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The total cross section and the single-differential cross section in energy for the ionization of the
ground-state helium atom by electron impact have been calculated in distorted-wave approxima-
tions. The optical potential, or self-energy of the single-particle Green’s function, was used to inves-
tigate effects of electron correlations in the initial state. Our results are compared with the results

of experiments and other calculations.

I. INTRODUCTION

There has been increasing theoretical interest in ioniza-
tion of atoms and atomic ions by electron impact because
accurate electron-impact-ionization cross sections are
needed for plasma research? and also because the
impact-ionization processes present interesting problems
for studies of the effects of interactions in many-electron
systems.>”7 Efforts have been made in recent calcula-
tions to include effects of electron correlations. For ex-
ample, Jakubowicz and Moores’ used close-coupling
wave functions to include interactions between ionization
channels and effects of autoionization in their calculation
of total cross sections for Li-like and Be-like ions.
Bartschat and Burke® used the R-matrix method to study
correlation effects, including effects of autoionization as
well as ionization with simultaneous excitation in their
calculation of the impact-ionization cross section of heli-
um. In several calculations of the triple-differential cross
sections of hydrogen and helium for small momentum
transfer, higher-order effects were treated by different
methods.’

In this paper we present a study of the total cross sec-
tion o and single-differential (in energy) cross section
do /de for helium for incident electron energies between
the ionization threshold at 24.6 and 800 eV. We used the
optical potential method® to study effects of electron
correlations. Distorted-wave states were used as basis
states to evaluate the perturbation expansion of the opti-
cal potential. In addition to a distorted-wave exchange
approximation, we investigated electron correlation
effects in the initial state, which are effects of the virtual
excitations involving both of the ls electrons in helium.
Our results of the total and single-differential (in energy)
cross sections agree reasonably with results of other
distorted-wave approximations®’ which show improved
agreement with experiments’ !! in comparison with the
results of first Born approximation.'?~ !’

The electron-impact-ionization cross section of helium
in first Born approximation has been studied extensive-

ly,”>"'7 and the calculations have been reviewed
by Bell and Kingston'>!3 and by Economides and
McDowell.'

Bransden et al.'’ previously used distorted-wave ap-
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proximations to calculate the total and differential cross
sections of helium for incident energies between 100 and
400 eV. They used adiabatic approximations and polar-
ization potentials in evaluating the outgoing waves. They
evaluated the incident waves with a second-order, nonlo-
cal, and complex potential derived using a closure ap-
proximation, and according to their conclusion the clo-
sure approximation became inaccurate at energies below
150 eV. A very recent calculation using a distorted-wave
approximation was carried out by Campeanu et al.,” who
included polarization potentials in evaluating the contin-
uum wave functions and calculated the total cross section
of helium for incident energies between 40 and 400 eV.
We became aware of their work after we completed the
calculations presented in this paper.

For incident energies of several electron volts in excess
of the threshold energy, wave functions based on the as-
sumption of complete screening of the residual ion by the
slower outgoing electron do not provide reasonable re-
sults for the total cross section of helium.!* We also eval-
uated wave functions for each outgoing electron in a po-
tential which approximates the interaction experienced
by the electron assuming partial screening of the residual
ion by the other outgoing electron. The total cross sec-
tion we obtained using these wave functions agrees
reasonably well with experimental results near threshold.

We review the theory in Sec. II. In Sec. III our results
are compared with the results of experiments and other
calculations. Our conclusions are given in Sec. IV.

II. THEORY

The general theory of electron-impact ionization of
atoms and atomic ions has been reviewed by Rudge.'®
The expressions of total and differential cross sections are
derived using the transition amplitude constructed by
considering the asymptotic wave functions which satisfy
the boundary conditions specified by the impact-
ionization process. We review the relations of the total
cross section o and the single-differential (in energy ¢)
cross section do /de with the optical potential for the
scattering electron. Atomic units are used throughout
this paper.

As discussed by many authors,®!°

the optical potential
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is the proper self-energy of the single-particle Green’s
function, which represents the probability amplitude for
the propagation of a particle (or a hole) in a many-body
system. This proper self-energy contains effects of in-
teractions between the particle and the rest of the system,
and it can be calculated by a many-body perturbation ex-
pansion.®!%?° The optical potential method has been ap-
plied to problems of electron scattering by atoms.2!-22

In the nonrelativistic case, the optical potential V,; in
the Schrodinger equation for the exact scattering wave
function,

(—AV2+ Vo W =1k, (1
may be written as
V — V(O) + Vop , (2)

where Vf,?, includes the interaction with the nucleus and
an average interaction with all other electrons and Vo, is
treated as a perturbation due to electron correlations.
The basis states used in perturbation calculations are
solutions of the single-particle Schrodinger equation

(—1V2+VOlk ) =g lk ), 3)

where the potential ¥)) may contain a projection opera-
tor when needed to ensure the orthogonality of the basis
wave functions.?

The matrix element (le;plk) may be expanded by
many-body diagrams,®!°~?2 and low-order diagrams are
shown in Fig. 1. The horizontal dashed lines in these dia-
grams represent the Coulomb interaction v=1/r; be-
tween electrons i and j. Lines with arrows drawn upward

(a) (b) (c)

k [&Y)
k, p ky k, k,
k [0)] k

(d) (e)

(f) (g)

FIG. 1. First- and second-order diagrams for (k|V,|k).
First-order diagrams (a), (b), and (c) add to zero when V3 is
chosen to be the Hartree-Fock potential plus the nuclear poten-
tial. Diagrams (d) and (e) contribute imaginary part to the ma-
trix element of V.
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denote continuum and bound excitations (particles), and
lines with arrows drawn downward represent vacancies
(holes) in the initial state. The external particle lines on
the bottom and top of each diagram are lines of the same
state |k ), which represents a partial-wave component of
the scattering electron. The order of a diagram refers to
the number of Coulomb-interaction lines in it. The first-
order diagrams of Figs. 1(a)-1(c) sum to zero when the
Hartree-Fock potential plus the nuclear potential is used
as V) in Eq. (3). Figures 1(d)-1(g) are the second-order
dlagrams contributing to {(k |V, |k ). Figures 1(d) and
1(e) contain imaginary parts, whnch are related to inelas-
tic events including impact ionization, provided that the
energy is high enough. The diagrams in Fig. 1 which
contain only real results will not be discussed further.
For simplicity we consider only the scattering of elec-
trons by closed-shell atoms.
The contribution of Fig. 1(d) is

(kplvlk ky Yk ykylvlkp )
Ve= 3

€, te,—€, —¢
kalykz k P kl k2

, 4)

where p denotes a hole, and k; and k, denote two parti-
cle states. Note that g, is the energy of the scattering
electron. The summation over k; and k, is understood
as including a summation over the bound excited states
and an integration over the continuum. Figure 1(e) is the
exchange diagram of Fig. 1(d), and its contribution is
given by replacing (kplvlk,k,) in Eq. (4) by
—pklvlk k,).

We can also combine contributions of Figs. 1(d) and
1(e) by writing

2

kiky | o 1 k
l q)p 2 r— @
| i<j=1"ij

(2) —
Vor ﬁkz E(K)—E(p~'kiky) ®
P
where ®F is the wave function of the initial state consist-
ing of the scattering electron k and the ground-state
atom, and <I>p' % is the wave function of an excited state
of the system including electrons in excited states k; and

k, and the ionic core with electron p missing from the

atom. Both states ®* and ®, 152 are LS-coupled wave
functions which are linear combmatlons of determinants
constructed with the basis orbitals, and E (k) and
E(p ~'k,k,) denote the lowest-order energies of these
two states, respectively.

The energy denominators in Eqs. (4) and (5) vanish
when the energy of state ®,' * is degenerate with the en-
ergy of state ®*. In such a case Egs. (4) and (5) include
processes other than elastic scattering. If both k; and k,
are continuum states, then the process is impact ioniza-
tion. If one of k| and k, is a bound state and the other is
a continuum state, the process is inelastic scattering with
impact excitation, and if both k; and k, are bound exci-
tations, there is an autoionizing resonance. The singular-
ity related to impact ionization or impact excitation is
treated by introducing an infinitesimal imaginary term in
in the denominator D in Eq. (4) or Eq. (5) and writing
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. 1.
171—1>%1+ D+in PD iw8(D) , (6)
where P represents principal-value integration. The re-
sult of Eq. (4) or Eq. (5) contains an imaginary part after
applying Eq. (6).

The imaginary part V' of the optical potential is due to
the effects of inelastic processes, and we may calculate
the cross section of the inelastic events using ¥'}. When
V| is not zero, the continuity equation obtained from the

time-dependent Schrédinger equation is**
92 1 v.j=291v19, , @)

where p and j are the probability density ¥*y and the
probability current density Re(—iy*Vy) for electrons
with wave number k, respectively. Integrating Eq. (7)
over a large sphere with radius R and letting R — o
afterwards, we have the rate of change of the total proba-
bility for electrons with wave number %,

I1=2{y, Vil ) , (8)

and —1I can be interpreted as the rate of inelastic events.
The rate —I can be evaluated by perturbation calcula-
tions.
The scattering wave constructed from a partial-wave
expansion using the basis states from Eq. (3) is
4 o !
b= —E 2 2

I=0m=-—1

ilei(al+8,)

Yy k), 9)

where o, and 6, are the Coulomb and non-Coulomb
phase shifts, respectively. The state |k) is given by
R (1Y, (T)x(m,), where y is the spin wave function.
The radial wave function R, is normalized according to

PR, (r)—>sin kr+-Z—ln(2kr)—%T+a,+8, (10

as r—oo. In Eq. (10), g is the asymptotic charge of the
potential VY, and for the potential field of a neutral
atom both g and o, are zero. Using ¢, to calculate the
rate of inelastic events, the cross section for inelastic pro-
cesses is

0=—%(¢kIV}l¢k). (1

Substituting Eq. (9) into Eq. (11) and integrating over an-
gular coordinates, we have
Kk k
<®pl 2

where ¢, is the negative of the lowest-order ionization en-
ergy associated with electron p, and k, is related to k, by
2 2
ki  kj

_2—+7=Ek+£" . (14)

_n
=73

€, te
@+
Lp,a 0

kik,

i<k=1"Tij

:
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f) (g) (h)

FIG. 2. Some of the third-order diagrams for (k|V;,|k ).
Diagrams (a)~-(e) include correlation effects in the initial state of
the ionization process, and diagrams (f), (g), and (h) include
correlation effects in the final states. Time runs from bottom to
top in the diagrams. The diagrams of the other time orderings
of diagrams (a)-(e) are not shown but understood to be includ-
ed.

87

o= k3

S QI+1(k|Vilk) . (12)
=0

The matrix element (k|V{|k) is the imaginary part of
(k|Vy,lk), which is expanded by diagrams including
those in Figs. 1 and 2.

We will consider only the case when both k; and &,
in Figs. 1 and 2 are continuum orbitals since electron-
impact ionization is our concern in this paper. The inter-
mediate states ®,' ? in the diagrams in Figs. 1 and 2 are
the final states of the impact-ionization process. Substi-
tuting into Eq. (12) the imaginary part of Eq. (5) obtained
by completing the integration with respect to k,; using
Eq. (6), the ionization cross section including the contri-
butions of Figs. 1(d) and 1(e) is

2
) (13)

f

In Eq. (13), a represents implicitly the angular momen-
tum couplings of the final state and the / values of elec-
trons k; and k,. Also, Eq. (13) depends upon the nor-
malizations of radial wave functions of electrons k; and
k, according to Eq. (10).
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An often used approximation in calculations of
electron-impact-ionization cross sections is to assume
complete screening of the residual ion by the slower out-
going electron. In this approximation the orbitals of the
slower and faster outgoing electrons are evaluated in two
J

/2 1
ksk.

(g, +e )
az_ilzz s @+nf "7
I pll,

—2{pklvlk .k )k k_|vlkp))d

where k . and k. are the smaller and the larger of k,
and k, related by Eq. (14), respectively. The first two
terms in the parentheses in Eq. (15) correspond to Fig.
1(d), and the last term corresponds to Fig. 1(e). The
single-differential (in energy €) cross section do /de for
e <(gx +e,)/2 is obtained by dropping the integration
sign in Eq. (15) and letting e=k2 /2. The results of
do /de for ¢ values between (¢, +€,)/2 and ¢, +¢, are
obtained from the results for € <(g, +¢,)/2 by a mirror
reflection about (g, +¢€,)/2. The contributions of the
third-order diagrams in Fig. 2 can be discussed similarly.

The diagrams of Figs. 2(a) through 2(e) contain inter-
mediate states in which both of the ls electrons in helium
are excited. In each of these diagrams the external parti-
cle line entering the diagram does not terminate at the
lowest interaction line, and these diagrams describe elec-
tron correlation effects in the initial state. In this study
we calculated these diagrams and the other time ordering
of these diagrams. The diagrams of Figs. 2(f), 2(g), and
2(h) contain interactions between final states of impact-
ionization processes. Strong cancellations occur among
these diagrams when the two excited orbitals are evalu-
ated assuming that the residual ion is completely
screened by one of the excited electrons and the other
electron experiences the field of an atom.?> Each of the
three diagrams has a singularity when the energies of the
intermediate states are the same as the initial state. With
the numerical wave functions used in this study, it was
difficult to perform the summations for these diagrams.
We did not compute diagrams such as Figs. 2(f), 2(g), and
2(h) but chose potentials which cause relatively strong
cancellations among these diagrams.

When describing the final-state wave function of the
ionization process of atoms due to electron impact by use
of single-electron wave functions, a relation!® which en-
sures the convergence of the phase factor in the usual in-
tegral expression of the scattering amplitude is

z z
IS B SR N 16

where z; is the asymptotic charge experienced by outgo-
ing electron i, and k; is the momentum of electron i
(i =1,2). The asymptotic charges depend on the angle
between the two momenta k; and k,. Thus far in calcula-
tions of ionization cross sections, wave functions have
been evaluated in potentials which do not satisfy Eq. (16)

different potentials which represent a bare residual ion
and a completely screened residual ion, respectively. For
these orbitals the cross section including contributions of
Figs. 1(d) and 1(e) may be written as

(ko k Nolkp ) P41k _k, [v]kp ) |?

2
<

2

) (15)

rigorously, and different approximations have been
made.! 313

In the Born approximation,'® plane-wave states are
used for the incident electron and the faster outgoing
electron, and the wave function of the slower outgoing
electron is evaluated in a potential with unit asymptotic
charge. The fast electron is assumed to interact with a
residual ion completely screened by the slower electron.
In the modified Born approximation,'>!® the exchange
contributions to the total cross section are approximately
included by integrating over the kinetic energy of the
ejected electron from zero to only half the maximum pos-
sible value, that is, by truncating the integration interval
for the direct contributions at half the full range. In the
Born-exchange approximation,'®?® both exchange and
direct contributions are evaluated. In the distorted-wave
approximation, wave functions of electrons may be evalu-
ated in various potentials which model the average in-
teractions experienced by the electrons.! ™3

In low-order calculations wave functions based on the
assumption of complete screening of the residual ion by
the slower outgoing electron are good for high incident
energies. In the relation given by Eq. (16), when k, >k,
we have z; =0 and z, =1 in Born approximation, and the
equation is approximately satisfied if k; >>k,, which is
the case experimentally observed to dominate the proba-
bility at high incident energies.

III. CALCULATIONS AND RESULTS

We calculated the total cross section ¢ and the single-
differential cross section do /de for impact ionization of
helium by electrons with energies ranging from the
threshold up to 800 eV. We used the negative of the
Hartree-Fock energy —e,, as the ionization energy, and
—¢g, is 24.98 eV, which is about 0.4 eV larger than the
24.6-eV experimental ionization energy.” We did not cal-
culate the impact-double-ionization cross section which is
experimentally known to be no more than 1% of the total
cross section for helium,?”2% and we also did not include
impact ionization with excitation which is also weak.®

For the incident electron, the 1s electrons in both the
initial and final states, and the faster one of the two out-
going electrons, the wave functions were evaluated using

Eq. (3) with the potential Vi,%) given by

)

21+1K15—'7, (17)

V=20~
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where JO, and K!; are the usual direct and exchange
operators. The potential we used for the slower outgoing
electron was

1
2] +1

2
Kll:_7_Vl

V,=V,+(1—]1s){1s]) [J}, +

X(1—=11s){1s]), (18)

where the projection operator?® ensures that the ks orbit-
als evaluated from this potential are orthogonal to the 1s
orbital based on Eq. (17). Equation (17) gives the poten-
tial experienced by an electron which interacts with the
neutral He atom, and Eq. (18) gives the potential experi-
enced by an electron k! which couples with a He* ion to
1skI(L) states (L =I). Thus for each of the outgoing
electrons we have a complete set of orbitals reflecting the
complete screening of the residual ion by the slower out-
going electron.

For each incident energy at which we evaluated the
wave function or the incident electron, wave functions for
the two outgoing electrons were evaluated at 31 pairs of
selected k, and k, values satisfying Eq. (14). The 16
mesh points for k . contain ten equally spaced points and
six points inserted at relatively small k _ values. The cor-
responding mesh points for k, are decided by the mesh
points for k. and Eq. (14). Here k. and k. represent
the smaller and the larger of k, and k,, respectively. The
continuum radial wave functions were computed up to a
cutoff of 100 Bohr radii in a mesh of 1988 points. In
evaluating Coulomb matrix elements, the contributions
from the asymptotic region beyond the cutoff were com-
puted.

The main contribution to the computer time in these
calculations was from computation of Coulomb matrix
elements. The maximum mesh used was 0.064 a.u., and
Simpson’s rule was used in evaluating integrals. For the
cross section at 800 eV incident energy, the shortest
wavelength of the continuum functions is 0.82, approxi-
mately 13 times the maximum mesh spacing. The calcu-
lations were not optimized with respect to computer
time, and the total calculation required approximately 25
h on a CDC Cyber 855.

We calculated the diagrams of Figs. 1(d) and 1(e) using
Eq. (15). We also calculated the diagrams of Figs. 2(a)
through 2(e) and the other time ordering of Figs. 2(a)
through 2(e). The summation over excited states k; in
Figs. 2(a) through 2(d) were computed by the Dalgarno-
Lewis method,?®:3° and the potential in Eq. (18) was used
for the k; orbitals.

For each incident partial wave kl, the allowed angular
quantum numbers /,, /,, and /; for electrons k,, k,, and
k3 in the diagrams of Figs. 1 and 2 can be derived by con-
sidering the relation

L_a e oo
U=';T: 2 A_’VlI)A.(r,"rj) ) (19)
ij  a=o0T>

where P, denotes the Ath-order Legendre polynomial.
The results for Fig. 1(d) are [I—A|=<I,<|I+Al,
I, +I1+A=even, and I,=A. The allowed /,, /,, and I,
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TABLE I. The / values up to which 90% of the calculated o
is included.

Incident energy

(eV) ! value?
50 5
100 8
200 14
400 24
800 44

2These results of low-order perturbation in general depend on
the basis states used in the calculation.

values in other diagrams in Figs. 1 and 2 can be derived
similarly.

Figure 1(d) was calculated including A=0—4 for the
first 21 incident partial waves and including A=0—2 for
some high-/ partial waves at relatively high incident ener-
gies. At incident energy of 800 eV the highest partial
wave we evaluated is the / =50 wave. We calculated Fig.
1(e) including A;,A,=0-—4 for all the incident partial
waves for which this diagram is not zero. For incident
energies below 10 eV, Figs. 1(d) and 1(e) were computed
including A=0—3. The diagrams of Figs. 2(a) through
2(e) were calculated including A,A;,A,=0,1 for the first
21 partial waves.

For high incident energy values at which the partial
cross section o, for the highest evaluated partial wave is
not very small, we approximately calculated o, for all
the higher partial waves by extrapolating o; using a
geometric series. The ratio taken between our calculated
0,4+, and o; shows an overall behavior of very slow in-
crease with / at high / values and approaches an asymp-
totic value. For incident energy of 800 eV the asymptotic
value is 0.955, and for lower energies the values are small.
The geometric ratio we used in the extrapolation at each
incident energy was an average of ¢, to o, ratios for
the highest several partial waves that we evaluated.

In Table I for different incident energies we compare
the / values of the partial waves up to which 90% of our
result of o are contributed. It shows how fast the contri-
butions of high-/ partial waves increase as the incident
energy increases. In Table II we list contributions to o

TABLE II. Cross section of He impact ionization calculated
including different A values. (These results of low-order pertur-
bation calculations in general depend on the basis states used in
the calculation.)

o (50 eV) o (200 eV) o (800 eV)
A? (Mb) (Mb) (Mb)
0 6.607 3.855 1.037
1 30.408 30.726 12.842
2 30.666 34.949 14.853
3 30.190 35.424 15.227
4 30.040 35.262 15.338

*This A value gives max{A} in Fig. 1(a), max{A,,A,} in Fig. 1(b),
and max{A} in Figs. 2(a)-2(e). We only calculated the diagrams
of Figs. 2(a)-2(e) including A,A,A,=0,1. See Eq. (19) for the
definition of A.
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obtained by increasing the values of A, A,, and A, includ-
ed in evaluating the diagrams. The results of Tables I
and II also depend on the basis states used in this low-
order perturbation calculation.

In Fig. 3 our results for o are compared with results of
recent experiments and other calculations. The results
measured in recent years by Montague et al.,’ Wetzel
et al.,'® and Krishnakumar and Srivastava'l are very
close to the results reported by Rapp and Englander-
Golden in 1965.3! It can be seen that the agreement be-
tween the calculations and the experiments is good at
high incident energies, and all calculated results are more
or less too large near 100 eV.

The results calculated in the modified Born approxima-
tion by Bell and Kingston'? and by Economides and
McDowell!* are shown, and our results are about 10%
lower than theirs at energies near 100 eV and quite close
to theirs for energies higher than 400 eV. These authors
have reviewed first Born calculations of the He elec-
tron-impact-ionization cross section.!?”'* The length-
modified Born cross section of Sloan!®> and that of Bell
and Kingston'? differ by less than 1%. The length-
modified Born results contributed by each partial wave of
the ejected electron calculated by Peach!® agree well with
the corresponding results of Bell and Kingston'? except
for the / =0 partial wave, and the discrepancy was attri-
buted to the fact that in Peach’s calculation the 1s and ks
wave functions were not orthogonal. The results calcu-
lated by McGuire!” using wave functions based on the
Herman-Skillman central potential are a little higher
than those of Bell and Kingston'? below 250 eV and are

r - T T
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FIG. 3. Total ionization cross section ¢ of helium by elec-
tron impact. Circles, experimental results, Montague et al.,
Ref. 9; triangles, experimental results, Krishnakumar and
Srivastava, Ref. 11; diamonds, experimental results, Wetzel
et al., Ref. 10; +, the modified Born calculation of Economides
and McDowell, Ref. 14. The geometric mean of their length
and velocity form results is plotted. —--—, the modified Born
calculation of Bell and Kingston, Ref. 12; —.—.—. , the
distorted-wave approximation P1 of Bransden et al., Ref. 3;
— — —, the distorted-wave approximation P2 of Ref. 3; short
solid curve, results from interpolated do /de, Ref. 3; longer
solid curve, this work, the distorted-wave-exchange approxima-
tion (DWE) plus correlation effects in the initial state.
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in good agreement with them at higher energies.

The results of o calculated by Bransden et al.> using
their distorted-wave model in three different approxima-
tions are plotted for comparison in Fig. 3. They used a
second-order potential for orbitals of the incident elec-
tron and used polarization potentials and adiabatic ap-
proximations for orbitals of the outgoing electrons. The
cross section of their P1 approximation, in which the or-
bitals of both the scattered (faster) and the ejected
(slower) electrons were evaluated in the field of a He™
ion, is about 10% higher than ours at incident energy of
100 eV and is the same as ours at about 400 eV. The
cross section of their P2 approximation, in which the or-
bitals of the scattered electron were evaluated in the field
of a neutral He atom, is about 20% higher than ours at
100 eV, but it decreases and remains a little lower than
ours above 200 eV. They also computed o using the re-
sults of do /de interpolated from results of their P1 and
P2 approximations, and in the interpolation P1 was used
as the limit when the two outgoing electrons have the
same energy, and P2 was the limit when the ejected elec-
tron has nearly zero energy. The resulting o from the in-
terpolated do /de is lower than the results of both P1
and P2 approximations. This cross section is lower than
ours by up to 7%. The results of Bartschat and Burke®
and Campeanu et al.'” are close to ours and are plotted
in Fig. 4.

In Fig. 4 we compare our results of o calculated in
various approximations with results of experiments® ™!}
and other calculations.®” The results are plotted against

(Mb)

CROSS SECTION
~
k<3
>
k<3
@
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//
Jad
4
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log o (/1)

FIG. 4. Comparison of total cross sections in different ap-
proximations. The incident energy is denoted by €,, and I is the
ionization energy. All the four curves were calculated in this
work using orbitals based on potentials in Eqs. (17) and (18).
—-+—, results of direct contributions given by Fig. 1(d); — — —,
distorted-wave truncated approximation (DWT), Fig. 1(d) with
ki >ky; —e—e—- , distorted-wave exchange approximation
(DWE), Figs. 1(d) and 1(e); , our final results, the DWE ap-
proximation plus correlation effects in the initial state, Figs.
1(d), 1(e), and 2(a)-2(e); X, DWT results, Campeanu et al., Ref.
7; +, DWE results, Campeanu, et al., Ref. 7; Y, R-matrix cal-
culation by Bartschat and Burke, Ref. 6; circles, diamonds, and
triangles are experimental results from Refs. 9, 10, and 11, re-
spectively.
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the logarithm of the ratio between the incident energy
and the ionization energy. All the calculated results are
close to the measured results on the right-hand side of
this figure but higher than the measured results in the in-
termediate range of this figure. Our results including
only the direct contribution given by Fig. 1(d) can be
seen as the highest curve in Fig. 4. One approximation
method for including exchange contributions is to trun-
cate the integration interval for the direct contribution at
one-half, in analogy with the modified Born approxima-
tion. This approximation is referred to as the distorted-
wave truncated (DWT) approximation,”’ and the result
corresponds to Fig. 1(d) with k; >k,. Our DWT cross
section is much smaller than the full direct contribution
at low energies and gradually approaches it at high ener-
gies. Including both Figs. 1(d) and 1(e) corresponds to
the distorted-wave exchange (DWE) approximation."’
Our DWE results are higher than our DWT results at
lower energies but lower than the DWT results by up to
6% at higher energies, and this cross section also ap-
proaches the full direct contribution in the high energy
limit. Our final results given by DWE plus correlation
effects from Figs. 2(a) through 2(e) are lower than our
DWE results in the whole energy range studied in this
calculation. Our final results are lower than our DWE
results by 4% at 800 eV incident energy, 7% at 100 eV
incident energy, and 17% at 1 eV above the threshold.
The correlation effects in the initial state decrease as the
incident energy increases.

Campeanu et al.” included polarization potentials in
their distorted-wave approximations, and for the 1s orbit-
al in the final-state wave function they used the orbital of
the He* ion. They used a 158-point radial mesh extend-
ing to 18.7-bohr radii for the continuum states. Their
DWT results are somewhat larger than our DWT results.
Their DWE results are somewhat smaller than our DWE
results but very close to our final results. Barschat and
Burke® used the R-matrix method to include electron
correlation effects in their calculation, and they treated
the exchange contribution by truncating the integration
interval for the direct contribution. Their results are also
close to our final results.

In Fig. 5 our final results of do /de for incident ener-
gies of 50 eV, 300 eV, and 500 eV are plotted along with
the experimental results of Opal et al.** Results for
do /de are plotted versus the relative kinetic energies of
the outgoing electrons with respect to the excess energy
g, —1I, where g, is the energy of the incident electron and
I is the ionization energy. The Born results and Kingston
at 50 and 500 eV are also plotted for comparison. We
have symmetrized the results of Bell and Kingston with
respect to the energies of the two outgoing electrons. It
can be seen that the agreement between the calculated
and the measured results is good for high incident ener-
gies and at 50 eV the calculated results are too high. Bell
and Kingston'® had shown that at 2000 eV their Born re-
sults of do /de were in excellent agreement with the ex-
perimental results of Opal et al.’? At 50 eV incident ener-
gy the Born results of Bell and Kingston are higher than
our final results for all kinetic energies of the outgoing
electrons, but at 500 eV the Born results of Bell and
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Kingston are appreciably higher than our final results
only when two outgoing electrons have similar kinetic en-
ergies.

In Fig. 6 our final results of do /d€ at incident energies
of 100 and 200 eV are compared with results of experi-
ments and other calculations. All results at 100 eV have
been multiplied by a factor of ten in plotting for clarity.
The measured results are those of Opal et al.,’* Rudd
and DuBois,*® and Goodrich.’* The agreement between
the calculated and the measured results is better at the

higher incident energy, and the Born results of Manson>*
are higher than ours. This is similar to the situation in
Fig. 5. When the two outgoing electrons have similar ki-
netic energies, our results are somewhat higher than the
P1 results of Bransden et al.’ and lower than their P2 re-
sults. At 100 eV incident energy and when an outgoing
electron has very small energy, the P2 results of
Bransden et al. are close to ours, and their P1 results are
close to the Born results of Manson.>? In Figs. 5 and 6,
the curves of the P2 approximation of Bransden et al.
and some curves of our results appear to have a cusp
when the two outgoing electrons have the same energy.
This is due to the fact that the continuum orbitals are
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FIG. 5. Single-differential cross section do/de of helium
plotted vs relative kinetic energy € /(g; —I). The symbol ¢ is the
kinetic energy of one outgoing electron, €, is the kinetic energy
of the incident electron,a dn I is the ionization energy. Trian-
gles, experimental results of Opal et al., Ref. 32; , present
results, the distorted-wave approximation (DWE) plus correla-
tion effects in the initial state; — — —, at incident energies of 50
and 500 eV, the Born calculation of Bell and Kingston, Ref. 13.
We have symmetrized the results of Bell and Kingston with
respect to the energies of the two outgoing electrons. The in-
cident electron energy (50 eV, 300 eV, 500 eV) is shown in the
figure.
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FIG. 6. Single-differential cross section do /de of helium vs
relative kinetic energy €/(g, —I). All results for incident ener-
gy 100 eV have been multiplied by a factor of 10 for clarity in
presentation. Triangles, experimental results of Opal et al,
Ref. 32; circles, experimental results of Rudd and DeBois, Ref.
33; squares, experimental results of Goodrich, Ref. 34; ,
present results, the distorted-wave approximation (DWE) plus
correlation effects in the initial state; — — —, the Born calcula-
tion of Manson, Ref. 35; —. —. —., the distorted-wave approxi-
mation P1 of Bransden et al., Ref. 3; —--—, the distorted-wave
approximation P2 of Ref. 3.

evaluated in two different potentials according to their
energies, which has been discussed by Bransden et al?

For incident energies very close to the threshold, re-
sults of our various approximations using orbitals based
on Egs. (17) and (18) are all smaller than the experimental
results. The threshold behavior of the electron-impact-
ionization cross section has been studied by using the
dynamical screening concept to approach the three-body
problem involved in the impact-ionization processes.¢~#
One of the conclusions is that in the stable solution for a
double escape process, escaping electrons 1 and 2 leave
the small reaction zone with a radius of a few bohr radii
around the nucleus maintaining r,= —r,, which is the
condition for the Wannier saddle point.*®~*' According
to this, we evaluated orbitals for both outgoing electrons
using a simple potential which approximates the interac-
tion experienced by each of the two electrons remaining
on opposite sides of the nucleus at equal distances. The
potential is

Vi=V,+(1—|1s){1s)[1.57, —(2/r)—V,]
X(1—|1s)(1s]), (20)

where ¥V, is given by Eq. (17). The asymptotic charge of
potential V; is a half unit for all excited electrons.

12
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FIG. 7. Total cross section ¢ of helium near the ionization
threshold vs excess energy €, — I, where g, is the energy of the
incident electron. Circles, diamonds, and triangles are experi-
mental results from Refs. 9, 10, and 11, respectively. , re-
sults from outgoing waves based on Eq. (20), the distorted-wave

exchange approximation (DWE); — — —, results from orbitals
based on Egs. (17) and (18), the DWE approximation plus corre-
lation effects in the initial state; —- —- —- , results based on Eqgs.

(17) and (18), the DWE approximation.

We calculated o and do /de for small excess energies
using orbitals based on the potential of Eq. (20) for the
two outgoing electrons. The diagrams of Figs. 1(d) and
1(e) were evaluated for A=0— 3, and the highest incident
partial wave we included is the / =10 wave. The results
correspond to a distorted-wave exchange approximation
with incident and outgoing waves based on the potentials
of Egs. (17) and (20), respectively.

In Fig. 7 we compare the results of ¢ with the experi-
mental results for excess energies below 8 eV. Also
shown are our results of ¢ using orbitals based on the po-
tentials of Egs. (17) and (18), which are too low near the
threshold. The cross section using outgoing waves based
on Eq. (20) agrees well with the measured results for ex-
cess energies below 4 eV but increases somewhat too fast
as the energy increases above 4 eV. We did not include
correlation effects in the initial state in the calculation us-
ing outgoing waves based on Eq. (20). When outgoing
waves based on Egs. (17) and (18), were used, the correla-
tion effects in the initial state of the atom reduced the
cross section at 1 eV excess energy by 17%.

In Fig. 8 we compare our results for d o /d ¢ in different
distorted-wave approximations at excess energies of 1 and
6 eV. We also plotted the measured do /de of Pichou
et al.** at excess energies of 1.4 and 6 eV. We show
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FIG. 8. Single-differential cross section do/de of helium
near the ionization threshold. , results from outgoing
waves based on Eq. (20), the distorted-wave exchange approxi-
mation (DWE), at 6 eV excess energy; — — —, DWE results
based on Eq. (20), at 1 eV; —. —. —. , results from orbitals based
on Eqgs. (17) and (18), the DWE approximation plus correlation
effects in the initial state, at 6 eV; —--—, DWE plus initial state
correlations, based on Egs. (17) and (18), at 1 eV; A, results by
Pichou et al., Ref. 42, at 1.4 eV; O, results by Pichou et al., at
6.0 eV, Ref. 42.

DWE results calculated using outgoing waves based on
Eq. (20), and also the results of DWE plus initial-state
correlation calculated using the orbitals based on Egs.
(17) and (18). It is clear that both the areas under the two
curves of the same excess energy and the shapes of the
two sets of curves are quite different. The energy distri-
bution of the escaping electrons based on Eq. (20) is uni-
form at 1 eV excess energy, and it varies only by several
percent as the energy increases to 6 eV. However, the en-
ergy distributions based on Egs. (17) and (18) are nonuni-
form at both of the excess energies. This comparison
suggests that the near-threshold results are very sensitive
to potentials used for evaluating electron orbitals.
Experimental measurements for the energy distribution
of the outgoing electrons for near-threshold electron-
impact ionization of helium have been performed by
Cvejanovic and Read,*® Pichou et al.,*> Keenan et al.,**
and Hammond et al.*> Among these measurements only
those of Pichou et al. are absolute results for do /de,*
and all others are unnormalized. In 1974, Cvejanovic
and Read®’ reported that the energy distribution was uni-
form within 15% for excess energies between 0.2 and 0.8
eV, and in 1985 Hammond et al.** reported essentially
uniform distributions with 5% variation for excess ener-
gies from 0.075 to 0.6 eV. Pichou er al.** measured
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TABLE III. Partial cross sections of kk'('L,’L) terms with
L <4. These results are based on the potential of Eq. (20) for
orbitals of outgoing electrons.

Coupling o (0.05 eV)* o (0.10 eV)* o (0.15 eV)©
terms*® (1073 Mb) (1073 Mb) (1073Mb)
s 8.19 16.4 24.6
3se 6.15X10°° 7.69X107° 3.36x107*
1pe 6.69 13.4 20.2
3pe 8.90 17.8 26.8
D¢ 25.0 50.3 75.8
3De 0.441 0.907 1.40
a 1.68 3.48 5.39
3F° 0.831 1.72 2.68
RgGe 0.0479 0.105 0.172
3Ge 0.0150 0.0376 0.0669

°In the results for each ">L term, the contributions of different
electron pairs k/ and k’l’ were summed over as discussed in the
text.

®For the electron-impact ionization of the ground state He
atom, the L value and the parity of a 1skk’(""3L )(*L) final state
are both even or both odd.

‘The energy listed is excess energy €, —I, where €, is the energy
of the incident electron and I is the ionization energy.

do /de for excess energies up to 6 €V, and their results
deviate from uniform behavior as the excess energy in-
creases. They reported an accuracy of 40% for the abso-
lute scale of their results. Their results are basically uni-
form at 1.4 eV excess energy, uniform within 20% at 3.6
eV, and nonuniform at 6 eV. However, Keenan et al.**
later measured the energy distribution for excess energies
up to 5.5 eV and reported that it was basically uniform
up to 5.5 eV excess energy. Presently, the upper limit of
excess energy for nearly uniform energy distribution of
the outgoing electrons has not been completely deter-
mined.

TABLE IV. Partial cross sections of klk'I’('*L) terms with
L =3. These results are based on the potential of Eq. (20) for
orbitals of outgoing electrons. The three largest partial cross
sections for each L value (L < 3) are listed here.

o (0.05 eV)?
Coupling terms (1073 Mb)

ksk's('S) 6.18
kpk'p('S) 2.01
kdk'd (1S) 0.000084 1
ksk’p (3P) 8.88
ksk'p('P) 6.69
kpk'd (*P) 0.0192
kpk'p('D) 25.0
ksk'd(3D) 0.441
ksk'd('D) 0.005 83
kpk'd('F) 1.68
kpk'd (*F) 0.828
ksk'f(°F) 0.002 88

#These results were calculated for incident electrons with ener-
gies 0.05 eV in excess of the ionization energy.
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In Table III we list the near-threshold partial cross sec-
tion of each singlet or triplet coupling "*L of the two out-
going electrons for L =0—4. We calculated these results
to compare with the existing theoretical studies on the
threshold behavior of double-escape cross sections.*®
Our results were calculated by using Eq. (13) and drop-
ping the summation over tkh% angular momentum cou-
plings of the final states ®,' ?. Orbitals based on Egs.
(17) and (20) were used for the incident and outgoing
waves, respectively. The partial cross sections of all these
L3L coupling terms increase approximately linearly as the
excess energy increases, except that of °S¢. The 3S° cross
section varies with excess energy by a power greater than
three. The very small cross section for the 3S¢ term is
due to the strong cancellation between contributions
from Figs. 1(d) and 1(e), and the results may be subject to
some numerical error. When L0, two outgoing elec-
trons with different angular quantum numbers can also
contribute to each >L coupling term, and the 'L and 3L
cross sections do not differ as much as the L =0 results
differ due to cancellation. All the triplets contribute 19%
of the total cross section at 0.05 eV excess energy. In
Table IV we give more information about contributions
from the largest ionization channels for L =0—3 at ex-
cess energy 0.05 eV. The strongest ionization channel is
1skpk'p (1D€)(%S), which contributes 48% of the total
cross section at 0.05 eV excess energy.

According to theoretical studies’®™*° on the threshold
behavior of double-escape cross sections in the electron-
impact ionization of a neutral atom, the partial cross sec-
tions for all the >L coupling terms vary with the excess
energy by a power of 1.127, except those’** for 3S¢ and
1P¢, which vary by a power of 3.881. The 3S¢ and 'P¢
partial cross sections are suppressed at threshold since
the wave functions are zero when the angle 6, between
the two outgoing electrons with respect to the nucleus is
7 for these cases.*>*! The energy distribution of the es-
caping electrons is uniform.*®3”* In our low-order per-
turbation calculation the effects of the dynamical screen-
ing between the two outgoing electrons were not includ-
ed, but our results based on the simple potential of Eq.
(20) appear to agree reasonably with the above results.
Another result of these studies*™*! is that the partial
cross section of each "*L coupling term, in which the L
and S values and the parity are not all even or all odd, is
reduced at the threshold because the wave function is
zero when r;= —r,. Our results do not violate this con-

clusion. In our results these types of coupling terms ac-
count for 17% of the total cross section at 0.05 eV excess
energy, which is relatively small.

IV. CONCLUDING REMARKS

We calculated the total cross section o and single-
differential cross section do /de for the electron-impact
ionization of helium using the distorted-wave approxima-
tion and including correlation effects in the initial state of
the atom. Electron correlations in the initial state were
found to reduce the cross section by 17% at 1 eV excess
energy and down to 4% at 800 eV incident kinetic ener-
gy. For incident energies below 150 eV the discrepancy
between the results of experiments and calculations indi-
cates the need for a more effective method to treat the in-
teraction between the two outgoing electrons in the final
state.

For low incident energies it is desirable to choose po-
tentials which satisfy the relation of Eq. (16) better than
the potentials derived from the assumption of complete
screening of the residual ion by the slower outgoing elec-
tron. Improvement over the present agreement between
calculated and measured total and single-differential
cross sections appears possible by use of potentials with
asymptotic charges depending on the kinetic energies of
the outgoing electrons. Examples of such potentials have
been discussed by Bransden et al.?

For incident energies near threshold, by using a simple
potential which approximates the interaction experienced
by each of the two electrons at r;= —r, we obtained re-
sults for o which appear to agree reasonably with experi-
mental results and results of studies based on Wannier
theory and extensions thereof.’* %’ For excess energies
less than 6 eV, we found great variations in calculated re-
sults for do /de according to which potential was used to
calculate single particle states. In addition, the experi-
mental situation for do /de near 6 eV is somewhat un-
clear, and it would be desirable to have additional experi-
mental information.
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