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Effect of a static field on the stochastic layer of microwave-driven hydrogen
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Center for Statistical Mechanics, University of Texas at Austin, A usti n, Texas 78712

(Received 24 July 1989)

We study the effect of a static field on the stochastic layer of microwave-driven hydrogen using
two approaches. We use the Chirikov overlap criterion on the Harniltonian to estimate the critical
field strength required for global chaos. We then derive the whisker and standard maps for this sys-
tern valid for arbitrary field strengths and use the standard map to obtain a second estimate for the
onset of global chaos. The standard-map estimate agrees well with both strobe plots and the whisk-
er map plots for this system. Throughout, we use parameter values typically found in experiments.

I. INTRODUCTION II. CANONICAL TRANSFORMATION

The hydrogen atom in a microwave field has become
an important system in which to study the manifestation
of chaos in quantum dynamics because it is analytically
tractable and experimentally feasible. One-dimensional
classical models, such as the SSE (Ref. 1) (surface-state
electron) or "stretched hydrogen atom" have been suc-
cessful in explaining much of the fundamental dynamics
of the hydrogen atom observed in recent experiments. '
Most theoretical analyses to date, however, neglect the
effect of a static (dc) electric field which is present in
some experiments. The effects of a static field have been
studied using classical dynamics by Stevens and Sun-
daram. They include the static field by means of a di-
pole coupling of the static field in the Hamiltonian and
construct action-angle variables to treat the microwave
perturbation. Their analysis is valid for orbits that are
weakly affected by the static field. In this paper, we will
also treat the problem classically but we will include or-
bits that are strongly affected by the dc field, i.e., orbits
which are near the potential turnover created by the stat-
ic field. As in Stevens and Sundaram and Jensen, ' we
will use the simple Chirikov overlap criterion to deter-
mine the onset of chaos, and hence ionization. However,
we will go further and derive the whisker map and stan-
dard map for arbitrary Stark field and will compare the
estimates for onset of chaos given by the Chirikov over-
lap criterion to the results which we obtain from the
more accurate predictions based on the standard map.

In this paper we consider a one-dimensional hydrogen
atom in the presence of a static dc field and a microwave
field, both of which couple to the electron in the hydro-
gen atom via a dipole interaction. In terms of atomic
units the Hamiltonian for this system can be written

Let us first consider a hydrogen atom in the presence
of a constant field, Fo) 0. The Hamiltonian can be writ-
ten

1Ho= ip Fox =Eo2 (2.1)

IE. I

2F0
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IE.I'

(2.2)

For the case when the electron is in a bound state
(x & x ') we can make a canonical transformation from
variables (p, x) to action-angle variables (J, H). The action

V(x)"
0

where Eo is the energy. Figure 1 shows a plot of the po-
tential energy, V(x)= —1/x Fox vers—us x, the posi-
tion of the electron. The potential energy has a turn-
over point at position x ' = (1/Fo )'r and energy
Eo = 2(F )o'~ . —For a particle with energy Eo &Eo and
x &x* (trapped in the potential well) the inner and outer
turning points of the orbit are at x =0 and x =x, re-
spectively, while the turning point for a "free" electron
with energy Ep (Eo impinging on the ionized atom is
x =x+, where

1H =
—,'p —— Fox Fx cos(cot)—, —

where p and x are the momentum and position of the
electron, t is the time, Fo and F are the strengths of the
dc and microwave fields, respectively, and co is the radial
frequency of the microwave field.

FIG. 1. Plot of the potential energy, V(x)= —1/x —Fox for
both F0=0 and FOWO.
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is given by

1 2v'2[(1+k )E(k)—(1—k )K(k)]J= pdx =
2' 3~F' k7T 0

(2.3)

-0.00

-0.10-

The Hamiltonian Ho=Ho( J)=Eo cannot be written ex-
plicitly but is contained implicitly in Eq. (2.3). The angle
variable can be found from Hamilton's equation
8=BHo/BJ and is given by

F.' x

-0.20-
F3/4k 1/2t

77 Q

&2[K (k) —E (k)]
(2.4)

where E(k) and E(k) are the elliptic integrals of the first
and second kind, respectively, and k is the modulus
defined k =x /x+.

The canonical transformation between coordinates
(p, x) and action-angle variables (J,8) can be found by in-
tegrating the equation

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 2. A plot of the first four Fourier coefficients,
(Fo )' 'x, as a function of the modulus k, for m = 1,2, 3,4.

x =p =+[2(Eo+1/x +Fox )]'/~ .

We find

x =x sn (u, k),

(2.5)

(2.6)

J' (z)=dJ (z)/dz and J (z) denotes the Bessel function
of order m. ' An expression for k= 1 is derived later in

this section.
We can rewrite Eq. (3.2) as

where

[E(k)—K(k)]8 Fo
v'2 (2.7}

In Eqs. (2.6) and (2.7), sn is a Jacobi elliptic function and
E(u, k) is the incomplete elliptic integral of the second
kind. The dependence of x and p on J is given implicitly
by Eqs. (2.3) and (2.6) via the modulus k.

p 00

H =Ho( J)—— g x (J)cos(m 8—cot) .
m = —oo

(3.4)

The perturbation may then be seen as a series of traveling
wave potentials which may trap an electron traveling at
nearly the same relative velocity, giving rise to nonlinear
resonance zones in the phase space of the system. This
yields a resonance condition 8=co/m. Since 8=dH/
dJ= dHo/BJ for small F, our condition of resonance is

III. ONSET OF CHAOS-
CHIRIKOV OVERLAP CRITERION

mF/&k
m &2[K(k)—E(k)]

(3.5}

Conditions for the onset of chaos can be determined
from the Chirikov overlap criterion. In order to use the
Chirikov criterion, we must first expand the Hamiltonian
in terms of the infinite set of traveling cosine waves which
generate the nonlinear resonances in this system. After
the canonical transformation to action-angle variables,
the Hamiltonian Eq. (1.1) takes the form

A plot of the action of the first primary resonance
(m =1) versus frequency is given in Fig. 3 for various dc
field strengths. Note that increasing the dc field strength
lowers (in action) the location of the resonances, especial-
ly for lower frequencies. At higher frequencies there is

300

H =Ho(J) Fx (J,8)cos(cot)—, (3.1)

where x(J,8) is a periodic function of 8. Following the
recipe in Ref. 1, let us expand x (J,8) in a Fourier series
in 8. Then we have

200-

F, =10 9

F —10-l o

~ F 10-11

H =Ho(J) Fg x (J)cos(m—8)cos(cot),
m=0

where

(3.2) 100-

x (J)= f 18x(J,8)cos(m8} .2' 0
(3.3)

In Fig. 2, x (J) is plotted as a function of k, the
modulus, for the range k =0 to k =1. When k =0 this
corresponds to no static field being present and the
coefficients x reduce to x =J J' (m)/m where

1

-7 -6
I I

-5
}0 gt o(6)}

~ I

-4

FIG. 3. A plot of the action, J(l„of the first primary reso-
nance vs microwave frequency for three typical dc field

strengths used in experiments.



41 EFFECT OF A STATIC FIELD ON THE STOCHASTIC LAYER . ~ . 3735

H =Ho(J )+ (J —J )
HQ

BJ

8 HO F+— (J —J )
——x (J )cos(m8 rut—) .m 2 m m

(3.6)
I

little shift, as expected, since those frequencies corre-
spond to more tightly bound electrons. Strobe plots of
this system in (J, O) space are given in Fig. 4 for two typi-
cal dc field strengths. The first and second primary reso-
nances are clearly visible, as well as some secondary reso-
nances which are generated by the primary resonances.
The lowering of the resonances as the dc field strength in-
creases is apparent and their location is correctly predict-
ed by Eq. (3.5). In particular, Eq. (3.5) gives J =82.6 and
96.5 for the first and second resonances, respectively, for
FQ= 10

The width of the resonances depends on the microwave
and dc field strengths. To estimate this width we may try
to use the pendulum approximation. To do this, first ex-
pand the Hamiltonian in a Taylor series about, say, the
mth resonance and keep only the contribution from the
mth traveling cosine (with positive velocity)

(3.7}

If we keep only the lowest-order terms the new Hamil-
tonian becomes

r

8 Ho FH=- I2 —x(—J )cos(me) .
2 QJ2 J 2

(3.8)

This is just the Hamiltonian for a pendulum. The width,
b,I = b,J, of a resonance (trapping region) for a pendu-
lum is

EI =4 Fx
8 HQ

2
BJ

1/2

(3.9)

In our case the width can be written

Let us now make another canonical transformation to a
new set of action-angle variables, (I,e), such that the ori-
gin of I is located at J =J . The generating function for
this transformation is

bI =4 F
—m Fok [(1+k )E (k) —(1 k}E(k) ]—

4(1 k) [K(k—) —E(k)]
(3.10)

We can apply the resonance condition, Eq. (3.5), to ob-
tain a simpler expression,

' 1/2 —1/2
3k Jm co

4Fo(1 —k ) m
(3.1 1)AI =4 F

To comp1ete our derivation we need an expression for
x . Stevens and Sundaram provide an expression for the
low-k limit. For the high-k limit we can derive an ap-
proximate expression. Using Eq. (2.6) in the integral (3.3)
we can write

150--

110 .

70
X

x = f d8sn (u, k)cos(m8) . (3.12)
0

i50—

We can change the variable of integration if we note that
8= ir[u —E (u, k) ]/[K (k) —E (k) ] [cf. Eqs. (2.4) and
(2.7)]. Then we find

2x

K (k) E(k)—
X f du sn (u, k)

0

i10 .

X cos [u E( u, k )]-K(k) —E k)

(3.13)

70
0

1'e I

2K

For k = 1, sn(u, k) =tanh(u). If we integrate by parts and
let the limit of integration go to infinity [since K (k)~ 00

as k ~1]we obtain

FIG. 4. Numerical strobe plots in action-angle space of the
system for frequency co=1.5X 10,microwave field amplitude
F = 10 ', and two dc field strengths: (a) Fo = 10 '; (b)
Fo =10
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—2
&m= A (co),

me(FO)'
(3.14)

of their half-widths is equal to the separation between
them:

where

A (co)=f d8 sinIco[8 —tanh(8)]j,sinh(8)
cosh (8}

(3.15)

2(b,I— +)+BI )=J +, —J
where, for k = 1,

3~F /
1T o 8

(3.18}

9
32

and co is a dimensionless frequency, co =&2'//F&/ . 8 ap-
pears to be the key parameter in determining the behav-
ior of resonances near the separatrix. By complex in-
tegration we obtain a power series expansion

—4 —6
1 q co +19'

sinh[(m /2)co j

23co

226 800
(3.16)

A plot of A (co) is given in Fig. 5. For small co (large dc
field strengths) or, equivalently, for orbits near the turn-
over point, A (co} is linear in co. For large co and large m
(small dc field strengths), A (2) approaches the FO=O
limit. ' That is

A (co)~0 411nco (F )' (3.17)

0.4

The widths of the resonances become narrower as the
dc field strength increases, or equivalently, as the reso-
nances become closer to the turnover point (k =1). This
is confirmed in Fig. 4. The resonances in the hydrogen
atom become narrower but also closer together as the ac-
tion increases, and eventually overlap. When overlap
starts to occur, the dynamics become chaotic as the
KAM (Kolmogorov-Arnold-Moser) surfaces break up.
Once the motion of the electron becomes chaotic, it may
diffuse upward in energy and subsequently ionize. Since
overlap depends on the width of the resonances, and
therefore the microwave and dc field strengths, we can es-
timate the threshold field strength needed for the onset of
ionization using the widths calculated above.

We can say that two resonances overlap when the sum

(3.19)

Combining Eqs. (3.19) and (3.11) into (3.18) we have an
expression for the critical field required for overlap:

A (n)) h a) 2nco .16m

where
—2( m + 1)m/co —2+ —2m w/ro —2

7

—(m + 1 )e
—4(m + l )n/co 4 —4m—n/co 4—

g~
—m e me

(3.21)

(3.22)

=e eg2 —e e (3.23)

IV. ONSET OF CHAOS-
THE STANDARD-MAP APPROACH

We will now determine the onset of chaos using the
standard map. First we derive a whisker map which
maps the energy and the phase of the field from one

Some typical values for overlap are given in Table I. The
effect of the dc field is to give a slightly lower threshold
microwave field strength for overlap, and hence ioniza-
tion. The accuracy of the pendulum approximation is
suspect, however, for resonances too close to the turn-
over. ' Even though the pendulum approximation
overestimates the resonance zones, the critical field for
overlap, obtained from strobe plots, is actually less than
those given in Table I by about a factor of 2. The reason
for this is that higher-order resonances were not taken
into account. These higher-order resonances, lying be-
tween the primary resonances, grow rapidly when the
primary resonances are about to overlap and help to de-
stroy the KAM surfaces that separate the primary reso-
nances.

0.3-

TABLE I. Critical values for island overlap using the Chiri-
kov overlap criterion for typical dc field strengths found in ex-
periments (Ref. 2}. For all cases co= 1.S X 10

Fp

0.2-
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4j
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FICx. 5. Plot of the integral A (co) vs the dimensionless fre-
quency co.
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period of the orbit to the next. We restrict our attention
to orbits in the neighborhood of the separatrix. Let us
first generalize Eq. (1.1) to include a phase P in the mi-
crowave term

H =—'p ———Fox Fx—cos(rot +((() .1

X
(4.1)

W„+] W„+AH0
(('. + i 4. +~(() (4.2)

where EH0 is the change in the unperturbed energy dur-

ing one period of the orbit. In the neighborhood of the
separatrix, where the period of the orbit becomes infinite,
the change in the energy during one period of the orbit
can be written

dH0
bHo= f dt

FJ—dt p,„(t)cos(rut +P),
where

2&ZF,'"
sinh(28)

p„(t)=

with

(4.3)

(4.4)

We next introduce a value for the energy, W„(W = ~Eo ~ ),
and the phase P„at the end of the nth period of the orbit.
The change in W„and (((„ from one period of the orbit to
the next is given by

for the case Fo&0 and for the case Fo =0 we find

W„+)
n+1

W„+FI ( —,')2 2 3

3 2'
7TCO

~n /2W n+1

2/3

sin((() „)

(4.9b)

For the case F0=0, this mapping is equivalent to the
Kepler map derived by Casati et al. The Kepler map
derived in Ref. 8, however, was derived under the more
general condition co~& 2~. The resonance zones for these
mappings occur at the fixed points where b, (() =2m '. We
then obtain for the location of the resonances

—64(F )(/2 —4(mar/co+1)
0

for Fo&0 and
2/3

1 co
W

2 m

(4.10a)

(4.10b)

for F0=0. These mappings are only strictly valid near
the separatrix (k =1 for the case FoAO). Figure 6 shows
a comparison of the phase-space orbits given by the
whisker map with strobe plots (Poincare surfaces of sec-
tion) obtained numerically using Hamilton's equations of
motion obtained from the Hamiltonian in Eq. (1.1). In
Fig. 6(a), k =0.60—0.84, so the mapping is not bad con-

F3/4t
0

8—tanh(8) = (4.5)

10 7

Performing the integration we obtain

2FA (cu)

(F )i/2
(4.6a) 10»-

for Fo&0 [A (co) is defined in Eq. (3.15)] and
' 2/3

t(Ho=FI ( —', )
2 3

3 2' sin(P) (4.6b)
10

0

~Q

for Fo =0, where I ( —', ) is the gamma function. The
period of an orbit near the separatrix (potential turnover)
is approximately

10

64(Fo )'

v'2F»4 W
—4 (4.7)

In the limit of F0~0, the period becomes So»-

7r

&28 (4.8)

The change in phase is simply b,P=ru~. Our mapping is
then

4C ~ ~

W„+ I

4n + I +—ln

2FA (co)

(F )'/'

64(F )'

8'„+)

(4.9a) FIG. 6. |,'a) Numerical strobe plot of energy vs phase of the
field (/=cot) for co=1.5 X 10, Fo =10 9, F =4.6X 10 ", and
modulus k =0.60—0.84 ( W= (Eo

~

= 10 ' —10 ). (b) The
whisker map for the same system.
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sidering that this is outside the range of its validity. Fig-
ure 7 shows a mapping closer to the separatrix
(k =0.84 —0.97). The agreement in the size and location
of the resonances as well as the onset of chaos is remark-
ably good.

Let us now derive the standard map from the whisker
map in Eqs. (4.9). We linearize the whisker map around
a particular resonance to obtain an expression for the
threshold field strength required for resonance overlap.
Let us define

10

(4.1 1)
10

0

We then arrive at the standard map

I„+, I„+E sin( P„)
P„+I„+, (4.12)

(b)

where K is defined

F A (CO) 4(m~I@+1)
Fo 64

for Fo&0 and

r =48.SF~-4"m'"

(4.13a)

(4.13b)

10

for Fo=0. The standard map has been extensively stud-
ied' and is known to become globally chaotic when K =1.
If we set K = 1 in Eqs. (4.13), we obtain the following es-
timate for the threshold field strength required for over-
lap:

64Fo0 —4(m 77' jcu+ 1)

coA (co)

for Fo) 0, and

F =O.O2~4"m -'"

(4.14a)

(4.14b)

for Fo =0. Both of these expressions have been
confirmed by comparison with strobe plots for a wide
range of parameters.

We can compare Eqs. (4.14a) and (4.14b) with previ-
ously published results. Equation (4.14b), which is essen-
tially the same result derived by Casati et ah. , agrees
with the threshold derived by Jensen' except for the nu-
merical constant. Our numerical constant, being more
than a factor of 2 smaller than that of Jensen, is in closer
agreement with numerical results. The reason for this is
that the standard-map approach takes higher-order reso-
nances into account. Equations (4.14), for the same
reason, provide a better estimate than the ones we de-
rived in Sec. III. Equation (4.14a) agrees with the results
obtained by Reichl and Zheng for the double-well poten-
tial in the low-co limit. This is not too surprising since
both potentials are quadratic near the turnover point for
small cu.

FIG. 7. (a) Numerical strobe plot of energy vs phase of field
(/=cut) for co=1.5X10 ', F0=10 ', F =1.97X10 '2, and
modulus k =0.84—0.97 (W= ~EO~ =10 ' —10 '). (b) The
whisker map for the same system.

field. The first approach uses the first-order Chirikov
overlap criterion and gives a crude (within a factor of 2)
estimate for the critical field strength. The second ap-
proach uses the standard map which is obtained by
linearizing a whisker map around a desired resonance.
For the case of no static field, our map is equivalent to
the Kepler map derived by Casati et al. Although
Casati et al. include corrections for a small static field in
their mapping, we have derived a result for an arbitrary
static field.

The standard-map approach gives more accurate
values when compared with numerical experiments. This
is due to the inclusion of higher-order resonances. These
higher resonances can be included in the Chirikov ap-
proach. This has been done ' for the case of no static
field, and the results compare well with the standard-map
approach. As a final point, we should emphasize that the
mapping approach used here is valid only near the poten-
tial turnover.
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