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Series mixing in high-L Rydberg states of Hz.
An experimental test of polarization-model predictions
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(Received 13 September 1989)

Microwave spectroscopy of high-L (0,1)nL& Rydberg states of H2, with 26 n ~30 is reported.
The results show a strong perturbation at n =28 due to the nearly degenerate (0,3)16L& states.
Mixing between members of these two Rydberg series results in energy perturbations that can be
measured quite precisely (&1%) from the microwave spectra and that are found to be in good
agreement with a priori predictions based on the interseries matrix elements of the polarization po-
tential. The connection between this use of the polarization potential and the systematic derivation
of the polarization model from perturbation theory is discussed.

I. INTRODUCTION

The spectroscopy of high-L Rydberg states of H2 has
recently been studied with high resolution, using mi-
crowave resonance techniques. ' The availability of these
precise measurements increases the interest in the precise
calculation of the level structure using the "polarization
model, " an approach designed to imitate the successful
treatment of high-L states of the helium atom. In this
model, only long-range nonhydrogenic interactions be-
tween the Rydberg electron and the H2+ ion core are
considered, and these are expressed in terms of a "polar-
ization potential" seen by the Rydberg electron. In
lowest order this potential is
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where r is the Rydberg electron's radial coordinate,
LOPM represents the lowest-order polarization model, p
is the internuclear separation of the H2+ ion core, and 0
is the angle between the Rydberg electron's position and
the direction of the internuclear axis. Q is the quadru-
pole moment. u& and uT are the isotropic and anisotrop-
ic dipole polarizabilities of the H2+ core. All three are
functions of the internuclear separation. Additional
terms in this polarization potential are in general propor-
tional to higher inverse powers of r, and include higher
static multipole terms and both adiabatic and nonadia-
batic polarization terms. The coeKcient of each term in
the potential, e.g., Q(p), as(p), etc. , is a property of the
free H2 ion.

By the term "Rydberg state" we refer to a state where
the H2 core is in its ground electronic state. A particu-
lar Rydberg state is specified by the additional quantum
numbers (v, R ), the vibrational and rotational quantum
numbers of the core, (n, L), the principal and orbital an-
gular momentum quantum numbers of the Rydberg elec-
tron, and by N =R+L, the total angular momentum (ex-

elusive of spin). The set of all states differing only in the
value of n is called a Rydberg series. It can be shown (see
Sec. II below) that the energy of a particular Rydberg
state R can be written in terms of the polarization poten-
tial V,~

as
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where R' denotes all Rydberg states other than R. The
expectation value of V~, in a given Rydberg state, the
first term in Eq. (2), gives the major portion of the quan-
tum defect of that state. Interactions between different
Rydberg series are represented by the second term of Eq.
(2). These interactions, which dominate the structure of
low-L H2 Rydberg states, are much less significant for
the high-L states. For instance, in the (0,1)10Lt~ states
studied in Ref. 1, the ratio between the first and second
terms in Eq. (2) is calculated to be about 16 for L =4, and
increases to about 150 for L=7. Equation (2) implies
that the degree of mixing between Rydberg states in
different series is directly predicted by the matrix ele-
ments of V,~

between the states in question.
A direct test of this prediction would be desirable.

While not the dominant contribution to the Rydberg
spectroscopy, the mixing terms are significant. The pre-
cise comparison between experimental measurement and
theoretical prediction of n =10 Rydberg fine structure,
described in Ref. l, relies on the calculation of these mix-
ing terms. Also, series mixing between discrete Rydberg
levels is the bound-bound analog of the long-range au-
toionization process discussed by Eyler, which is not yet
completely tested by experiment.

Although mixing between different high-L Rydberg
series is generally quite small, near coincidences between
the energies of Rydberg states in different series can lead
to larger mixing. Under these circumstances, corre-
sponding to an abnormally small energy denominator in
the second term of Eq. (2), the mixing effects can lead to
significant changes in the Rydberg state energies. Such is
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the case for the (0,1)28LN and (0,3)16L]v Rydberg states
of H2, whose zeroth-order energies differ by about 0.25
crn '. Study of the energy shifts in the n =28 Rydberg
levels, which we report here, provides the opportunity to
test experimentally the degree of mixing predicted by the
polarization model.

Using an extension of the experimental method used in
Ref. 1, we have directly measured Rydberg fine-structure
intervals in (0,1)nL+ states with 26 ~ n ~ 30 and
4~L ~ 7. This systematic study reveals the large pertur-
bation of the electric-fine-structure pattern in the
(0, 1)28L]v levels, which is caused by the perturbing
(0,3)16LN levels. By extrapolating from the measured
fine-structure intervals of the (nearly) unperturbed n =26,
27, 29, and 30 states to n =28, and subtracting the result
from the measured n =28 fine-structure intervals, the
shifts in the four n =28 fine-structure intervals are deter-
mined. The measured shifts are compared with a priori
predictions which are obtained from the polarization
model. Within the estimated errors of the model (which
are obtained from the convergence of the polarization
series) the comparison reveals good agreement.

In Sec. II below, the formulation of the polarization
model is reviewed and extended to treat the mixing terms
which involve higher-order terms in V,~. The results are
applied to predict the fine structure expected in the
26 n ~ 30 Rydberg states under study. Section III
discusses the experimental measurements of the high-n
fine-structure intervals. Section IV discusses the analysis
of the measurements that are used to deduce the shift of
each fine-structure integral at n =28, and compares these
results with the predictions of the polarization model.

I p] I'
I pp

' pc
I p I'

2m, 2m 2 2Mr 2p
(4)

where Pc is the center-of-mass momentum and p the rel-
ative momentum of the two-particle system, Mr
=m, +m2, and p=m, m2/Mr, it is easily shown that
the total kinetic energy of the four-particle system H2 can
be written

and

0=HO+ V, (6)
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where Mr =2(M+m), ]u] =m(1 —e), and]uz=m/(I+a),
with s =—m /(2M+m ). In Eq. 5, the successive momenta
represent derivatives with respect to the four coordinates
defined in Eq. (3). Thus, with this choice of coordinates,
in contrast to the choice of Ref. 2, no "mass polariza-
tion" terms occur in the expression for the kinetic ener-

gy. However, the potential energy terms appear slightly
more complex in this set of coordinates. Neglecting the
center-of-mass coordinate, which separates, the complete
Hamiltonian can be written

II. THEORY

2 2

V= +
Ir, I Ir, —r]+sr]I

2

Ir, —p/2+Er, I

The polarization model is derived from a perturbative
solution of the nonrelativistic Schrodinger equation for
H2, subject to two basic assumptions:

(i) The two electrons are distinguishable (electron 2 is
the Rydberg electron).

(ii) The Rydberg electron is nonpenetrating. In what
follows, a choice of coordinates slightly different from
that of Ref. 2 is made, following the treatment of Drach-
man for high-L, helium Rydberg states. In terms of the
coordinates of the two protons (R„R2) and the two elec-
trons (r, , r, ), the center of mass and relative coordinates

1 2

are defined as

Rc=(MR]+MR&+mr, +mr, )/(2M+2m ),

P =R2 —R, ,

r, —= r, —(R]+R2)/2,

r2 =—r, —(MR] +MR2+ m r, ) /(2M+ m ),

(3a)

(3b)

(3c)

(3d)

where M and m are the proton and electron masses. The
three relative coordinates are Jacobi coordinates in that
each gives the displacement of a single additional particle
from the center of mass of a previously defined set of par-
ticles. By repeated use of the two-particle result

2

Ir, +p/2+sr]I
(7b)

Ho is the sum of the Hamiltonians of a free H2+ ion
and of a hydrogen atom. Thus, the zeroth-order eigen-
states are products of eigenstates for these two systems.
In the Born-Oppenheimer (or adiabatic) approximations
the wave functions for H2+ are written

p gaAvR P 2R +1( )
' 1/2

ahvRm„p& I
4mP

XD" (p)f (r', ;p) . (8)

The function f A(r'], p) is the electronic wave function of
the core electron in the molecule fixed frame, with quan-
tum numbers A, which is associated with the operator
L, .p, and a, which denotes all other electronic quantum
numbers. The function g A,z(p) is the rovibrational
wave function with vibrational quantum number v and
angular momentum R. D~ (p) is an element of the

(2R + 1)-dimensional representation of the finite rotation
that takes z into p, by convention the third Euler angle is
taken to be zero. A convenient zeroth-order basis for
high-L Rydberg states is composed of linear combina-
tions of product functions which diagonalize N =L+R,
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Applying standard nondegenerate Rayleigh-Schrodinger
perturbation theory, the energy of a given state can be ex-
panded as

E(i)=Eo+g{i)+E(~+E(3)+E( l+
(10a)

where L is the angular momentum of electron 2. These
are

0
PaAvRnLN(p rl r2)

(Rm„Lm, IRLNM &p A,z (p, r, )Q„L (r2) .
m, m&

term, which may couple basis states with ~~- =2. These
matrix elements are zero, however, since the matrix ele-
ment of r2 between hydrogenic radial functions of com-
mon n, but diFering in L by 2, are exactly zero. The
remaining higher-order nonzero couplings are quite
small.

If, for the present, terms of order c. in V are neglected,
then setting e=0 in Eq. (7b) and assuming no penetration
(r2) r, , rz) p/2), the perturbation Vin Eq. (10) may be
expanded in a multipole series

00 oo r)V= g V{')=g, P„(cos8z, )
—
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Successive terms in this expansion are expected to con-
verge rapidly, each being smaller by an additional factor
r, /r2, the ratio of core size to Rydberg orbit size. This
convergence may be used to estimate the approximate
size of contributions to E(i) from each term in Eq. (10).
It is advantageous to divide the set of all eigenstates of
H0 into two subsets. One set R is the set of all Rydberg
states, defined by the fact that the core electron is in its
ground electronic state. The other set U contains all oth-
er eigenstates of H0. Each of the sums occurring in Eq.
(10) may be separated into a sum over R and a sum over
U. Since the core electronic state is an ei~enstate of elec-
tronic parity (g/u), the perturbation V ") has nonzero
matrix elements within R only if i~ is even.

In order to make the correspondence between the po-
larization model [Eq. (2)] and the perturbation expansion
of the full Hamiltonian [Eq. (10], we may collect the
terms of Eq. (10) into three classes: (i) terms having no
Rydberg-Rydberg energy denominator, (ii) terms having
one Rydberg-Rydberg energy denominator, and (iii}
terms having more than one Rydberg-Rydberg energy
denominator. Terms of class (i) will contribute to the first
term in Eq. (2), terms from class (ii) to the second, and
terms from class (iii) would represent terms of higher or-
der in V,&. Within each class, the approximate magni-
tude of each multipole term in Eq. (10) can be estimated
by using the two rules

In Eq. (10} it is tacitly assumed that the zeroth-order
states are nondegenerate, while actually Rydberg levels
that have the same quantum numbers v, R, and n are de-
generate in zeroth order. If this formal difficulty is ig-
nored, however, it is possible to relate the results ob-
tained from Eq. (10) with the eigenvalues of an effective
Hamiltonian which acts in the subspace of Rydberg
states. In this interpretation the problem of divergent en-
ergies from coupling of degenerate levels, in Eq. (2), is re-
moved. It is also true that V is nearly diagonal in the
(v, R )nL& basis, at least for high-L states. As discussed
below, the lowest nonzero multipole moment of V that
can potentially couple degenerate states is the quadrupole

2
E0 E0= e

J
1

unless i and j are both in R .

In these expressions, r, and r2 are parameters represent-
ing the approximate radial scale of the core and Rydberg
electron wave function. Table I lists the most important
terms obtained from Eq. (10) and identifies them with
terms obtained by applying V,

&
in Eq. (2).

In addition to the expansions represented by Eqs. (10)
and (11), one additional expansion is advantageous to the
calculation. Whenever an energy denominator includes a
core excitation energy, that energy is assumed to dom-
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X [E (aAvR ) E—(a'A'v'R')] (12)

The first term of Eq. (12) leads to the "adiabatic" polar-
ization energies, while the second term gives the first
"nonadiabatic" polarization terms. The calculation of

I

inate the energy difference, and the full term is expanded
in the ratio of Rydberg to core excitation energies,

[E (aAvRn ) E—(a'A'v'R'n')]

[E—(aAvR ) E—(a'A'v'R')]

—[E (n) —E (n')]

the dipole polarization terms of both types is described in
detail elsewhere. ' In that case it is found that the
nonadiabatic terms are smaller than the adiabatic by two
additional powers of r] /r2, as indicated in Table I. The
detailed correspondence between the specific terms of
Eqs. (2) and (10), as indicated in Table I, may be
confirmed term by term' using methods similar to those
of Ref. 2.

As Table I illustrates, the largest terms of class I are
just those terms included in the higher-order polarization
model (HOPM). In this approximation, the terms in-
cluded in V,~, in addition to Eq. (1), are

e' Co()o) 12C~(p)

T T

cap 3 ]+ 6 Ps(p—)+—PT(p)Pz(cos8)r'
e2 —E, (p)P 2(c os 8) + Ez(p)P4(cos8)

1

35
(13)

where P(p) is the electric hexadecapole moment of H2+,
Cp, C], and Cz are the spherical components of the adia-
batic quadrupole polarizability, Ps and PT are the scalar
and tensor components of the first nonadiabatic dipole
polarizability, and E] and E2 are spherical components
of the adiabatic dipole-octupole polarizability. Similar-
ly, the largest terms in class II are obtained when Vpp]
is substituted into the second term of Eq. (2), and the
cross terms grouped according to the "total" power of r2.
These are the terms which describe energy shifts due to
mixing between different Rydberg series. Only the larg-
est of these was discussed in Ref. 2. Many of the others

originate in third- or fourth-order perturbation expres-
sions of V, shown in Eq. (10), which were not considered
there. Terms in either class I or class II which are not in-
cluded in Table I can be demonstrated to be of higher or-
der in the parameter r ] /r2, and are expected to be corre-
spondingly less significant.

One advantage of calculating Rydberg state energies
with the polarization model is that the rate of conver-
gence of the polarization series gives a natural way to es-
timate the probable error in the estimate due to neglect of
even higher-order terms. Following Drachman, the to-
tal contribution of all terms proportional to r is denot-

TABLE I. Identification of the polarization model expressions for Rydberg state energy with the perturbation-theory expressions

of Eq. (10). Terms in class I have no Rydberg intermediate states, while those in class II have one intermediate Rydberg state. The
notation (10d) (jC R) indicates that the intermediate state j of Eq. (10d) is a Rydberg state. 4'henever it is not explicitly stated, it is

assumed that the relevant intermediate states are not Rydberg states. The indices K, refers to the multipole expansion of the pertur-
bation V [Eq. (11)]. When more than one index ~ occur, they refer to different occurences of V in Eq. (10), read from left to right.

Class I
Equation

(10c)
(10d)
(10c)
(10d)
(10d)
(10d)

2
1

4
1a

2

1

Kp Magnitude

(e'-I»2 ){»i I»2 )

(e'/»2 )( r I /r p
)'

(e /r2 )(r, /»2 )

(e'/r2 )(r, /r2 )'
(e /»2)(rl /»2)
(e /r )(r, I» )

V„,] term

Q: static quadrupole potential
a: adiabatic dipole polarizability

static hexadecapole potential
P: nonadiabatic dipole polarizability

C: adiabatic quadrupole polarizability.
E: adiabatic dipole-octupole polarizability.

Equation

(10d) (jCR)
(10e) (k CR)
(10d) (j CR)
(10g) (k CR)
(10e) (k CR)
(10e) (k CR)
(10e) (k CR)
(10e) (k CR)

Kl

2

1

2
1

1

2
1

1a

K2 K3 K4

Class II
Numerator magnitude

(e /»2 ) (»1 /»2 )

(e /»2) (rl /»2)
(e'/r2 )'(r

1 /rp )'
(e /r ) (r, /r )

(e'/r2 )'(r I /»2)'
(e'/»2 )'(»1/rp )

(e /»2) (»1 /j 2)
( '/, )'(, /, )'

V~,&
term

Q-Q mixing
a-Q mixing
Q-P mixing
a-a mixing
a-P mixing

C-Q mixing
E Qmixing-
P-Q mixing

'Notation indicates the first nonadiabatic correction to the K= 1 term from Eq. (12).



3652 P. W. ARCUNI, E. A. HESSELS, AND S. R. LUNDEEN 41

ed V, . We can estimate the two terms of Eq. (2} using

only the terms included in V,]

( g~ ~ V,i i/~ ) -=V3+ V4+ V6/2+ V6/2, (14)

where it has been assumed that V6 is the smallest contri-
bution. Similarly, the second term of Eq. (2} may be es-
timated

(, I V... I „,&I'

where V, denotes the total of all cross terms with "total"
power of r2 equal to —s. The different treatment of the
smallest term is due to the fact that successive contribu-
tions to Eq. (14) are observed to alternate in sign while
this is not true for Eq. (15).

Finally, the largest term from class III is obtained from
Eqs. (10e) and (10f) when both j and k being to R and
~] =~2=~3=2. This term does not contribute to either of
the two terms of Eq. (2). However the expression of Eq.
(2) can be recognized as the first two perturbation orders
in the expansion of the eigen values of the matrix
Ho+ V,], defined in the space of Rydberg states. The
term in question here, the largest term of class III, is
identical to the lowest-multipole part of the third-order
extension of Eq. (2). Recognizing this, we may hy-
pothesize that the correct energy for Rydberg levels, to
all orders in V,], is found simply by diagonalizing the
matrix of

He~= Ho+ V 0] (16)

within the space of Rydberg states. We must stress the
somewhat tentative character of this hypothesis, which
interprets Ho+ V,] as an effective Harniltonian. There
has been no formal proof justifying such an interpreta-
tion. Although the result is similar to that obtained else-
where by rigorous arguments, " the conditions of that
proof do not seem to apply here, in particular, the space
of Rydberg levels is not well isolated from the other
states of the H2 molecule. On the other hand, the hy-
pothesis is plausible and in agreement with experiment,
as will be seen later.

The interpretation of V,] as part of an effective Hamil-
tonian removes the formal difficulty associated with mix-

ing of nominally degenerate zeroth-order states. Since
the diagonal polarization energies remove this degenera-
cy, and are much larger than those matrix elements of

Vp ] which mix these levels, the degree of mixing is gen-
erally small, and the energy shifts which result can easily
be calculated. This interpretation also proves to be
necessary when comparing calculations to our experi-
mental data which measures perturbations between the
(0,1)28 and (0,3)16 Rydberg levels, where the diagonal po-
larization energies are comparable to the differences be-
tween zeroth-order energies.

Application to the (0,1)nL» states of H2,
with 26+n ~304+L 6

Using the electrical properties which have been calcu-
lated for the (0,1) state of H2+, listed in Appendix A, the
fine structure of the (0, 1)nL states can be predicted. Be-
cause of angular momentum factors, all terms in V,]
proportional to P4(cos8) give zero contribution to the ex-
pectation value for these R =1 states. Consequently, the
"first-order polarization energies, " the first term of Eq.
(2},can be written

(fa i V~,lif„)= Ao+ A2(RLN~P2(cos8)iRLN), (17a)

where

( RLN ~P2(cos8)iRLN )

3S(S—1) 4L (L + 1—)R (R + 1)
2(2R —1)(2R +3 )(2L —1 )(2L +3 )

with S—:R (R+1)+L(L+1) N(N+—1). The calculat-
ed scalar ( Ao} and tensor ( A2) structure factors for each
of the states of concern here are given in Table II. The
error bars are obtained from Eq. (14).

The "second-order polarization energies, " the second
term in Eq. (2), involve contributions from many Ryd-
berg series which are coupled to the state in question by
Vp ] Since V „ is scalar, al 1 nonzero couplings satisfy
AN=0. The selection rules on R and L are determined
by the dependence on 8, the angle between p and r2. The
three types of angular dependence in Eq. (13) give the
selection rules

b.R =0, bL =0 for Po(cos8) = 1,

ER=0, +2, bL=O, +2 for P2(cos8),

ER=0, +2, +4, bL=O, +2, +4 for P4(cos8) .

TABLE II. Scalar and tensor structure factors for some (0,1)nL Rydberg states. All values are in MHZ. The numbers in
parentheses include convergence errors only.

Factor 26 27 28 29 30

Ao(G)
Ao(H)
A, (r)

A~(G)
A2(H)
A q(I)

—497(13)
—180(2)

—77.2(4)

—7250(7)
—3876(1)

—2315.8(2)

—445(11)
—161(2)

—69.1(3)

—6474(6)
—3462(1)

—2068.0(2)

—399(10)
—144.7(15)
—62.0(3)

—5805(6)
—3103.9(8)
—1854.3(2)

—359(9)
—130.4(13)
—55.9(3)

—5226(5)
—2793.9(7)
—1669.1(1)

—325(8)
—117.8(11)
—50.5(2)

—4720(5)
—2523.8(6)
—1507.7(1)
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TABLE III. Calculated energy shifts of the (0,1)26H6 state
due to coupling to other Rydberg series. The numbers in
parentheses are derived from Eq. (16). When errors are not
shown they are negligibly small when calculated by this
prescription. All values are in MHz.

Series Bound Continuum Total

(0,1)nH
(0', l).K,

'

{0,3)nF6
(0,3)nH6
(0,3)nK6
(1,1)nH6
(1,1)nE,
(1,3)nF6
(1,3)nH6
(1,3) K

1.329(7)
0.000
3.983(5)
3.045
0.000
0.117
0.000
0.344

—0.076
0.000

—2.245(13)
—2.400(1)
—0.023{1)
—2.998(2)
—0.343(1)
—0.042
—0.086
—0.001
—0.061
—0.013

—0.916(15)
—2.400(1)

3.960(6)
0.047(2)

—0.343(1)
—0.159
—0.086

0.343
—0.137

0.013

(0,3)16H6
(0,1)26K6

3.188
0.038

'The contribution from a "degenerate'* level is tabulated sepa-
rately.
The single state (0,3)16H6 is tabulated separately.

Matrix elements between states of different vibrational
quantum number v are determined by the matrix ele-
ments of the core electronic moments, such as Q(p) or
as(p). Generally, these decrease as b,v increases. These
oF-diagonal matrix elements have been tabulated for
most cases of interest. '

In general, the calculated energy shift due to mixing
from a given series of Rydberg levels arises from mixing
with both bound and continuum members of the series.
The shift due to bound levels has been estimated by ex-
plicitly evaluating the contributions of the lowest 45
members of each series and extrapolating to include, ap-
proximately, the rest of the bound levels. The energy
shift due to coupling to continuum levels has been es-
timated by calculating the contributions of several
representative continuum levels in the energy range F. =O
to 0.6 a.u. For this purpose, the continuum radial wave
functions were calculated by numerical integration of the
Schrodinger equation and normalized to analytic hydro-
genic wave functions at small r. In all cases studied, the
contributions decreased smoothly at the largest continu-
um energies. The high-energy behavior was fit to a
power-law function (b,F. ~ e ) to estimate the integrated
contribution.

Table III shows, for example, the calculated energy
shifts of a particular Rydberg state, the (0, 1)26H6 state,
caused by mixing with other series. Note that the shift
due to coupling to the single state (0,3)16H6 is listed sep-
arately and is small. This same perturbing state causes a
large perturbation of the (0,1)28Hs state, with which it is
nearly degenerate. Also listed separately are the shifts
due to coupling to the nominally "degenerate" states in
the (0,1)n =26 manifold. These are also quite small.
Table IV shows the total calculated shift for each of the
30 (0,1)nL& Rydberg levels of interest in this experiment.

TABLE IV. Total second-order polarization energies calcu-
lated for the 30 Rydberg states of interest. Coupling to both
discrete and continuum Rydberg levels is included, but coupling
with the (0,3)16L& levels, which is very large for n =28, is ex-

cluded in all cases. The numbers in parentheses are estimated
from Eq. (16). All results are in MHz.

State

(0,1)26G3
(0,1)2763
(0,1)2863
(0,1)2963
(0,1)3063
(0,1)26H4
(0,1)27H4
{0,1)28H4
(0,1)29H4
(0,1)30H4
(0,1)26Ig
(0,1)27I5
(0,1)28I5
(0,1)29I5
{0,1)30I5

Shift

—6.0(5)
—7.1(5)
—7.8(X)
—8.2(4)
—8.5(4)
—0.45(4)
—0.80(3)
—1.11(3)
—1.34(3)
—1.51(3)
—0.051(3)
—0.320(3)
—0.208(3)
—0.373(3)
—0.459(2)

State

(0,1)26G5
(0,1)276'
(0,1)286)
(0,1)296'
(0,1)3065
(0,1)26H
(0,1)27H6
(0,1)28H6
(0,1)29H6
(0)1)30H6
(0,1)26I7
(0,1)27I7
(0,1)28I7
(0,1)29I7
(0,1)30I7

Shift

—1.4(4)
—5.4(3)
—7.8(3)
—9.5(3)

—10.8(3)
0.26(3)

—0.79(3)
—1.43(10)
—1.93(2)
—2.29(2)

0.183(2)
—0.173(2)
—0.389(9)
—0.545(2)
—0.649(1)

III. EXPERIMENT

In order to study the spectroscopy of high-n Rydberg
levels of H2 with microwave methods, we devised an ex-
tension of the techniques described in Ref. 1, which was
based on the ability to saturate the laser transitions from
the n =10 to high-n states. The apparatus is shown
schematically in Fig. 1. A beam of H2+ ions is extracted
from a duoplasmatron ion source, accelerated to about 11
keV, and after mass selection in a bending magnet, neu-
tralized in a charge-exchange cell containing a few milli-
torr of argon. A small portion of the fast neutral beam
emerging from the charge exchange cell is in the n =10
Rydberg states of interest. After neutralization, the beam
passes through a strong transverse electric field which
deAects the remaining ions out of the beam and also Stark
ionizes Rydberg levels with n ~ 22. A Doppler-tuned cw
CO2 laser then excites a particular n =10 Rydberg level
to a specific high-n level, for instance, the (0, 1)106, to
the (0,1)27H6 level. The selection of this particular exci-
tation transition from all possible 10—27 transitions is
provided by the frequency resolution of the laser. ' The
laser intensity (=5 W/cm and interaction time (—= 10
nsec) are sufficient to saturate the transition in question.
Further down the apparatus, as illustrated in Fig. 1, a
second laser interaction region is encountered by the fast
beam, also tuned to excite this same transition. Since this
transition has already been saturated by the first laser,
the second laser would be expected to have little effect on
the Rydberg level populations. This is indeed the case if
nothing intervenes to alter the populations in the time be-
tween the two lasers. If, however, resonant transitions
are induced in the microwave region, located between the
two lasers, which reduce the population of the upper
state, the second laser mill be able to excite additional
molecules to the upper level. After the second laser in-
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FIG. 1. A schematic diagram of the apparatus, with the induced level transitions shown below. Rydberg H, molecules are created
from an 11-keV H2 ion beam inside the charge-exchange cell. Those molecules in the (0,1)10G&,N=3 or 5, are then excited, inside
the first laser interaction region, to a particular (0,1)nH& state, where 26~ n 30, N=4 or 6. Microwave transitions connecting the
upper level to other Rydberg states of the same n are induced in the rf transmission-line interaction region following the first laser.
In the second laser interaction region the same 106&-nH&+

&
transition is stimulated that was stimulated in the first laser interaction

region. The number of additional excited states depends, however, on the effectiveness of the rf excitation in redistributing the
upper-level states. Following the second laser all of the excited states are Stark ionized; the resulting ions are deflected into a chan-
neltron electron multiplier. The rf resonance between large-n Rydberg states is observed by modulating the microwave intensity and
measuring the synchronous modulation of the channeltron current. The resulting signal is measured as a function of the frequency
applied to the rf transmission line.

teraction region, a strong electric field Stark ionizes all
Rydberg levels with n ~22 and the resulting ions are
deflected into a channeltron electron multiplier. The
channeltron current is proportional to the total popula-
tion of n ~ 22 Rydberg levels in the beam after the second
laser. The effect of induced microwave transitions in the
high-n state, therefore, is to increase the channeltron
current, since in the absence of these induced transitions,
fewer molecules would have been excited to the upper
level ~

Evidence that the laser excitation transition is indeed
saturated is shown in Fig. 2. The plotted signal is the ac
component of the channeltron current synchronous with
a square wave modulation of the second laser's intensity,
plotted as a function of the Doppler-tuned frequency of
the first (unmodulated) laser. The positive signal ob-
served over most of the plot occurs since the second laser
is always tuned to the center of the (0,1)10G~—(0, 1)27H6
transition. %hen the first laser is also tuned to that tran-
sition, however, as at the center of Fig. 2, it saturates the
transition and approximately equalizes the populations of
upper and lower states, thus greatly reducing the effect of
the second laser as indicated by the dip in the plotted sig-
nal. Actually, as Fig. 2 shows, the signal even changes
sign when the first laser is tuned to the center of the line.
This appears to be consistent with the creation of a popu-
lation inversion by radiative decay during the time be-
tween the two lasers, which would be expected since the
lower state has the shorter radiative lifetime.

It is worth noting that the above explanation of the
processes responsible for the data of Fig. 2 completely
neglects the possibility of redistribution of the upper-state
populations in the time between the two lasers. Yet such

redistribution might occur in response to rather minor
perturbations. Electric fields as small as 0.3 V/cm are
sufficient to strongly mix the different Rydberg levels
which share the same high n. Consequently, nonadiabat-
ic motion through such a field would certainly redistri-
bute the populations. Also, the cross section for popula-
tion redistribution in gas phase collisions with neutral
background gas (P —= 10 Torr) are probably on the or-

600

400
J3
o 200

~+ ~ ~

0
C

V)

-400
75.0 75.2 75.4

LIR1 Angle (deg)
75.6

FIG. 2. Demonstration of the saturation of the laser excita-
tion transition. The plotted signal is the ac component of the
channeltron current that is synchronous with modulation of the
intensity of the second laser. It is plotted as a function of the
(Doppler-tuning) angle of the first (unmodulated) laser. When

both lasers are tuned to the excitation transition, as at the
center of the plot, the effect of the second laser is dramatically
reduced, indicating that the first laser has saturated the transi-

tion.
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der of n ao, which is close to the size that would be re-
quired for significant redistribution. Finally, the cross
section for redistribution in collisions with charged parti-
cles' is probably 2—3 orders of magnitude greater than
n a 0, which implies that any significant degree of ioniza-
tion of the background gas or other source of charged
particles could cause population redistribution. Never-
theless, such redistribution does n.ot seem to occur in the
experiment.

In order to observe the high-n fine-structure transition
resonances, both lasers are tuned to the same excitation
transition (at the "dip" in Fig. 2) and neither laser is
modulated. Then a small microwave electric field is ap-
plied in the transmission line interaction region between
the two lasers, with square-wave modulated amplitude.
The component of the channeltron current synchronous
with this modulation of the microwave intensity is then
measured as a function of the microwave frequency. Two
transitions are observed from each laser excited upper
state. For instance, the (0,1)10G,—(0, 1)27H6 laser tran-
sition allows the observation of the (0,1)27G5 —(0, 1)27H6
and the (0,1)27H6 —(0, 1)27I7 radio-frequency transitions.
Typical observations of these two signals are shown in
Fig. 3. The resonance linewidth, determined by the tran-

sit time through the microwave field, is about 3.5 MHz
for this data. This is small enough to reveal some sub-
structure to the resonances, evident in Fig. 3, which can
be attributed to the "magnetic fine structure" (MFS) of
the Rydberg levels, as discussed below. When this is ac-
counted for, each resonance may be fit to extract a single
line center, referred to as the "electric-fine-structure"
(EFS) interval and defined as the single interval which
would be observed in the absence of all spins. This inter-
val can be compared with the predictions of the polariza-
tion model, where all spins are ignored. Table V lists the
20 high-n transitions observed for this study, and gives
the results of the fits to determine the EFS intervals. The
fit procedure is discussed in detail below.

A. Magnetic Sne structure

The finest level of structure in H2 Rydberg states has
been studied in the case of high-L n =10 levels' where it
has been found to be accounted for to a precision of at
least 1% by the following ad hoc MFS Hamiltonian:

HMFS HHFS +HMS + ( 1 ) Vx

where H„„s is the hyperfine Hamiltonian of the free H2+
ion,

140 .
—
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HnFs=b(I S, )+c(I j)(p S&)+d(R S&) (19)

Interval fit
Vp EVp Vp

with I denoting the total proton spin (I=1 for R =1
TABLE V. Experimental values of 20 high-n fine-structure

intervals in H2. Column 1 identifies the interval, where
nL&-Lz is the interval between the (0,1)nL& and (0,1)nL&
states. Raw results of fits from experimental spectra are shown
in column 2. Corrections for stray electric field (25+10 mV/cm)
are shown in column 3, with corrected results in column 4. All
results are in MHz. The numbers in parentheses denote one
standard deviation error estimates.
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2663-H4
2763-H4
28G3 —H4
2963-H4
3063—H4

26Gs-H6
276s-Ht,
286s-H6
29Gs —H
306s —H

840.00(6)
754.63(7)
986.65(6)
599.79(11)
545.04(6)

552.68(3)
505.13(3)
872.10(13)
381.26(3)
353.24(3)

0.21(15)
0.27(20)
0.08(20)
0.45(30)
0.58(40)

0.30(20)
0.39(30)
0.38(25)
0.64(45)
0.81(50)

840.21(26)
754.90(21)
986.72(21)
600.24(32)
545.62(41)

552.98(20)
505.52(30)
872.48(28)
381.90(45)
354.05(50)

50
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Frequency ( MHz )

FIG. 3. Two examples of high-n fine-structure transitions ob-
served in this experiment: (a) the (0, 1)27Gs —(0, 1)27H6 transi-
tion, and (b) the (0,1)27H6 —(0, 1)27I7 transition. Both of these
transitions can be observed when the lasers are tuned to excite
the (0,1)10Gs-(0,1)27H6 transition. The stick diagram shows
the predicted substructure in the lines due to the magnetic fine
structure of the levels, as discussed in the text. The smooth
curves show fits of the data to a sum of six time and power
broadened functions, also as discussed in the text.

26H4 —Is
27H4 —I,
28H4 —Is
29H4 —Is
30H4 —Is

26H6 —I7
27H6 —I7
28H6 —I7
29H6 —I,
30Hf, —I7

325.21(5)
291.30(3)
330.41(5)
232.39(4)
210.49(3)

216.88(4)
196.02(3)
288.80(3)
151.92(3)
138.96(3)

0.32(20)
0.42(30)
0.52(40)
0.72(50)
0.91(60)

0.43(30)
0.57(40)
0.62(45)
0.96(70)
1.22(90)

325.53(21)
291.72(30)
330.93(40)
233.11(50)
211.40(60)

217.31(30)
196.59(40)
289.42(45)
152.88(70)
140.18(90)
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ducing the energy shifted states labeled E' '.
The most significant of these second-order energy

shifts are of two types, as illustrated in Figs. 4(a} and 4(b).
The more general case, illustrated in Fig. 4(a), occurs
when the energy difference between the N =L+1
electric-fine-structure levels becomes comparable to the
first-order magnetic-fine-structure energies E'". Under
these circumstances, states which have the same J& will
show significant second-order energy perturbations [as il-
lustrated in Fig. 4(a}]. Note that for each case of interest,
the states with N =L+1, only two hyperfine states show
significant second-order perturbations, those with F, =—,

'
and J) =L+—,'.

The second case of significant second-order energy per-
turbations occurs when the F, = —,', N =L state is nearly
degenerate with the F, = —,', N=L+1 states. A typical
example is illustrated in Fig. 4(b). Since this type of mix-
ing requires an "accidental" near equality of electric fine
structure and core hyperfine structure energies, it occurs
less frequently than the case illustrated in Fig. 4(a). Note
that in this case also it is only the J, =L+—,

' states which
are strongly perturbed.

It is precisely the energy shifts due to the type of near
degeneracies illustrated in Figs. 4(a) and 4(b) which are
responsible for the widely spaced substructure visible in
the resonance lines of Fig. 3. Were it not for this type of
perturbation, all six of the resonance components con-
tributing to a single such EFS transition (the strongest
transitions satisfy the selection rule AJ, =AN, AF, =0}
would be very close to one another. The large resonance
component seen in both Figs. 3(a) and 3(b) is expected to
contain the four resonances that are not affected by such
perturbations. One may then expect that this large peak
would give a good estimate of the spinless "EFS" inter-
val.

The MFS pattern predicted by the interactions of Eq.
(19), including the off-diagonal perturbations, gives the
predicted spectrum of EFS transitions illustrated in Fig.
3 by the stick diagrams. The pattern of the data is quite
well reproduced in all cases, although the observed posi-
tions of the strongly perturbed lines appear to differ from
the predictions by a few tenths of a megahertz, as shown.
The reason for this discrepancy is that, due to the mix-
ings, the strongly perturbed levels suffer slightly different
Stark shifts than the other levels. Their relative positions
in the resonance are thus altered. The small electric
fields that are required to produce the observed (relative)
shifts are consistent with estimates of stray electric fields
thought to exist within the rf region (see below).

The electric-fine-structure intervals were extracted
from the data by fitting the spectral lines to a superposi-
tion of two-level resonance line shapes' whose relative
transition energies were calculated from Eq. (19). Be-
cause of the differential Stark shifts that were mentioned
above, the positions of the two strongly perturbed MFS
components were allowed to float in the fit and only the
four relatively unperturbed components were used to
determine the EFS interval. The relative heights of the
six components were taken to be proportional to the sta-
tistical weight (2J, +1) of the initial state in the transi-
tion, and the common intensity, time of flight, and power

parameters, as well as the EFS interval, were adjusted in
the fit. The smooth curves in Fig. 3 are examples of the
resulting fits, which were quite acceptable. The statistical
errors of the fitted EFS interval are shown in Table V.
They are generally smaller than the systematic errors,
which are discussed below.

B. Electric fields

By far the most significant systematic error in this ex-
periment is the possible presence of stray electric fields
within the microwave interaction region. Previous exper-
imental experience with a similar apparatus' would sug-
gest that fields in the range of 0—100 mV/cm might be
present, even in the nominally field-free and magnetically
shielded interior of the interaction region. These fields
can be produced either by imperfect magnetic shielding,
which leads to motional electric fields, or by buildup of
charges on nominally conducting surfaces. Since the
Stark shift rates of these high-n transitions are quite large
[approximately equal to 10 MHz/(V/cm) ], it was essen-
tial to obtain experimental evidence about the size of any
such fields that were present during the experiment. We
used three techniques, of varying utility, to do this.

The first method was to deliberately impose a uniform
external electric field in the interaction region by apply-
ing a dc potential to the center conductor of the
transmission line which forms the interaction region.
This field could, to a certain extent, compensate for any
other fields which were already present along the path of
the fast beam. When the position of one of the high-n
EFS resonances was measured as a function of this dc po-
tential, it did not show a simple quadratic shift, as would
be expected in the absence of other fields, but instead
showed a minimum shift for a potential of —0.4 V with a
quadratic dependence on either side. This would suggest
that another field, a "stray" field, approximately the same
size as that produced by the 0.4-V potential (approxi-
mately equal to 20 mV/cm) was present in the interaction
region from other causes. Unfortunately, the stray elec-
tric field is unlikely to be uniform throughout the interac-
tion region, nor is it precluded from having polarization
perpendicular to the applied field. For these reasons it is
certain that the compensation of the stray fields by the
uniform external field is only partial. Nevertheless, this
method is relatively simple and should give at least an or-
der of magnitude estimate of the stray field, unless its po-
larization is completely orthogonal to the applied field.

A second method of estimating possible stray electric
fields is to compare the observed EFS intervals, particu-
larly for the n =26, 27, 29, and 30 states [which are not
greatly perturbed by the (0,3)n =16 states], with the pre-
dictions of the polarization model, and to see whether
any differences could be accounted for by a possible stray
electric field. The raw experimental numbers, shown in
Table VI, are rather more precise than the HOPM pre-
dictions, also shown, and are in generally good agreement
to within the theoretical error bars that are calculated
from Eq. (14). The calculated quadratic Stark shift
coefficient for each interval is also shown in Table VI. A
somewhat more sensitive test can be obtained by sub-
tracting the two intervals which share initial and final L.
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Since this difference is independent of the scalar structure
factors of both levels, which contain most of the theoreti-
cal error, this comparison gives the most precise check
for possible Stark effects, especially for the H —I intervals.
The measured intervals are entirely consistent with zero
stray electric field, and would be inconsistent with stray
fields larger than about 30 mV/crn. This comparison
thus serves to set a limit on the magnitude of possible
stray electric fields.

A third method, which was used on one occasion, was
to measure the position of one additional transition, the
(0,1)30H6 —(0, 1)30I6, which is mildly forbidden com-
pared to the other observed transitions. %hen combined
with the measured position of the (0, 1}30H6—(0, 1}30I&
transition, the new measurement gives a determination of
the splitting between the 30I6 and 30I& states. The re-
sults of these measurements, corrected for Doppler shifts
but without any Stark shift corrections, are

30H& —30I&. 565.09(11) MHz

30H6 30I7: 1—38.96(3 } MHz

30I6 —30I7: 426. 13(11)MHz .

According to the polarization model, this interval is pre-
dicted to be 421.6(4) MHz, where the quoted error is due
to a conservative assumption of O. l%%uo uncertainty in the
quadrupole moment of H2+. Given the calculated Stark
shift rate for this interval [7400 MHz/(V/cm) ] the
difference between measured and calculated intervals may
be attributed to a stray electric field of 24.6(12) mV/cm,
rms, by far the most precise estimate of stray fields. Un-
fortunately, this test was carried out only once, and there
is no guarantee that the stray fields are constant in time.

From these three independent lines of evidence, it ap-
pears fair to conclude that there are stray electric fields
present in the microwave interaction region and that
their size is estimated to be 25210 mV/cm (rms). Based
on this estimate, each of the measured high-n EFS inter-

vals mere corrected for the Stark shifts which are
presumed to have been present when the interval was

measured. These corrections are shown in Table V. The
uncertainty in this correction, due to uncertainty in the

stray field size, is the dominant experimental error in the
measured fine-structure intervals. It should also be em-

phasized that the primary objective in this experiment is

to measure the perturbations of the EFS because of the

TABLE VI. Comparison between raw experimental line centers for each of 16 n%28 fine-structure
intervals and the predictions of the polarization model. Shown for each interval is the calculated quad-
ratic Stark shift coefficient c in MHz/(V/cm), the experimental line centers and the calculated transi-
tion frequencies, both in MHz, and the calculated square of the electric Geld, in (V/cm), which would
cause experiment and theory to agree exactly. Significant nonzero values of ~E~' may be evidence of
stray electric fields within the spectroscopy region. The numbers in parentheses denote one standard
deviation error estimates.

Interval

26G3 —H4
26Gs —H
difference

26H4 —I5
26H6-I7
difference

27G3-H4
27G5-H
difference

27H4-I5
27H6-I7
difference

29G3 —H4
29G5 —H
difference

29H4 —I5
29HA —I7
difference

30G3 —H4
30G5 —H
difference

30H4 —I5
30H6 —I7
difference

—330
—470

140

—520
—700

180

—440
—610

180

—680
—920

240

—730
—1020

290

—1140
—1540

400

—930
—1300

370

—1460
—1970

510

840.00(6)
552.68{3)
287.32(7)

325.21(5)
216.88(4)
108.33(6)

754.63(7)
505.13(3)
249.50(8)

291.30(3)
196.02(3}
95.28(4)

599.79(11)
381.26{3)
218.53(12)

232.39(4)
151.92(3)
80.47(5)

545.04(6)
353.24(3)
191.80{7)

210.49(3)
138.96(3)
71.53(4)

RHOPM
Vp

845(13)
557(13)

287.6(12)

326.6(19)
218.1(18)
108.45(17)

759{12)
509(12)

249.7(11}

292.7(17)
197.7(16}
95.06(14)

604(10)
385(9)

218.8(9}

233.8(14)
153.4(13)
80.47(11)

548.9(88)
356.8(85)
192.1(9}

212.2(12)
140.7(12)
71.51(10)

[E)'

0.015(39)
0.009(28)

—0.002(9)

0.0027(36)
0.0017(26)

—0.0007{7)

0.010(27}
0.006(20)

—0.001(6)

0.0020(25)
0.0018(17)
0.0009(6)

0.006(14)
0.004(9)

—0.001(3)

0.0012(12)
0.0010(8)
0.0000(3)

0.004(9)
0.003(7)

—0.001(2)

0.0012(8)
0.0009(6)
0.0000(2)
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(0, 1)n =28 (0, 3)n =16 coincidence. The accuracy of the
polarization model predictions of unperturbed EFS is
much more easily tested in other experiments. ' Thus, the
reliance which is placed on the theory in estimating pos-
sible stray fields is acceptable within the context of the
present experiment.

IV. ANALYSIS OF SERIES MIXING

Even a cursory examination of the measured fine struc-
ture intervals shown in Table V reveals the large pertur-
bation which occurs at n =28. Figure 5 shows the
(0,3)16LN levels which are responsible for these perturba-
tions. The primary couplings between the two manifolds
satisfy the selection rules hN =0, hL =0. The n = 16 lev-
els lie just above the n =28 levels and so when coupled to
them have the effect of shifting all of the high-L n =28
levels downward in energy. Since the size of the pertur-
bation decreases with L, as the coupling decreases, all of
the n =28 EFS intervals are increased, as Table V
confirms.

In order to test the theoretical predictions of the level
perturbations, we must first determine the precise value
of the shift in each EFS interval at n =28. The n =26,
27, 29, and 30 measurements of each interval appear to
fall on smooth curves. Extrapolating these curves to
n =28 gives an estimate of the intervals that would be ob-
served in the absence of the strong perturbation. Sub-
tracting the extrapolated value at n =28 from the actual
measured interval gives an experimental estimate of the
perturbation. The value obtained for the n =28 intercept
is not very sensitive to the method of extrapolation, al-
though the quality of the fit improves as more care is tak-
en, and this increases confidence in the intercept. Table
VII illustrates the results of several extrapolation
methods. The simplest method, fitting to the function
A /n, gives a rms deviation of about 4 MHz in the fits.
This function, however, fails to account for the small but
non-negligible perturbations of the n%28 levels as they
approach the (0,3)n =16 perturber. One way to account
for this is to fit the n %28 intervals to the function

vo(n) =( A +C/b, E„)/n

where AE„ is the difference in zeroth-order energies be-

5E=
E (28)—E (16)

(21)

It is evident from Fig. 5, however, that the difference of
zeroth-order energies is not a very precise estimate of the
energy difference between the two states being mixed; the
EFS of both levels is comparable to the zeroth-order en-

ergy difference. Consequently, Eq. (21) gives only a very
crude estimate of the expected shift. We speculated, in
Sec. II, that the Rydberg state eigenvalues might be
correctly obtained, to all orders in V,~, by diagonalizing
the effective Hamiltonian

H ff=HO+ Vpp]

in the space of all Rydberg levels. Of course this is an
infinite matrix, so its eigenvalues can only be obtained ap-
proximately. The simplest approximation technique
would be to diagonalize the submatrix including only the

tween the (0, 1)n and (0,3)16 Rydberg levels,

EF.„=—109 707/n —139.684 cm

This gives a much better fit, with a correspondingly more
precise intercept. Adding a third parameter, proportion-
al to n, further improves the quality of the fit. An al-
ternative method of dealing with the slight perturbations
of the n%28 levels is to rely on calculations of these
small shifts ( ~20 MHz). This results in the fit labeled 4
in Table VII. Yet another, completely independent way
to estimate the "unperturbed" n =28 interval would be to
rely on polarization model calculations, but these are
much less precise than the measurements, as also shown
in Table VII. All of the extrapolation methods give gen-
eral agreement for the value of the "unperturbed" n =28
intercept. If we take function 4 to be the most reliable es-
timate, and subtract those extrapolated n =28 intervals
from the measured intervals, we obtain the experimental
measurements of energy shifts shown in Table X. Notice
that the shift can be inferred in all cases to a precision of
better than 1%.

Theoretical calculation of the large n =28 perturba-
tions might begin with the second term of Eq. (2), which
would give for the energy shift of each n =28 EFS level

TABLE VII. Estimates of the "unperturbed" value of n =28 fine-structure intervals. Estimates
(1)-(4) are based on extrapolations of experimental numbers from n =26, 27, 29, and 30. For each
method of fitting, the n =28 intercept and the rms deviation from the fitted curve is shown. Estimate

(5) is the calculated interval based on the HOPM polarization potential, as obtained from Tables II and

IV. All results are in MHz. The numbers in parentheses denote one standard deviation error estimates.

Method

(1) A /n'
rms deviation

(2) [A +C/b. E(n)]/n'
rms deviation

(3) (3 +C/AE„)/n'+B/n'
rms deviation

(4) A/n'+B/n +yucca'c

rms deviation
(5) HOPM theory

G3 —H4

673.3(16)
3.63

671.4(9)
1.23

672.44(5)
0.06

672.40(8)
0.10

676(11)

Gs —H

443.4(41)
10.72

438.2(18)
2.62

440.37(20)
0.20

440.51(8)
0.10

AHA(10)

H4 —I5

260.8(4)
0.97

260.21(17)
0.25

260.42(3)
0.03

260.41(12)
0.13

261.1(15)

H6 —I7

174.3(9)
2.43

172.92(40)
0.62

173.42(7)
0.09

173.42(16)
0.15

174.2(15)
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FIG. 5. Level diagram showing the (0,1)28L& levels measured here, and the nearby (0,3)16L& levels which perturb them. All the
levels are shown in their calculated "unperturbed" positions. The most important coupling, as discussed in the text, are between
states that share the same L and N. The fine-structure intervals which are measured in this experiment are shown by arrows.

nearly degenerate levels. An improved approximation is
obtained by including, on the diagonal of this submatrix,
the second-order polarization energies due to coupling
with all other Rydberg states. " We adopt this improved
procedure.

The energies of the n =28 Rydberg levels in question,
excluding the 28-16 coupling, have already been calcu-
lated and are shown in Tables II and IV. For the (0,3)16
states, the first-order structure is slightly more complicat-
ed since angular momentum factors no longer prevent
contributions from terms in the HOPM potential propor-
tional to P4(cos8). We find, as the generalization of Eq.
(17a),

& Wit I &p.l ly~ ) = &o+ &, &RLNiP2(cos8)iRLN )

+ A~&RLNiP4(cos8)~RLN), (22)

where Ao, A 2, and A 4 are given by the expectation value
of the appropriate terms in Eq. (13). Table VIII gives the
calculated values of each of these structure factors for the
(0,3)16L levels with 2 & L & 8. In each case, the estimated
error, inferred from the convergence of successive terms
in the polarization potential, is taken to be one half of the
smallest V, . The first-order polarization energies of any
of the n =16 states involved in the present mixing may be
calculated from these structure coefficients. The second-
order polarization energies, obtained as in Table IV, have
also been calculated for the states of interest, and are
shown in Table IX.

The possible couplings between the states illustrated in
Fig. 5 must satisfy AN =0 and hL =0,k2, +4. When the
appropriate matrix elements are calculated, however, the
hL =0 couplings are found to be by far the most
significant. In fact, of all the possible b,LAO couplings
involving the six n =28 levels of interest, only two partic-
ular couplings give shifts that are significant at the level

TABLE VIII. Structure factors for the (0,3)16L states of H2, calculated with the polarization poten-
tial, including terms to order r (HOPM). The energy of each Rydberg level is given by
E[(v R )16Lp ]= Ap+ A 2 (RLNiP, iRLN ) + 34(RLN~P4iRLN ). The numbers in parentheses denote
one standard deviation error estimates.

States

(0,3)16DN
(0,3)16F~
(0,3)16GN
(0,3)16H~
(0,3)16I~
(0,3)16'
(0,3)16L~

Ao (MHz)

—11000(38 000)
—7400(680)
—2134(50)

—767(7)
—324.8(14)
—154.9(3)
—80.67(10)

Aq (MHz)

—200 000(20 500)
—70 100(360)
—31 480(27)
—16 830(4)

—10051.8(7)
—6 485.6(2)
—4429.02(5)

A4 (MHz)

—31 000(5500)
—1800(100)

—261(7)
—58(1)

—16.8(2)
—5.81(5)
—2.25(1)
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TABLE IX. Calculated perturbations of (0,1)28LN levels due to mixing with (0,3)16L& levels. For each pair of levels, the unper-

turbed levels positions are tabulated in zeroth, first, and second order in V~,l, where E'" excludes the contribution of the nearly de-

generate levels. The matrix element of V~, l between each pair of levels is shown in column 5, and column 6 has the n =28 level shifts,

which were calculated using Eq. {23}and the total energy difference. All values are in MHz. The numbers in parentheses denote one
standard deviation error estimates.

Interval

(0,3)16G3
(0,1)28G3

go

7465(30)
0.0'

—2930(52)
—1228(11)

E2

—65(1)
—7.8(5)

( VHDPM )

1600.8(11)

5v(28)

—418.4(40)

(0.3)166s
(0,1)28Gs

(0,3)16H4
(0,1)28H4

(0,3)16H6
(0,1)28H6

(0,3)16I,
(0,1)28Is

(0,3)16I7
(0,1)28Ip

7465(30)
0.0

7465(30)
0.0

7465(30)
0.0

7465(30)
0.0

7465(30)
0.0

2180{46)
—821.0(10)

—676.6(70)
—558.6(15)

1530.4(64)
—383.5(15)

—80.2(14)
—298.0(3)

1026.5(13)
—210.4(3)

—168.6{9)
—7.8(3)

—19.45(3)
—1.11(3)

—42.47(6)
—1.5(1)

—6.128(2)
—0.215(3)

—13.246(6)
—0.40(1)

2586.9(22)

893.95(17)

1311.97(30)

538.89(4)

742.07(6)

—612.9(31)

—107.5(5)

—180.4(6)

—37.64(15)

—64.49(22)'

'For convenience, the zeroth-order energy of (0, 1)n =28 levels is set to zero.
This number includes a calculated shift of 0.4 MHz caused by coupling to the (0,3)16F6 state.

'This number includes a calculated shift of —1.57 MHz caused by coupling to the (0,3)16G7 states.

5E(28)=bE/2 —[(bE/2) + V ]' (23)

of experimental precision. These two small shifts are
given specifically in Table IX, where they apply.

Aside from the above effects, the important mixing is

predicted to occur in pairs of two levels, each sharing
both L and N. Table IX shows the calculated matrix ele-
ment of V,&™between each such pair of levels, with an

error estimate derived from Eq. (14). Also shown are the
best estimates of the energies of both levels of the pair,
before mixing. The error in the energy difference be-

tween the two levels is due in part to the uncertainty in

the 1 —3 (calculated) rotational splitting of Hz+,
288.861(1) cm ', contributing an error of +30 MHz to
the energy differences. This is the dominant error in the
calculated shifts of L &4 states. Other contributions to
the error in the energy difference come from the estimat-
ed uncertainties in the calculated first and second order
polarization energies, and are found from Eqs. (14) and
(15).

The degree of mixing of Rydberg states of the two
series is suSciently large that a perturbative estimate of
the mixing and shift would not be precise enough for
comparison with the data. Since we are dealing with only
pairs of coupled levels, however, we can explicitly diago-
nalize the 2 X 2 matrices which occur and find

coefficient between the two series, by amplitude, is given
by

TABLE X. Comparison between observed and predicted per-
turbations of the four fine-structure intervals. Column 2 gives
the observed shift of the interval at n =28, derived from sub-

tracting the n =28 extrapolated value (Table VII) from the mea-
sured n =28 interval {Table V). Column 3 gives the shift pre-
dicted from the matrix element of V~,~, as tabulated in Table
IX. Column 4 gives the difference between experiment and
theory. All values are in MHz. The numbers in parentheses
denote one standard deviation error estimates.

Interval expt theor expt g theor

e= V/bE

which is as large as 0.29 for one case.
Table X compares the calculated and observed shifts in

the four EFS intervals studied. Excellent agreement is
observed in all cases. This confirms that, at least for
these states, the degree of mixing between nearly degen-
erate high-L Rydberg series is very well predicted by the
polarization model. This result supports the hypothesis
that the correct Rydberg energy is found by diagonaliz-
ing Ho+ V,~, the agreement would be completely unac-
ceptable if Eq. (21) were used directly to calculate the en-

ergy shifts.

where AE is the estimated energy splitting between the
two states, and V is the matrix element of V,&

between

them. The error in the calculated shift 5E is calculated
by propagating the errors in hE and V. The mixing

G3 —H4
Gs —H
H4 —Is
H6 —I7

314.3(2)
432.0(3)

70.5(5)
116.0(5)

311.0(49)
432.5(36)

69.9(4)
115.9(6)

3.3(49)
—0.5(36)

0.6(6)
0.1(9)
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V. CONCLUSION

We have observed large n-(26&n &30) fine-structure
transitions in molecular hydrogen, using a new experi-
mental method. The transitions show hyperfine structure
which is well described by an ad hoc hyperfine Hamiltoni-
an. We hase experimentally measured, to 1%, the effect
of series mixing between the nearly degenerate (0,1)n =28
and (0,3}n = 16 fine-structure levels, which manifests itself
in large perturbations of the n =28 fine-structure inter-
vals. The observed perturbations are completely con-
sistent with the predictions of an a priori polarization
model. In order to obtain this agreement, however, it is

necessary to assume that the correct eigenvalues are cal-
culated by diagonalizing an effective Hamiltonian which
includes the zeroth-order Hamiltonian and the polariza-
tion potential. We provide some justification for this as-
sumption. The good agreement also indicates that short-
range interactions are negligible for the states studied
here.
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APPENDIX

The coeScients of the various terms in the polarization
potential depend on electrical properties of the free Hz+
ion. Most of these have been calculated explicitly as a
function of the internuclear separation p, and then aver-
aged over the rovibrational wave function appropriate to

Core property

quadrupole moment (eao)

(0,3)

1.642 57 1.662 56

adiabatic dipole polarizability (ao)
as 3.180 88 3.229 11
ay 4.027 31 4.125 83

hexadecapole moment (eao }

2.0192 2.0698

Nonadiabatic dipole polarizability (ao/eo)
6.84 (6.84)

12.49 (12.49)

Adiabatic
Co
Ci
C~

quadrupole polarizabilities (ao)
24.066 24.451

5.118 5.247
0.420 0.434

Adiabatic dipole-octupole polarizabilities (ao)
E, 8.69 9.02

32.68 33.68

a given ( v, R ) state. ' The values used for the calcula-
tions of this paper for the (0,1}and (0,3) states are shown
below. In the case of the adiabatic quadrupole polariza-
bilities, only the electronic polarizabilities is used, in con-
trast to Ref. 2. Matrix elements of V~„between Rydberg
series bound to these two difFerent states would require
ofF-diagonal matrix elements of these functions of p.
However, since the rovibrational functions for (0, 1) and
(0,3) are only slightly different, we have approximated the
off-diagonal matrix elements of the core parameters as
the geometric mean of the diagonal matrix elements for
the two core states. The nonadiabatic dipole polarizabili-
ties have not been calculated for the (0,3) state. We used
the (0,1) values as an approximation, and they are shown
enclosed in parentheses.
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