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The discovery of Lax, Louisell, and Knight (LLK) [Phys. Rev. 9, 378 (1974)] that electromagnetic
beams in vacuum do have a longitudinal component can be proved experimentally from the polar-
ization independence of the energy of electrons from the focus of a laser. For this purpose we had
to develop the LLK paraxial approximation to a Maxwellian exact solution for a Gaussian beam.
Inserting the exact solutions into the Maxwellian stress tensor expression of the nonlinear force for
the electron acceleration demonstrates a polarization dependence if only the transversal optical
components are used. Including the exact longitudinal fields results in the experimentally proven

polarization independence.

I. INTRODUCTION

Electromagnetic waves in vacuum are transversal as,
e.g., seen from the plane-wave solution of the Maxwellian
equations. For beams of finite diameter, the pure
transversality is no longer valid, even in vacuum. Apart
from the evaluation of the field in the focus' showing a
very complex structure of the field, it was discovered by
Lax, Louisell, and Knight® that there is a longitudinal
electric-field component in an electromagnetic beam in a
vacuum if the paraxial approximation is evaluated up to
first order. Longitudinal components of the electric and
magnetic fields in microwave guides are well known, but
it appears absolutely not trivial that a beam of elec-
tromagnetic waves in vacuum sufficiently far away from
any walls or matter does have longitudinal components.
This paper is devoted to the derivation of higher approxi-
mations than that of the paraxial approximation® by ap-
plying the exact Maxwellian theory.

This exercise is not of simple academic interest only. It
helps in solving a problem of the different descriptions of
the radial emission of electrons from intense laser beams
by either using methods of energy relations based on the
classical Hamiltonian function and time-averaged
Lorentz forces® versus the description with forces given
by the components of the Maxwellian stress tensor. The
energy description can be summarized to the well-known
result [Ref. 4, Eq. (12.21)] for the explanation of the ex-
perimental result that the electrons emitted from a laser
beam with sufficiently high intensity receive a maximum
energy [measured values of 100 or 1000 eV (Ref. 5)]
which is equal to half the maximum oscillation energy in
the focus. It is immediately evident that this energy is in-
dependent of the polarization direction as measured.

The problem arises if one would like to explain the ra-
dial electron emission from the laser beam by following
up the detailed time-resolved quivering process where
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one can see how the oscillation energy is converted into
translative kinetic energy of the electrons. For this case
one has to use the expression of the electromagnetic force
density as known from the interaction theory with plas-
mas*> where all components of the Maxwellian stress
tensor are necessary. From the signs of the electric and
magnetic vectors E and H in the diagonal elements one
can immediately see that there arises a discrepancy to the
mentioned result of the energy-conservation model.

Such a discrepancy cannot be ignored though the men-
tioned alternative energy model>* results in a satisfactory
theory; moreover, what this discrepancy is teaching—as
we shall see—is how the small longitudinal components
of electromagnetic radiation in vacuum discovered by
Lax, Louisell, and Knight? of Maxwellian exact solutions
of the laser field change the theoretical prediction from

no” to “yes” with respect to agreement with the polar-
ization independency of the experiment.

The motivation to this exercise was given before from
the result (Ref. 4, p. 231ff) that the radial quiver drift of
the electrons when being emitted from the laser beam ar-
rived at the conversion of half of the oscillation energy
into the translative motion energy if the electron followed
the polarization direction of the electric vector. No ac-
tion resulted from the quiver drift for the 90° different po-
larization; however, these calculations used as usual the
transversal components of the laser field only. If for sim-
plicity a triangular radial decay of the laser fields on the
radius was assumed and if then the necessary exact solu-
tion of the longitudinal components of the laser field were
calculated from the Maxwellian equations (showing also
the diffraction limit of the beam), the quiver drift resulted
exactly in the energy conservation known from the alter-
native model. What this also teaches is that in nonlinear
physics even such a small addition as the longitudinal
component for an exact solution against the transversal
wave approximation can only change a theoretical pre-
diction essentially.
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The present paper solved the extensive task® of using a
Gaussian radial intensity profile instead of the aforemen-
tioned triangular case. It involved the fact that the form-
er known paraxial approximation of the longitudinal
components discovered by Lax, Louisell, and Knight?
was needed here to be generalized to higher approxima-
tions. The test of the correctness of these new solutions
is then shown by evaluating the radial nonlinear force on
the basis of the general Maxwellian stress tensor descrip-
tion*> in order to show that a polarization-independent
electron emission appears in agreement with the measure-
ments and in agreement with the global energy transfer
model [Refs. 3 and 4, Eq. (12.21)].

We are reporting here on the derivation of the exact
Maxwellian formulation with intent on applying this to
the action of radial emission of electrons.® Though the
solutions to Maxwell’s equations are only to an approxi-
mation’ beyond the paraxial approximation, the formula-
tion is exact with respect to the number of field com-
ponents necessary to describe beamed electromagnetic ra-
diation. This implies that not only does one need the
usual transverse components, but requires longitudinal
electric- and magnetic-field components to appropriately
describe a beam, with a radially varying profile, in a vacu-
um. Using the angular spectrum method®'* each field
component, including the longitudinal electric and mag-
netic fields, is described by a superposition integral of
plane waves.!® Following the work of Agrawal and Pat-
tanayak,!! using their expansion for the exponential term
in the previously mentioned integrals for the component
fields, we evaluate the longitudinal electric and magnetic
fields implicitly. It should be noted that more than two
decades earlier a rigorous calculation of electromagnetic
fields of wave beams including longitudinal components
was evaluated by van Nie,!? however the coefficients of
these solutions are left in the integral form and were
shown by Agrawal and Pattanayak!' not to be in agree-
ment with the paraxial solutions of Lax, Louisell, and
Knight.?

The solutions of all the components (a correct formula-
tion) of a Gaussian beam are applied to the Maxwellian
stress tensor formulation of the nonlinear force. The re-
sults clearly demonstrate the polarization independence
of the energy emitted of the electrons from the Gaussian
beam if all components including the longitudinal fields
are used in the Maxwellian stress tensor in agreement
with the experiments. If the longitudinal components are
neglected a distinct polarization dependence appears con-
trary to the experiments. Though these longitudinal
components are small compared with their transversal
counterparts, it is clear that they must be included for an
exact formulation if one is to expect correct results at
least when dealing with nonlinear phenomena. This situ-
ation shows quite clearly the sensitivity and caution one
must take when dealing with the nonlinear ponderomo-
tive force. Corroborating this theoretical result is the ex-
perimental evidence by Boreham and co-workers,! in
which they observed the polarization independence of the
energy of the emitted electrons. The energy conservation
model of Kibble® was implicitly using the Maxwellian ex-
act field, without one having to be aware what an impor-
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tant role the (small) longitudinal optical field components
of the laser beam are playing.

II. EVALUATION OF FIELD COMPONENTS

Based on the angular spectrum method one assumes
that the electromagnetic action or disturbance at some
point in positive half space can be related to an earlier
electromagnetic disturbance, through the Fourier trans-
form.!"*  Considering monochromatic radiation, the
profile of this initial electromagnetic disturbance is as-
sumed to be Gaussian with a radial decay on a circular
cross section at z=0:

E, (x,y,0)=exp[ —(x2+y?) /2w}] . (1

This initial disturbance, without loss of generality, is as-
sumed to be polarized in the x direction while the beam
propagates in the z direction and is normalized relative to
the centerline amplitude. The spot size parameter w is
by definition where the amplitude is 1/e smaller than it’s
centerline amplitude profile.!> The components ex-
pressed by Carter'” may also be expressed in the integro-
differential form as follows:

Ex(x,y,z)‘:ff_m Ax(p’q)eik(px+qy+mz)dp dq , (2)

_ 3 © eik(px+qy+mz)
E,(x,y,2)= 7 - f_wa(p,q) dpdg ,
(3)
(1 ]aa
Hy(x,y,2)= kop, | dy ox
zk(px+qy+mz)
Xff _Axpg)——————dpdq,
(4)
k 9’
H (x,y,z2)=|— |—
oy wpy | 3x?
1k(px+qy+mz)
Xff A (P, g)————dpdq
_ ff A pq)melk(pz+qy+mz)
wﬂo
(5)
9
H,(x, — | =
L(x,y,2) o | 3y

x[[7 a,

and are time time-independent parts of the field com-
ponents. The time dependence is assumed to be of the
form e ~'®! which is not shown explicitly here. The radi-
ation condition,'” a consequence of the wave equation,
provides the usual definition for the direction cosines
m, p, and g to be

(p,q)eik(px+qy+mz)dp dq , (6)

m=(1—p*—g*)'? if p>+¢*><1, Y)

m=i(p*+q?—1)"? if p2+g¢?>1, (8)
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for the radiant (inhomogeneous) and reactive (evanescent)
field, respectively.

The complex amplitude A4 (p,g) is related to the
boundary condition of Eq. (1) by the Fourier transform

A, (p,)=k2m?* [ [ 7 E (x,p,00e %P dx dy

9)
o XZ 2 &)2
Ax(p,q)=(k/27r)2ffA LTy
Xe Kty dy (10)
76xp[-(p2+q2)/2f2], pit+gi=sl
T
A.(p,q)= (11)
0, p*+g*>1, (12)
where f=1/kw, The condition A,(p,q)=0 corre-

sponds to the reactive fields which decay exponentially
with increasing z. Effectively, the condition 4,(p,q)=0
is not the evaluation of the integral (10) for p*+¢2>1
but is an assignment in which we are stating to neglect
the evanescent wave fields. This neglection of the reac-
tive energy fields of the beam is only justified in that the
wave fields decay exponentially with a decay constant
comparable with the magnitude of the wave vector of the
electromagnetic radiation. The implications of this is
that at the order of a few wavelengths from the initial
boundary condition these reactive fields are exceedingly
small.

Substituting Eq. (11) into expressions (2)-(6) provides
integral expressions for the field components in terms of
explicitly complexed amplitude. However, as usual in
Fourier opti<:s,l6'l7 where circular symmetry is evident,
the transformation to the cylindrical coordinate allows
the reduction of the double integral to a single integral in
the cylindrical domain. The field expressions for the ra-
diant fields are then as follows:

K2 2
EX(V,Z)Zfolﬂ—jI:Z—/zQe’kszo(krb bdb,  (13)
E,(r,z) 7’(— f f%t /2f“" “Tykrb)d db , (14)

_ 1 20 —b2/2f?
H,(r,z)= |——
x(r2) kopg ay axff
tkmz
Jo(krb)b db
(15)
Hy(r,z)= |— o ff 20 =02 e tkmay (krb)b db
0
1 3 12 b2y
ko, axzfof ¢
eikmz
Jo(krb)b db
(16)
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i 0 [l 9 _p2pp2 i
H,(r,z)=——— 2e b7 e tkmay (krb)b db
L(r,z wuoayff e e olkrb)
(17)

where J,(krb) is the =zeroth-order Bessel function,
b=(p2+q*)'?, and r=(x2+y?)!/? (recalling that the
reactive fields were neglected, hence 0=b =1).

The multiplication theorem of Bessel and modified
Bessel functions'# allow the reexpression of the exponen-
tial factor in the above integral equations. The exponen-
tial term in the integral equations (13) and (17) can be
rewritten as

elkmz__ew(l~b2)l/7

o<

=2

n=0

;‘T(bz/Z)”v"“h,‘,lll(v) b2 <1. (8)

For the first integral in Eq. (16) we substitute the follow-
ing:

. 5 g2
lkmz:(l_bb)ew(l b)1/2

me
=i 3 -nl— (0b2/2)"

X[vhiV(v)=2nhi"  (v)],

n—1

b2 <1, (19

while for remaining integral expressions the following ap-
plies:
eikmz iv(1—bH)1/2

e
__b2)1/2

m (1
=j E

(b2/2)" T V), b <1, (20)

where v =kz and h)"(v) represents the nth-order spheri-
cal Bessel function of the third kind. The substitution of
expressions (18), (19), and (20) for the corresponding term
in integral equations (13)-(17) yields the following ex-
pressions for the field components:

E(rp)=3 71172‘"v"+'h,(,1_’1(v)1,,(r), @21
n=0 :
Il S BN [ )
Ez(r,v)—Tg 2 ;2 v h,, (v)I,,(r) , (22)
n=0 """
_ [ N [N
H (r,v)= kom, | ayox n§0m2 v" T h, () (r)
(23)
H — | 3’ < —n n+1p (1)
y(r,v)= kot 5——— 2 v" " h, (o)L (r)
0 =0
ik < Lz—nvnﬁ—l
WHo n=0n!
X [vh\Pw)—2nhiY (0)],(r)
(24)
— L0 g 1yt
H,((r,v)=—— —27 H,” (v, (r). (25)

Wo ay n=0 n!
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The integral I,(r)= féf_ze‘bz/zfzbz”HJO(krb )db can
be written as

L= 75 ki
_flccffze_b2/2f2b2n+1_]0(k,b )db (26)

since the integrand is continuous and well behaved. The
second integral term may be neglected if f <0.4 since the
Gaussian exponential factor dominates and rapidly de-
creases as b becomes large. On exclusion of the second
integral term in expression (26), the remaining integral
term is readily solved:'®

I,(u)=2"n!f*e “L,(u), 27

where u =r?/2w} and L,(u) are the nth-order Laguerre
polynomials. In view of Eq. (27) the electric-field com-
ponent in the polarization direction is

H (uv)=——2e~u DN AR Ly MU (') A ETDIN

LORENZO CICCHITELLI, H. HORA, AND R. POSTLE 41

Eu,v)=e 3 fr " ail (v)L,(u) . (28)
n=0

Expression (28) was originally derived by Agrawal and
Pattanayak’ for unpolarized electromagnetic waves.
Here we have derived the remaining components which
entirely constitute the exact Maxwellian formulation.
The derived electric field is polarized in the x direction,
hence the longitudinal electric field in vacuum becomes,
from (22),

Ez(u,v)=‘;c~e"‘ S R )L W), (29)

0 n=0

where L' (u) is the nth-order first generalized Laguerre
polynomials, while the longitudinal magnetic field and
the remaining transverse fields are

3 (30
Opg O] n=0
. w 2
H(u,v)= ik ]e"‘zfz"v"“ 2nh" (0)—vh WL+ 25 £2R V)L ) | 31
4 n=0 [0
Hx(u’v)—_:_. _f_ Le#u 2 f2n+lvn+1h'|ll)(v)L’(ll)(u) , (32)
Wiy | CHo n=0
respectively.

III. APPLICATION TO LASER ACCELERATION
OF ELECTRONS

A question which arises at this point is the following:
why is it important or necessary to have an exact formu-
lation to describe a beam of electromagnetic radiation?
Its answer is best understood by what follows. Docu-
mented experimental evidence'® shows a polarization in-
dependence of the energy of the emitted electrons in laser
irradiated tenuous plasma. However, simply assuming
this is the case theoretically is not quite as trivial. If the
assumption is, as in the classical case, that beamed elec-
tromagnetic radiation is purely transversal similar in
many respects to plane waves and only differ in the
nonuniform distribution of the intensity,") then—
theoretically based on this assumption—the nonlinear
force is polarization dependent.

Given the general expression for the ponderomotive
nonlinear (NL) force density,’ for stationary (nontran-
sient) conditions in vacuum,

Sa=Vv-T, (33)

where T is the Maxwellian stress tensor whose com-

ponents in the mixed covariant and contravariant form
are T=T}:

1
T
T%=—';<—Ej+E§—E§—H3+H§—H§) ,

T\=——(E!-E}—E!+H!—H!—H}),

8

§=8—17r( ~E!~E}+E}—H!—H!—H}),
T%=T?=21;(EXEZ+HXHZ) ,
T§=T3=£;(EyEZ+HYHZ) ,

it is possible to evaluate the force density in the trans-
verse directions. It is noted that, in this particular case,
the electric field component E, is identically zero and the
remaining field components are to be taken from Egs.
(29)-(32).

To numerically evaluate the time average force density
according to Eq. (33), it is necessary to expand the spheri-
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FIG. 1. Radial force density (dyn/cm®) in a linearly polar-

ized Gaussian neodymium glass laser beam of 13 um diameter
(half maximum intensity width) of 1X 10> W /cm? intensity in
the direction of the E vector for the two cases including and ex-
cluding longitudinal laser field components, plotted against the
distance, relative to the spot-size parameter from the center of
the beam. [Note that (0,0,z) is the axis of symmetry of the
beam].

cal Bessel functions in the field components to a summa-
tion series?® of the form

hiP(v 2 (n+1;7)277 " lexpi (m—n—l)%-kv ,
(34)
where
(n+j)
+loy=—21J"
S R Py
and I'(n) is the gamma factorial function. The field com-

ponents [(28)-(31)] are now expressible in terms of a dou-
ble summation from 1=0 to n and n =0 to infinity. The
time harmonic part of the fields are introduced and the
real part representing the physical wave is taken
Re(F)=1(F+F*). The variable u=r2/[2w3(1+iz/1)]
is rewritten as u=pe’®, u*=pPe’®* where 1=k},
B=r*/{20}[1+(z/1)*]}, and ¢=—tan !(z/1), and is
independent of time, thus unaffected by time averaging.
The field components, or rather the constituents of the
Maxwellian stress tensor, are averaged over time for one
cycle (E2),(E,E,), etc., and are substituted for the ap-
propriate component of stress tensor formulation of the
nonlinear force density. A computer numeric code® is
then used to evaluate the average force density as a func-
tion of the relative radial distance along the coordinate
axis (see Figs. 1 and 2). Figure 1 is the force density at
y =0 which implies along the direction of the electric-
field polarization and Fig. 2 at x=0. The parametric
condition were taken for a hypothetical neodymium-
doped yttrium aluminum garnet (Nd:YAG) laser with a
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FIG. 2. Same as Fig. 1, for the direction of the H vector.

cross-sectional focal diameter of 1.3X10 °m. The
theoretical results clearly show the distinction of includ-
ing and excluding the longitudinal fields. Figures 1 and 2
show a polarization preference in the direction of the
electric field if the longitudinal laser field components are
excluded or neglected, along the direction of the H vector
even a confining force would result erroneously if the lon-
gitudinal laser components were neglected. Alternative-
ly, if these small longitudinal fields are included we see a
distinct symmetry or polarization independence. The
electrons, upon inclusion of the longitudinal fields, are ex-
pelled with similar energies in both the transverse direc-
tions. The situation shows quite clearly the sensitivity
and caution one must take when dealing with nonlinear
phenomena. The exclusion of the longitudinal com-
ponents clearly revert the answer of polarization indepen-
dence very strongly, even though these longitudinal com-
ponents are of an order of magnitude smaller than the
transverse counterpart. Corroborating this theoretical
result is the experimental evidence by Boreham and co-
workers,'? in which they observed the polarization in-
dependence of the energy of the emitted electrons.

It should be mentioned that the problem of radial emis-
sion of electrons from a laser beam included a very in-
teresting test of the multiphoton ionization if the laser en-
ergies were so low that the emission of electrons were in
the range of eV only. At these low laser intensities the
quantum effects are evident; in particular the multipho-
ton process’! in laser-induced free-free transition in elec-
tron scattering off argon atoms?>?? exhibited a gain or
loss of up to 11 discrete quanta of photon energies. In
the cases of large laser intensities, the emitted electrons
were of too high energies to be attributed to the multi-
photon process alone. The observation of these keV elec-
trons?*?* could be concluded only on the basis of the
classical electrodynamic ponderomotive force. In this
case of the emission of keV electrons, it was possible to
test the Keldysh tunnelling theory of the ionization con-
trary to the multiphoton ionization,?® a question which
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led to a distinguishing between the quantum process of
multiphoton ionization and more classical tunnelling pro-
cess by means of the correspondence principle of elec-
tromagnetic interaction.?’

The presented exact description of the laser beam is
important also for filamentation and self-focusing of laser
beams in plasmas?® and applications for laser fusion.?’
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