 l
/NI for 6=2, n =5, and for different values of g.
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0.0045-- I=[(ss")'(as~)' —
~

(s'& ~'/4]/s', (5.11)

0.0030--

0.0015--

which shows the extent of deviation from the equality in
the Heisenberg uncertainty relation for the uncertainty in
the simultaneous measurement of S and S . Note that if
H =0 then the equality sign holds in the Heisenberg un-
certainty relation. This would be the case if the atomic
system happens to be in a state ~g~ & which is an eigen-
state of R, defined by (3.5).

0.0000 ==
0.0

I

0.3
I

0.6
I

0.9
I

1.2
I

15

VI. EXACT STEADY-STATE SOLUTION
OF EQ. (2.12) FOR cu~ %coo

2In]
Nl

FIG. 6. The parameter H=[(bS") (hS~)' —~(S'&~'/4]/S'
as a function of 2~0~/Nl for P=n/2, n =5, and for different
values of A.

that the population inversion, intensity of emitted radia-
tion, and its squeezing reduce with an increase in the
value of h. In Fig. 5 we show the behavior of I for n =5,
6=2, and for different values of f In Fig. . 6 we have
plotted the quantity

We finally consider the emission from atoms interact-
ing with squeezed vacuum alone W.e generalize the re-
sults of Sec. III to the case when the frequency of the
field pumping the squeezed vacuum and the frequency of
the atoms are different: co %coo. It should be borne in
mind that (2.12) is written in the interaction picture with
respect to the unperturbed atomic Hamiltonian coos".
We now write the equation in the interaction picture ob-
tained by choosing the unperturbed Hamiltonian as co S'.
The density matrix equation now reads

p= —iI 5o[S',p] —I (1+n )(S+S p
—2$ pS++pS+S ) —I n(S S+p —2S+pS +pS S+)

—I'~rn~(S+S+p 2S+p—S++pS+S+)—I ~nt~(S S p —2S pS +pS S ), 5o=(coo —co )/I (6.1)

which can be written in terms of R, operators as

p =i I'so[ R + +R,p ]

2I [R,R,p —2R,pR, +pR—,R, )sinh(2~$~ ) .

Note that this is a special case of (5.1) with

(6.2)

s„/n/=o,
and hence its solution can be written as

p ——y c.c„'ie.&(e„i(e.ia „&,
m, n

with

(6.3)

(6.4)

0.140--
0.30 .

0.130--

I o.12o-

rr
r

/
/

J'

F 0.10-
X

0.110- .5
.0

= 5.5]

0.00

O. 1OO
-20 -10 0 10 20

-0.10
-20 -10 20

FIG. 7. The intensity I of the emitted radiation for no exter-
nal drive as a function of the detuning 50 between the atomic
transition frequency and the frequency of the pump driving the
squeezed bath for different values of n.

FIG. 8. The squeezing F„ in the x component of the emitted
radiation for no external drive as a function of the detuning 6o
between the atomic transition frequency and the frequency of
the pump driving the squeezed bath for different values of n.
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040- Rashid" has shown that the eigenstates
I P, & and

I P~ &

can be written in terms of the eigenstates S, m & of S
and S' as follows:

0.30-

l m 0.20 -.

010--

0.00

exp(OS'}exp( i mrs—~/2)
I
m &,

& =B exp( —8S')exp( ir—rs /2)lm &,

=m =A, , m = —S, —S+1, . . . , S —1,S,
exp(28)=tanh(2 gl), IS, m &—= lm &,

S~=(s+ —S }/2i .

(A5}

(A6)

(A7)

(A8}

-20 -10 0
rn

10 20

FIG. 9. The probability p of occupation of collective atom-
ic states Im ) as a function of m for no external drive and for
50=2 where 50 is the detuning between the atomic transition
frequency and the frequency of the pump driving the squeezed
bath.

Using (A5) and (A6) and the completeness relation for the
states S,m & the relation (A4) is easily verified.

It is clear from the above that the zero eigenvalue ex-
ists if S is an integer. Since S =N/2, where N is the
number of atoms, the zero eigenvalue exists if X is even.

It is also possible to introduce the raising and lowering
operators

R+ = + [cosh(I(I ) —sinh(I(I )]S„

(m —1 i5c/—2)C
&
=(m +i5c/2)C (6.5) +iS &2 si nh(2I (I )

—S', R WR + (A9)

In Figs. 7 and 8 we show some typical properties of
nonequilibrium steady state [(6.4), (6.5)]. We have plot-
ted the intensity of emitted radiation I and the squeezing
F„as a function of 5c for different values of n. With an
increase in n there is a decrease in I and F . In Fig. 9 we

exhibit the behavior ofp, the probability of occupation
of different collective atomic states, as a function of m for
a nonzero value of 50=2. Note that in this case p ex-
hibits oscillations but there is no pairwise excitation.
This is in contrast with the case of 5c=0 (Fig. 1) for
which there is pairwise excitation of the collective atomic
states.

and their adjoints

R+ = + [cosh( gl ) —sinh( I(I )]S„

+is~/&2 sinh(2I(l )
—S' . (A10)

Note that R„R+ satisfy the angular momentum commu-
tation algebra

[R+,R ]=2R„[R„R+]=+R+.

The operators (A9) and (A10) have the properties similar
to those of S+—:
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APPENDIX A: SOLUTION
OF THE EIGENVALUE EQUATION (3.7}

R l+ &=t (S+m)(S+m+1)l+ +i&

R', IC. &=t/(S+m)(s+m+1)l@ —,& .

(A12)

(A13)

The states I+ & satisfy the equality sign in Heisenberg
uncertainty relation

(Qsx)2(gsp)2 i I&sz&I2 (A14)

As a matter of fact,

(~s")'——,
'

I & S'&
I

= —
—,
'

I & S'&
I [I—exp( —

I gl )]—=+. ,

(A15)
Consider the non-Hermitian eigenvalue equations

(Al)

(A2)

(as~)' ——,
'

I & s'&
I

= —
—,
'

I & s'&
I [1—exp( I pl }]—=F, ,

(A16)

which shows that the x quadrature is squeezed (F„&0).
From (Al) and (A2) it immediately follows that

=X,', &4 l+ &=0 if A, WA, (A3)

g Ie, &&c, l= g Ie, &&+, l
=1. (A4)

Thus I%'~ & and I4~ & form a biorthogonal set and these
sets are complete, i.e.,

APPENDIX B: DERIVATION
OF EQUATIONS (5.3)—(5.5)

Here we present briefly the derivation of the results
(5.3)—(5.5). In order to derive the equations obeyed by
C „,we have to know the action of the operators R„R,
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on 1$ ). Note that R, IQ ) =mIQ ). However, the ac-
tion of R, on I f ) is rather complicated. We express R,
in terms of R+ and R, :

R, = [R + —R +2 cosh(21('1)R, ] /[2 sinh(21)1}], (Bl)

and hence on using (A12) we get

}(S+ +1)1'p
1

2sinh 2

—&(S—m)(S+m +1)1%,)
+2m cosh(21(1)14 ) ] . (82)

Thus using (5.2) and (82) we get the equation

X[ (S+m}(s m+1)C -1,.&@' -11@.& —C +1,.&@ +ll~'. & (S —m}(s+m+1)1

2sinh 2

+2m cosh(21(l)&e Ic „&c „]Ip )(p„I . (83)

Note further that

&(S+m)(S —m+1)&e ) @'.&=(@ IR

&(S—m)(s+m+1)(4 +&14„)=(4 IR I@„),

(84)

IR+ I@,&
= [—cosh(21(l )m +sinh(21(l )n]

x(e I@.&
—&@ Is'I~. &, (88}

(4 IR 14„)= [cosh(21(1)m —sinh(21('1)n]

x &a. l@„&—&@.Is'I& „& . (89)

R =c soh(21(I )R, —si hn(21/1 )R, S', — (87)

which follow from (A9) and the definitions of R, and R, .
The matrix elements (84) and (85) are now found to be

(85)

which follows from Eq (A13). We can further simplify
(84}and (85}by using

R+ = —cosh(21( )R, +sinh(21/1)R, S', — (86)

On using (84), (85), (88), and (89), Eq. (83) can be writ-
ten in terms of 14 ) (%„1,(4 14„),and the matrix ele-
ments (4 Is'14„). The term R,pR, in the master
equation leads to a simple expression

R,pR, = g [mnC „(4 14„)1%' )(4 I] . (810)
m, n

Thus we can simplify the external field and the squeezed
radiation terms in (5.1). We next consider the detuning
term. As an example we calculate

R+p= g [C „(S—m)(S+m+1)(4 IC&„) Iq' +, )(%„I]
m, n

= g [C,„(S+m)(S—m —1)(4,14„)1% )(4„1]
m, n

= y(c, „&e IR+Ie„&le &&+„l)
m, n

where (84) was used. On using (88), (811) reduces to

(811)

R+p= g (C, „(4 14„)1%' )('P„I)[—m c sho(21('I)+ sinnh(21('I)]
m, n

—y (C. , „&e.Is'Ia„&1+.&&@„I}. (812)

On using (83), (810), (812), and their complex conjugates in the master Eq. (5.1), we get the equation

g (mC „(4 14„)1'p )(%„1)I—2m cosh(21$'I)+2n sinh(21(1) —2i sinh(21('1)[f +coth(21(1)f ']I
m, n

—g ((4 14„)1%' )(O'„1)[C
& „(m —1+if*—iho/2)[ —2m c sho( 1/21) 2+n sinh(21/1)]j

m, n

—g ((4 14„)1% )(0'„1)[C +, „(m +1+if*+iso/2)[ 2m cosh—(21/1)+2n sinh(21/1)]]
m, n

+ g (&+.IS'I+„&Iq' &&+„l)[C,„(m —1+if' —ib, /2) —C +, „(m+1+if*+iho/2)]+H. c.=0.
m, n

(813)
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Clearly, Eq. (B13)is satisfied if we choose C „'s to satisfy

(m —1+if"—iso/2)C
&
„=(m +if*+iso/2)C „,

(B14)

(m +1+if*+iso/2)C +, „=(m +if* —iso/2)C „,
(B15)

and the equations that follow from complex conjugation.
These equations are equivalent to Eqs. (5.3)—(5.5).
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