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Electron-impact excitation of atoms in the presence of a nearly resonant laser field
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We have studied the electron-impact excitation of an atom, in the presence of a laser field whose
photon energy is tuned close to the energy difference between two excited final states. Both the
laser-projectile and the laser-target interactions are treated nonperturbatively, while the electron-
atom interaction is treated within the first Born approximation. As an application, we have ana-
lyzed the resonant laser-assisted excitation of the 2 'S and 2 'P states of helium. The agreement be-
tween the present nonperturbative results and previous perturbative ones is excellent, except for
very small detunings. The present nonperturbative treatment also shows that the results given by
perturbation theory on both sides of the resonance, when plotted as a function of the laser frequen-
cy, correspond to the excitation of different Floquet pseudostates. This is related to the presence of
avoided crossings in the diagram of the Floquet pseudoenergies, as a function of the laser frequency.

I. INTRODUCTION

It is now recognized that laser-assisted electron-atom
collisions can be very sensitive to the dressing of the tar-
get by the external radiation field.!”® The formalism
which has been developed to describe such laser-assisted
collisions treats the laser-projectile interaction to all or-
ders, while the laser-target interaction is usually treated
by using first-order time-dependent perturbation
theory.! "*>7% This approach is certainly well justified
even for strong laser fields, provided, however, that the
electric field strength &, remains much smaller than the
atomic unit of field strength, 6,<<5X10° Vem ™!, It
should be noted that this condition will always be fulfilled
in practice, for at laser intensities comparable to the
atomic unit the atom would be ionized, so that electron-
atom collisions would no longer be observed.

However, another limitation to the range of intensities
that can be considered within this formalism arises from
the possibility that the laser photon energy is close to the
energy of an atomic transition between the initial or final
states and an intermediate state of the collision process.’
Indeed, in such a resonant situation, even rather
moderate laser intensities can result in a strongly nonper-
turbative laser-atom interaction.

This problem is particularly acute in the case of
electron-impact excitation, since such resonant processes
can then occur at frequencies which are comparable to
the frequencies of commonly used lasers. It has been
shown™® that perturbation theory then leads to a series of
divergences.

The goal of the present work is to explore the limits of
validity of first-order perturbation theory around such
resonances. We have therefore developed a nonperturba-
tive treatment of the laser-atom interaction, and we have
applied it to the excitation of the 2 1S and 2 'P states of
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helium in the presence of a laser field whose photon ener-
gy fiw is tuned close to the energy difference
Ezlp_Ez |S=0.602 eV. The reason for choosing a heli-
um target is that helium is the simplest atomic system
with nondegenerate energy levels (the fine structure of the
atom being neglected), a point which greatly simplifies
the analysis of the results. In what follows, we will only
consider fast incident electrons and small momentum
transfer collisions, so that all scattering calculations can
be performed in the first Born approximation and ex-
change effects can be neglected.

II. THEORY

Following our previous work,” we assume the laser
field to be purely monochromatic, linearly polarized, and
spatially homogeneous. Working in the Coulomb gauge
we have, for the electric field, ()= &sinwt, and for the
corresponding vector potential, A(f)= Ajcoswt with
Ay=c6y/w. Working from now on in atomic units, the
Volkov wave function describing the incident “unbound”
electron embedded in the field reads (in the velocity
gauge)

Xi(ro,1)=(2m) "3 exp[i (k-Ty— k-agsinot —E; )], (1)

where 1 is the projectile coordinate, k denotes the elec-
tron wave vector, E, =k?/2 is its kinetic energy, and
ay=6y/v’.

Our main problem now consists in obtaining an expres-
sion for the ‘“‘dressed” wave functions of the initial and
final atomic target states in the laser field, valid to all or-
ders in the resonant (or nearly resonant) interaction be-
tween the radiation field and the final states of the col-
lision. We should, therefore, solve the time-dependent
Schrodinger equation:
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20, (X,0=[Ho+H_p(0]®,(X,0), 2

where X denotes the ensemble of the target electrons
coordinates, H is the target atom Hamiltonian in the ab-

sence of the external field, and H , _j is the atom-field in-
teraction Hamiltonian which reads, in the velocity gauge,

.z
H, ===+ AV, , (3)
€ k=1 g

where Z is the atomic number of the target and r; is the
position vector of the kth target electron.

Solving Eq. (2) exactly would be a formidable task. In
the present context we only need, however, to treat exact-
ly the resonant part of the interaction. We therefore in-
troduce orthogonal projection operators P,Q such that

P*=P,Q0*=Q,P+Q=1,PQ=QP=0, 4)

where P projects onto the subspace #p of the states
which will be included exactly in the calculation. Note
that this subspace should, at least, contain the initial and
final states of the collision.

The full Schrodinger equation (2) is then approximat-
ed, in a first stage, by the simplified equation

9
at

i—(P®,)=P(Hy+H,_p)P(PD,), (5)
in which only the few dominant states are coupled. Us-

ing the usual Floquet technique® we can now seek solu-
tions of the form

Q®d, (X,1)~exp(—it,t)exp( —ia-R)—;—

meEHp mEHp

In what follows we will denote by &, the dressed ground
state in the presence of the field and by &, ®, the dressed
final states. It should be noted that since the Floquet
pseudoenergies €, are only defined modulo the photon en-
ergy, the Floquet pseudostates are not unique. Our con-
vention will be to define &, P, as the pseudostates whose
pseudoenergies €,€, tend to the unperturbed eigenener-
gies E |, E, in the limit §,—0.

Let us now consider the first Born S-matrix element
corresponding to the excitation of the dressed states
®,,®, from the dressed ground state ®,. It reads

Sh=—if"" dt (i (0, DD (X, )| V1, X)

X Ixi (10, 1)Po( X, 1)), f=1,2 (12)
where
|
+ .
fO= 3 Jinv-nBag) F 0 CrCurfal

N,N'=—« m,m‘E‘/{P

2 2 Mm’m

(A),

P, (X,t)=exp( —ig,t)exp(—ia-R)

+ 0
X ¥ S CN.exp(—iNwt)y, (X), (6)

me ‘/‘/P N=—x
where we have defined a=c "' A, R=37_,r1,, and ¢,, is
a target state of energy E,, in the absence of the external
field. The Floquet coefficients C.Y, and the pseudoener-

gies €, can be found by solving numerically the eigenval-
ue problem’

(E,,—No)CY, +*+

2 E Mmm'(c;:';l—crlr\z,':l)

m'EHp
=€,Con» (D

where we have introduced the dipole-coupling matrix ele-
ments

M, =M}, =6 (¢, Ry, ) . (8)

Finally, a first-order correction to the approximate
wave function P®, can be found by treating perturba-
tively the coupling to all the states which are not includ-
ed in the subspace 7. We obtain

®,=PP,+0®,, 9)

where the first-order approximation to Q®, is a solution
of the equation

z'%(g¢,,)=Q(HO+HA,F)P(Pq>n) . (10)

Explicitly, we have

= Cpt-enh

N=2—oo E, —¢,—No

exp(—iNot)y,,(X) . (11

z &1

Vilrg, X)=——+ 3 — (13)

Fo  j=1"Toj
is the direct interaction potential, with ry;=|ry—r,|.
After integration on the time variable we have
+
sfi=em~h 3 a(Ekf—E,(’+e,—aO—Lw>fﬁé,L .
L=—co

(14)

The first Born approximation to the inelastic scattering
amplitude with the transfer of L photons, f}-fé"‘, can be
written as

FEME=F(D+ D+ £, f=1,2 (15a)

with

(15b)
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. + o CN'*(cN‘—l _ N,+1)
1 m m'0 m'0 d. Bl
(== Ty 4yl Aeag) M, 4B1(A) (15¢)
f 2 N,Ng—oo LAN=N 0 m,m’zeﬂp m”gﬂp e E”'”—Eo+Na) "
. + o C "'T(C"f:"—lt_CN,-Fl#)
faIm=—+ S Jiin-nlAa) 3 S M, 0 £ i +Nmf aBl(A) . (15d)
2 N,N'=— mm'€EHpm"EHp m" T Ef @

In the above expressions J; | y _ - is an ordinary Bessel
function of order (L +N —N'); A=k;—k, is the
momentum transfer; and the quantities f%2!(A),
fEBl(A), and f@81(A) are the first Born amplitudes cor-
responding to the scattering events m—m’', m"—m,
and m —m"’ in the absence of the laser field.

It should be stressed that, in agreement with our dis-

fReE=J(Bag)ffig ' (B) — NI, _y(B-ap) S,
1

L
2N=i m

Finally, the first Born differential cross section corre-
sponding to the excitation process 0— f accompanied by
the transfer of L photons reads

III. RESULTS AND DISCUSSION

As an application of the method described above, we
have studied the electron-impact excitation of the 2 'S
and 2 'P states of helium in the presence of a laser field
whose frequency is tuned close to the Bohr frequency as-
sociated with the 2 'S —2 P transition.

The results presented below have been obtained by in-
cluding explicitly the 1'S, 21S, and 2 !P target states in
the subspace #p. We have used for these states the same
wave functions as in our previous work:> the 1'S and
2'S wave functions are those of Byron and Joachain,'®!!
while the 2!P wave function is an Eckart wave func-
tion.!2

Our results refer to an incident electron energy
E k, =500 eV, a fixed scattering angle 6=5°, and two typi-

cal electric field strengths &,=10° and 10" Vcem ™'
Moreover, the polarization vector of the field is taken to
be parallel to the momentum transfer A.

In Fig. 1, we display the cross sections corresponding
to the excitation of the Floquet states d>215, with one
photon emitted (L = —1), and d>2 1p> without exchange of
photon (L =0), as a function of the laser photon energy,
for an electric field strength 6,=10° Vcm ™! These re-
sults are compared with the cross section obtained by us-
ing first-order time-dependent perturbation theory, for
the excitation of the 2 'S state with the emission of one
photon (L =—1). As expected, the perturbative result

cussion in Ref. 5, the summation over the high-lying in-
termediate states m’’ in the expressions (15¢) and (15d)
can safely be performed by using the closure approxima-
tion.

The perturbative counterpart of Egs. (15) has been ob-
tained in Ref. 5. It can conveniently be rewritten:

Mg, fEENA) M, offHENA)

, =1,2. 16
E,—E;+No E,—Ey,—No f (16)
—
exhibits a divergence at the photon energy

fiw=F Sip E 2ls =0.602 eV, while the nonperturbative

results do not. Surprisingly enough, however, it is seen
that on the left of the resonance the perturbative curve
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FIG. 1. First Born differential cross sections corresponding
to the excitation of the Floquet state <D2 I with the emission of

one photon (L = —1) (solid line) and to the excitation of the
Floquet state ®_,, with no exchanged photon (L =0) (dashed
line), as a function of the laser photon energy #iw. These results
are compared to the perturbative cross sections describing the
excitation of the 2'S state, with the emission of one photon
(L =—1) (dash-dotted curve), and the excitation of the 2'P
state, without exchanged photon (L =0) (dotted curve). The in-
cident electron energy is E"’,=500 eV, the scattering angle is

6=75°, the electric field strength is 6,=10° Vcm ™!, and the po-
larization vector of the field is taken to be parallel to the
momentum transfer A.
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FIG. 2. Same as Fig. 1, but for an electric field strength
Eo=10"Vem ™.

fits very well the nonperturbative result corresponding to
the excitation of the Floquet state <I>21 s with L =—1,
while on the right of the resonance it fits the nonperturba-
tive result corresponding to the excitation of the Floquet
state ®,,, with L =0. On this figure, we have also plot-
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FIG. 3. Floquet pseudoenergies szls-f-fuu and €, 1p (solid
lines), compared to the unperturbed eigenenergies Ezls-f-ﬁw
and Ezlp (dashed lines). The electric field strength is &,=10"

Vem™ L
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ted the perturbative result corresponding to the excita-
tion of the 2 ! P state, without exchanged photon (L =0).
Its behavior is seen to be opposite that obtained previous-
ly for the excitation of the 2'S state with L =—1.
Indeed, this cross section now coincides with the nonper-
turbative cross section describing the excitation of the
Floquet state ®,,; with L =—1 on the right of the reso-
nance while it corresponds, on the left of the resonance,
to the nonperturbative cross section describing the exci-
tation of the Floquet state ®,,, with L =0.

The same behavior is observed in Fig. 2, for a higher
electric field strength 6,=10" Vcm™'. The reason for
this behavior can be understood by looking at the Floquet
pseudoenergies €,15:€,1p a5 @ function of the laser fre-
quency. Indeed, as shown in Fig. 3, there is an avoided
crossing between the Floquet pseudoenergies €,¢+#iw
and €,,,. For small frequencies, €, + 7w is close to the
corresponding unperturbed value E, . +%w and €,,, is
close to the corresponding unperturbed value E,,,.
When #iw>E,,,—E, g, however, the situation is oppo-
site, €)1 +#iw being close to E2 ip and €, 1p being close to
E 51 S+hw. This explains the nature of the difference in
the cross sections: in perturbation theory the crossing be-
tween the levels is effective, while in the Floquet theory it
is avoided.

This does not mean, of course, that perturbation
theory is correct on one side of the resonance and in-
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FIG. 4. First Born differential cross sections corresponding
to the excitation of the Floquet state 4)215 with the absorption

of one photon (L = +1) (solid line) and to the excitation of the
Floquet state ®,,, with the absorption of two photons

(L = +2) (dashed line), as a function of the laser photon energy
#iw. These results are compared to the perturbative cross sec-
tions describing the excitation of the 2 'S state with the absorp-
tion of one photon (L = + 1) (dash-dotted curve) and the excita-
tion of the 2'P state with the absorption of two photons
(L=+2) (dotted line). The incident electron energy is
E, =500 eV, the scattering angle is 6=5°, the electric field

strength is 6,=10" Vcm ™', and the polarization vector of the
field is taken to be parallel to the momentum transfer A.
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correct on the other: on both sides the coinciding pertur-
bative and nonperturbative cross-sections correspond, ex-
cept for the small dynamical Stark shift, to the same final
energy. This final energy is of course the only quantity
observable experimentally, the denomination of the atom-
ic Floquet states being a question of convention.

The above conclusions drawn for the cases L ==1
remain valid for other values of L. For instance, we com-
pare, in Fig. 4, the perturbative results corresponding to
the excitation of the 2 'S state with the absorption of one
photon (L =+ 1) and the excitation of the 2 'P state with
the absorption of two photons (L = +2), respectively,
with the nonperturbative results corresponding to the ex-
citation of the pseudostates <I>2 I with L =+1 and <I>21P
with L =+2. The electric field strength is 6,=10’
Vem ™l Once again, except for very small detunings
(less than, say, 0.1 eV), the agreement between the pertur-
bative and nonperturbative results corresponding to near-
ly equivalent final energies is excellent. By comparing the
results of Figs. 2 and 4, it is also seen that the asymmetry
predicted by perturbation theory between the emission
and the absorption of a given number of photons is well
verified by our nonperturbative approach. Finally the
perturbative and nonperturbative results differ in that the
nonperturbative theory predicts no maximum of the cross
sections at resonance, while the perturbative results
diverge.

IV. CONCLUSIONS

We have elaborated a treatment of electron-atom in-
elastic collisions in the presence of a nearly resonant laser
field. Our method treats to all orders the interaction of
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the field with the fast incident projectile, as well as the in-
teraction of the field with the dominant (low-lying) atom-
ic states, i.e., the initial state and the resonantly coupled
final states. This latter interaction is treated by using the
Floquet theory for multiphoton transitions. Finally, the
coupling of the laser field with the high-lying states of the
atomic spectrum is treated perturbatively.

This method has been applied to the excitation of the
21S and 2 'P states of helium, in the presence of a laser
field whose frequency is close to the Bohr frequency asso-
ciated with the 2'S—2 P transition. Our results have
been compared with those obtained by treating the laser-
atom interaction by first-order time-dependent perturba-
tion theory. The agreement between both methods is
good, except close to the resonance where the perturba-
tive cross sections diverge, while the nonperturbative
ones exhibit no maximum as a function of the laser fre-
quency.

Another very interesting effect is that the presence of
an avoided crossing of the Floquet pseudoenergies at res-
onance does not allow one to establish a one-to-one
correspondence between the perturbative and nonpertur-
bative cross sections corresponding to the excitation of a
given final state. Indeed, it is the perturbative cross sec-
tion corresponding to the excitation of the 2 'S state with
the exchange of L photons, together with the perturbative
cross section corresponding to the excitation of the 2 'P
state with the exchange of L +1 photons, which have to
be compared with their nonperturbative counterparts.
This can be understood on physical grounds since, close
to the resonance, both processes nearly correspond to the
same final energy of the scattered electron and should,
therefore, be difficult to distinguish experimentally.
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