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Quantum beats in two-atom resonance fluorescence
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We study the resonance fluorescence emitted by two laser-driven coupled identical two-level
atoms and allow for an arbitrary separation between the atoms and an arbitrary orientation of the
interatomic axis in the laser field. Quantum beats arise in the resonance fluorescence intensity
profile when an interatomic axis orientation is not perpendicular to the driving field propagation
direction and are well resolved for an interatomic separation comparable to the resonant wave-
length. These beats vanish for noninteracting atoms as well as for atoms separated by distances
much smaller than the resonant wavelength. We also consider the time-dependent resonance
fluorescence photon statistics that also exhibit quantum beats. Sub-Poissonian photon statistics
occur for large interatomic separations and, for small separations, sub- and super-Poissonian statis-
tics arise depending on the atomic orientation in the external driving field.

I. INTRODUCTION

The concept of the cooperative effects in the interac-
tion of atoms and rnolecules with the vacuum field and
with the laser field has been the subject of many theoreti-
cal papers since the pioneering article of Dicke. Exam-
ples of such effects include superradiance, coherent
spectral line broadening, ' collective quantum beats,
and collective quantum jumps.

' ' These phenomena
have also been extensively studied in experiments, '

after the development of ultrashort pulse laser systems
made it easy to excite in a very short time a collection of
atoms into a well-defined electronic level. The interest in
studying these phenomena lies in their close connection
with the quantum and classical (as well as with the spon-
taneous and stimulated) aspects of atomic emission.

An appropriate model by which to study these phe-
nomena consists of N identical or nonidentical two-level
atoms, coupled to a continuum of quantized electrornag-
netic field modes, and possibly to an external driving
field. Some papers have been devoted to the study of
these phenomena for the case of several atoms. Although
a few-atom system is admittedly an elementary model, it
offers some advantages over the multiatom problems. Be-
cause of its simplicity, one obtains detailed and almost
exact dynamical solutions with a variety of initial condi-
tions. Many of these results are analogous to phenomena
that one would expect in multiatom systems. For exam-
ple, the nonexponential decay law and simultaneous radi-
ation at two frequencies are elementary examples of su-
perradiant pulse formation and interaction broadening,
respectively.

There have been a number of attempts to calculate the
spectrum of fluorescence from cooperative atomic sys-
tems. For example it has been shown that the rnul-
tiatom resonance fluorescence spectrum of the atoms
driven by a strong external field, in addition to the three
peaks of the one-atom spectrum, ' contains additional
sidebands at the frequency +2Q, where 0 is the Rabi fre-
quency. However, their amplitude is very small and pro-
portional to 0, and this causes difficulties in the experi-

mental detection of these sidebands. Detection of these
sidebands would be a new and interesting demonstration
of collective atomic effects. Furthermore, for the reso-
nance fluorescence spectrum, collective effects are mani-
fested in the integral intensity of the N-atom fluorescence
spectrum which is N(N+2)I3 times that for a single-
atom fluorescence. However, this enhancement of the in-
tegrated fluorescence by N atoms, labeled in the literature
as a scaling factor, appears only in S -conserving sys-
terns, i.e., for systems with interatomic separations much
less than the resonant wavelength. Otherwise, for intera-
tornic separations comparable to the resonant wavelength
(S -breaking system), the integral intensity of the N-atom
fluorescence is N times that for a single-atom case,
and the intensity correlation function for the S -breaking
system differs considerably from that for S -conserving
systems.

To study the collective behaviors of S -breaking sys-
terns authors have restricted their considerations to the
case of two atoms only, and, moreover, they have as-
sumed that both atoms, which are at different points, ex-
perience the same driving field intensity and phase.
In this model, atoms are located in such a way that the
interatomic separation vector r, 2 is perpendicular to the
direction of propagation of the external driving field. For
this case the Rabi frequency 0 is identical for both
atoms. Therefore, it is interesting to study in some detail
how different locations of the atoms, with reference to the
propagation direction of the external driving field, can
change the behavior of the emitted fluorescence field.
Thus the purpose of this paper is to consider resonance
fluorescence from two identical two-level atoms which
are separated by r, z and experience different driving
fields.

We focus our attention on time-dependent effects in
collective two-atom resonance fluorescence, such as
quantum beats in the integrated resonance fluorescence
intensity and in the time-dependent photon statistics. To
describe the two-atom resonance fluorescence we adapt
the Lehmberg master equation ' to the case of coherent
pumping and obtain a closed system of 15 coupled equa-
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tions describing the time evolution of the atomic vari-
ables. We solve this set of equations numerically, assum-
ing that the driving laser field is weak (i.e., the Rabi fre-
quency is much less than the coeKcient for spontaneous
decay). There are two reasons for which we restrict our-
selves to the case of a weak driving field. Firstly, the
sinusoidal modulations of the time-dependent resonance
fluorescence intensity for a weak driving field are not
modified by the Rabi oscillations, whereas the modula-
tions are present for a strong driving field. Secondly,
for a strong driving field, both atoms are highly excited
and in this case quantum beats do not appear. This is
easy to understand within the framework of collective
states in a two-atom system. ' ' In this representation,
the two-atom system is equivalent to a single four-level
system with one upper state ~2), one ground state ~0),
and two intermediate states: a superradiant state ~+ )
and a subradiant state

~

—). For highly excited atoms,
the system starts from the common excited state ~2) and
decays to the states ~+ ). It is well known that an atomic
configuration with one common upper level and two or
more closely spaced lower levels does not lead to quan-
tum beats. Only a configuration with two or more
closely spaced upper levels and a single lower level pre-
dicts quantum beats. For a weak driving field, the proba-
bility that the state ~2) is populated is very small and the
population oscillates between the intermediate states ~+ )
and the ground state ~0). ' In this case we have an ap-
proximate configuration with two upper levels: superra-
diant ~+) and subradiant

~

—), and one ground level
~0), which can give quantum beats. However, there is
another restriction on the occurrence of quantum beats in
such a system: both transitions ~+ )~ ~0) and

~

—)~ ~0) must be correlated. We shall show in this pa-

per that such correlations appear in a two-atom system
only if the atoms experience a different driving field. In
this case we can observe quantum beats in the transient
regime of the resonance fluorescence intensity.

We also study time-dependent photon statistics in a
two-atom system which is characterized by the quantity
Q (r, T) introduced by Mandel. Negative values of
Q(t, T) imply sub-Poissonian photon statistics; a positive
Q(t, T) implies that the statistics are super-Poissonian.
%'e discuss the effects of interatomic separation and in-
teratomic orientation in the external driving field on the
quantity Q(t, T). In the transient regime of resonance
fluorescence, the photon statistics vary from sub-
Poissonian to super-Poissonian and vice versa depending
on the interatomic separation and the atomic orientation
in the external driving field.

II. MODEL AND METHOD

We consider two identical two-level atoms, separated
by r, 2, in the field of a linearly polarized, coherent laser
beam, with a frequency coL which is assumed to be exact-
ly equal to the atomic transition frequency coo, i.e., detun-
ing is zero. The atoms are coupled to each other via a re-
tarded dipole-dipole near-field interaction and to all other
modes of the electromagnetic field which are assumed as
being initially in their vacuum state. Each atom is
modeled as a two-level system: the ground state ~1),
(i =1,2) and the excited state ~2), connected by an elec-
tric dipole transition.

To describe the evolution of the two-atom system in an
external driving laser field, we use the Lehmberg master
equation ' which, for an arbitrary combination 8' of
atomic operators, reads as

2 i 2= ~o g [S; S;,W] — g t[s,+, W]E,'+'(r, , t) —E,' '(r, , r)[WS, ])+ giQ, ,[S,.+S, W]i=1 i=1
I,J

lAJ

+ g y,, [s,'ws, ——
—,'(s,+s,—w+ ws, +s;)],

[S;+,S ]=2S,'5, , [S,',S—]=+S;*5;, (2)

In Eq. (1) the free field operators Eo*'(r,-, t) describe an
external field, which we assume to be a linearly polarized
laser beam of frequency coL =coo and which is in a
coherent state with amplitudes 4&'p(r;, r). For simplicity,

where all atomic operators are evaluated at time t, and p,
is the transition electric dipole moment vector. The
operators S,+ and S; =(S,+)t raise and lower the energy
of the ith atom and satisfy the angular momentum com-
mutation relations

we choose the reference frame such that the atoms are at
the positions r, =( —

—,'r, 2, 0,0) and rz=( —,'r, 2, 0,0), and
then the driving laser field amplitude 4'o+ '(r;, t) is
Co+ 'exp[ i (coot + —,'kL—r,2)] at the point r, , and
Co+'exp[ i (coot —

—,'kL —r, z)] at the point ri, where kL is
the laser field wave vector. In this case the Rabi frequen-
cy Q =2@ 4'z+'(r; )/A' is different for different atoms. The
collective parameters 0;. and y;. , which appear in Eq.
(1), arise from the retarded dipole-dipole and radiative in-
teraction between the atoms. The parameters depend on
the interatomic distance r;J =

~ r;, ~
for r;~

= r; —r, and are
defined as6' '3
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and

cos(kr,
~

} sin(kr, j. )

0;, =2y —[(P; p, ) —(P, r,j)(P r,j)] +[(P; P )
—3(P; r, )(p .r,"}] ' +

lJ V

cos(kr, }

(kr,, )
(3)

»n(k1';, ) „cos(kr, } sin(kr, "}ri= 'r-[(I IJ) (I-ri)(Iirl)]
k

" +[(r I'J) (I-' rj)(I'J rj ]
k 2 k 3

I']~ (kr; kr;
(4)

where p; and r; are unit vectors along the transition
electric dipole moment and the vector r,", respectively.
Moreover, k =coo/c =2m/A, o with A,o the resonant wave-
length. In Eqs. (3) and (4), 2y=y, , =y"=(4tu k /3R) is
the Einstein A coefficient for spontaneous emission.

The parameters (3) and (4) describe the collective shift
of energy levels and collective properties of the two-atom
system. For large interatomic separations kr,j goes to
infinity, and then y; =0;J=0, i.e., there is no coupling
between the atoms. In this case, the master equation (1)
produces the well-known optical Bloch equations com-
monly used to describe optical resonance phenomena.
Otherwise, for very small interatomic separations, kr;~
goes to zero, and from (3) and (4) we obtain (for parallel
dipole orientations)

YI =SI++S++SI +S2,

Y2=i (S1 +Sz —S1+ —S2+ ),

Y3=Si+SI +S2+S2, Y4=S,+S2 +S2+S,

Ys=S1+S2+ +S1 S2, Y6=1(S1+S2+—S1 S2 ),

1
d7.

Y=MY+a,

where M is a real invertible 15 X 15 matrix, Y is a column
vector of Hermitian operators with the following com-

ponents:

0.= [1—3(P. r; ) ],
2(kr; )

(sa)

and

(5b)
Y9=S) S2 SI S2, Y(O=S) —S2 +S)+ —S2+,

For this case we see that y;~ reduces to y, and 0, -

reduces to the static dipole-dipole interaction potential.
Here, we assume that the atomic dipole moments p, are
parallel to each other, because both atoms are in the same
linearly polarized external field. In general, however,
atomic dipole moments are not parallel, which changes
the strength of the interatomic interaction.

The validity of Eq. (1}hinges on the assumption that
the system is Markovian, i.e., the retardation effects are
ignored. As shown by Milonni and Knight, the retar-
dation effects play a significant role in the resonant in-
teraction of two identical atoms only if kr,- &n.. This
means that the atoms must be more than half of a transi-
tion wavelength apart. In this paper, we shall consider
new phenomena like quantum beats, which strongly de-
pend on the interatomic interactions and are significant
for small interatomic separations ' ' (krj (m). The retar-
dation does not play an important role for such small sep-
arations.

For a two-atom system, substituting the atomic opera-
tors S;* (i = 1,2) for W in Eq. (1) leads to a closed system
of 15 first-order differential equations describing the evo-
lution of the atomic variables. This system can be writ-
ten in matrix form as the inhomogeneous equation

Y» &(S, —S2 ——S,++S2+ ), Y,2=S,+S, —S2+S2

Y)3 =SI+S2 —S~ S )

YI4 SI S) S2 S2 S) S2 +SI S S] SI S2 S2 )

and the vector a is given by the components

4~[~1'cos( ~L r12}+&»;»n(-,'4'12)] ~

The matrix M is conveniently expressed in block form as

D
C B

for block A of dimension 9 X 9 and block B of dimension
6X6. The two off-diagonal blocks are C of dimension
6 X 9 and D of dimension 9 X 6.

Block A has the form
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—
—,'(1+a)

—'b

0

lb
2

—,'(1+a)

p(

0

4p,
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0 0

0 0

0 0
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2P,

0

——'b
22P,

00 0 0

—
2P~
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2P&

—
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—,'(3+a)
0 0 0

0

—2P,

—
—,'(3+a)

8p,

0

(9a)

and B is given by

——'(1 —a)
2

lb
2

—,'b

--'(1—a)2

4p)

0

0

0

0
pi

0

0

—2P, 0

0 —2Pi

——'(3 —a)
2

2P,
1b
2

——'(3—a)2

(9b)

The off-diagonal blocks C and D possess the nonzero ele-
ments

C41 — C32 4 C23 2 47
—

2 56 2 63 2 64

65 8 69 4 23 32 42 2 46

= —D52 = —
—,'D56 = —

D6& = —
—,'D65 =

—,'D74

four-level system (Fig. 1), with one upper state
l2) = l2), l2)2, one ground state l0) =

l
1 ), l 1 )z, and two

intermediate states lk) =(1/~2)(l2), l
1 &2+1 I &(12&z).

The energies of these states are E2=2Acoo, ED=0, and
Ey 'fl(cop+Q~2). In this representation the symmetric
combination of the atomic operators describes transitions

=
—,'Ds3 =D9$ p2 . (9c)

In Eqs. (6)—(9) we have introduced the notation

nr=2yt, a =, b =, P=
(10)

P, =P cos( —,'kL r, &cosy), P2=P sin( —,'kL r,zoos') 12

with y the angle between kL and r, 2. It is obvious from
(9c) and (10) that, for small interatomic separations
(kI r ~2 && 1), p2=0, whence all elements of blocks C and
D are zero. These elements (9c) are also zero for the case
when the interatomic axis r, 2 is perpendicular to the
direction of propagation of the laser field. In these
cases the Rabi frequency is the same for both atoms and
the matrix M is block diagonal. However, in general, r, 2

cannot be perpendicular to the direction of propagation
of the laser field, and we have to solve a set of 15 coupled
equations.

In Eq. (6) the vector Y has been written in such a form
that the first nine components are symmetric under inter-
change of the atoms, and the remaining six components
are antisymmetric. In the framework of collective
states, ' ' a two-atom system is equivalent to a single

) t2

l 0)

FIG. 1. Energy-level diagram of the two two-level atomic
system represented as a single four-level atom. The excited and
ground states are l2) and lo), respectively, and the intermedi-
ate levels are the symmetric state l+ ) and the antisymmetric
state l

—). The frequency shift 0,2 is due to the dipole-dipole
interaction.



41 UANTUM BEATS IN TWO-ATOM RESONANCE FLUORESCENCE 363

via the superradiant state, and the antisymmetrical com-
bination describes transitions via the subradiant state.
From (9) we see that for interatomic separations r, 2

much less than the resonant wavelength, and also for a
perpendicular orientation of ri2 to the direction of propa-
gation of the laser field, the symmetrical and antisymme-
trical combinations of the atomic operators are decou-
pe. nl d I these cases the superradiant and subradiant

d isstates radiate independently. If r&2 is not too small an is
not perpendicular to the direction of propagation of the
laser field, these states are coupled and radiate collective-
ly.

I rder to study the time-dependent effects in tw-0-nore
6.t resonance fluorescence we have to so ve q.
alDirect integration of Eq. (6) leads to the following forma

solution for Y:

Y(t) =Y(0)e ' M——'a(1 —e—') .

There exists a complex invertible matrix T which diago-
nalizes M and A, = TMT ' is the diagonal matrix of com-
plex eigenvalues. By introducing X=TY and a'=Ta,
Eq. (11)can be written as

III. TIME-DEPENDENT RESONANCE
FI.UORKSCKNCK INTENSITY

We now calculate the radiation intensity I(R, t) of the
fluorescent field, which is proportional to the normally
ordered one-time correlation function of the electromag-
netic field at a point R=

I
R

I
R in the wave zone:

I(R, t)= (E' '(R, t).E'+'(R, t)) . (13)
27T'cop

The vectors E'+' (E' ') denote the positive (negative) fre-
quency components of the electromagnetic field, and we
have introduced the factor (R c /2moo) so that
I(R, t)dQkdt is now the probability of finding one pho-
ton inside the solid angle element d QR, around the direc-
tion R in the time interval dt, at the moment of time in
the far field zone of the radiation emitted by the atomic
system. The positive frequency part E of t..e e'+' e field
operator in the far-field zone, I R I

» Ap r I2 where o is
the resonant wavelength, and for t & IRI/c, can be ex-

31,34pressed in terms of the atomic operators

X(t)=X(0)e-"'—A, 'a'(1 —e ') . - (12) E'+'(R, t) =EoI+'(R, r}

To obtain solutions for Y, (t), we must determine the 15
eigenvalues A, , and 15 eigenvectors X, (t); the eigenvalues
and eigenvectors are solved numerically. The solution of
E . (12) permits the calculation of the time-dependent
characteristics of the two-atom system and is use"

q. " for
d thecalculating the resonance fluorescence intensity and e

photon statistics.

z RX(RXp} IRI
IRIi=1

Xexp( ikR r—;), (14)

where k =coo/c, and EII+'(R, t) denotes the operator of
the free field, including the external driving field. The

~ ~ ~
I

I
I

'
I
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O
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I I II I I
~ ~
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t (units of 2T)

50

ensit curves (in units of 2y) as a function of 2yt are presented for a divingFKJ. 2. Time-dependent resonance fluorescence intensity curves in uni s o y as
field strength P=0. 1 and an interatomic separation r, i=AD/6. The orientation angle g assumes the va ues qr=~ so i
y=m/4 (dashed line) and y=O (dotted line).
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second part of Eq. (14) depends directly on the atomic
operators and represents the radiation field emitted by
the atoms. Substituting (14) into (13) and assuming that
the observation point (detector) is outside of the external
driving field [the free field part Eo+'(R, t) then does not
contribute to the intensity of the radiated field observed
at the point R], we thus obtain the expression

2

I(R, t)=2yU(R) g (S,+(t)S (I))exp(ikR r, ), (15)

where U(R)=(3/Sir)sin 4, with 4 the angle between
the observation direction R and the atomic transition di-
pole moment p.

On integrating over all solid angles dQk, Eq. (15)

C)
O
O

I
I I

I
I I

~~
~II (a)
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0
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FIG.G. 3. Time-dependent resonance fluorescence intensity curves {in units of 2y) are presented for a driving field strength P=0.1

and for the interatomic axis orientated parallel to the external driving field. The interatomic separation assumes the values (a)
r, z =~8 (solid line), r, & =~6 (dashed line), r„=~4 (dotted line), r&z =50AO (dash-dotted line); and (b) r, z =Ao/8 (solid line),
r, z

=Ao/12 (dashed line), and r, z =Q/16 {dotted line).
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yields the total radiation intensity I(t) given in photons
per second as

2

I(t)= g 2y,j(S,+(t)S, (t)), (16)

0.5-

where y; is given by Eq. (4). In the notation of the com-
ponents of the vector Y, Eq. (16) takes the form

0- oi
E e

~ ~~ ~0

I(t)=2y[Y, (t)+aY, (t)) . (17)
-05-

The solution for the intensity of the fluorescent field [Eq.
(17)] is illustrated graphically in Figs. 2 and 3 as a func-
tion of time for different interatomic separations and for
different orientations of the interatomic axis r, z to the
direction of propagation of the laser field. It is evident
from Fig. 2 that the time evolution of the fluorescence in-
tensity strongly depends on the orientation y of the in-
teratomic line r, i with reference to the direction of prop-
agation of driving field, and shows an oscillatory modula-
tion (quantum beats) for the atomic orientation, different
from that perpendicular to kL. This oscillatory behavior
of the resonance fluorescence intensity arises due to in-
terference between the two possible transition amplitudes
(i+) —+i0)). The amplitude of this modulation reaches a
maximum for the interatomic line r, z located parallel to
the direction of propagation of the external field (y=0).
Moreover, the amplitude as well as the frequency of these
quantum beats is dependent on the interatomic interac-
tion and vanishes for large interatomic separations [Fig.
3(a)] as well as for separations very small compared with
the resonant wavelength [Fig. 3(b)]. This is easily ex-
plained in the framework of collective states of a two-
atom system. For large interatomic separations, Q&z is
approximately zero, and transitions froin the states i+)
to the state i0) have the same frequency. Therefore
there are no quantum beats in the emitted field. On the
other hand, for very small interatomic separations, the
subradiant state

i

—) is decoupled from the remaining
states, ' ' ' and in this case there are no quantum beats.
This is also evident from the matrix (9). For very small
interatoinic separations, P2 is approximately zero, and
hence the superradiant and subradiant states are not cou-
pled.

The role of the dipole-dipole interaction in the oc-
currence of quantum beats is shown in Fig. 4, where the
real and imaginary parts of the 15 eigenvalues A, ; of the
matrix M, with and without dipole-dipole interaction
A&z, are illustrated. These eigenvalues cluster in three
groups corresponding to Re(A, , ) near 0, 1, and 2. Cluster-
ing in three groups occurs for values of the parameter a

0.5
i

1.0
-Re (h, )

1.5 2.0

FIG. 4. Complex eigenvalues of the matrix M for P=0.1,
r» =+8, and (p=O, where the dipole-dipole interaction is in-
cluded (triangles) and ignored (circles).

IV. PHOTON STATISTICS

Our time-dependent solution (12) for atomic correla-
tion functions gives us a good starting point to also con-
sider the problems of photon statistics of the fluorescent
field radiated by a system of two interacting atoms. Pho-
ton statistics can be examined by the quantity Q (t, T) in-
troduced by Mandel ' and which, for sufficiently short
counting times T, has the form

Q(t, T)=i)T[g"'(t)—1],

where g is the quantum efficiency of the detector, and

near unity [Eq. (10)] and the real parts of the eigenvalues
are given by the diagonal elements of M (for dipole-dipole
coupling not ignored). Contributions of eigenvalues with
large real parts to the resonance fluorescence intensity
are very small, because they rapidly damp the corre-
sponding time-dependent eigenvector. Only eigenvalues
with small real parts play a significant role in the time
evolution of the resonance fluorescence intensity. In Fig.
4 we observe just three eigenvalues with small real parts:
one is real and two are complex conjugates. For the case
that the dipole-dipole interaction Q&z is ignored, the
imaginary parts of these Y eigenvalues are very small
compared to the large values where Q, z is included.
These large imaginary parts of the eigenvalues determine
the frequency of the quantum beats in the resonance
fluorescence intensity and the real parts contribute to the
decay of the transient beat phenomenon.

(E' '(R„t)E' '(R~, t)E'+'(R~, t)E'+'(R, , t))
(E' '(R„t)E'+'(R„t))(E' '(R„t)E'+'(R„t))

g"'(t) =g"'(R„t;R„t)= (19)



366 Z. FICEK AND B. C. SANDERS 41

is the normalized one-time second-order correlation func-
tion. Negative Q(t, T) implies sub-Poissonian photon
statistics; positive Q(t, T) means that the photon statis-
tics are super-Poissonian. It is evident from (18) that the
statistics will be sub-Poissoman when g

~ ~ ' '&t& & 1 and
super-Poissionian when g (t) ) l.(2)

The insertion of (14) into (19) and (19) into (18) (and as-
suming that the fluorescent photons are detected in the
direction R=R, =Rz perpendicular to r, z) produces

4Y9(t)

[Y,(t)+ Y,(t)]'
(20)

The time-dependent parameter (20), which describes the
statistics of photons emitted from two atoms by reso-
nance fluorescence, is shown in Fig. 5 as a function of
time. Different interatomic separations are considered
for parallel and perpendicular orientations of the atoms
with reference to the external driving field. These graphs
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show that the photon statistics strongly depend on the in-
teratomic separation and the atomic orientation in the
external driving field. For noninteracting atoms
(kr, 2 »1), the photon statistics are sub-Poissonian, in-

dependent of the atomic orientation. As the interatomic
separation decreases, the photon statistics change from
sub-Poissonian to super-Poissonian, in the case that the
atoms are oriented perpendicular to the driving field [Fig.
5(a)]. However, small interatomic separations do not
prevent sub-Poissonian statistics from arising as a tran-
sient phenomenon, when the atoms are oriented parallel
to the driving field, as shown in Fig. 5(b) for r,z=io/8.
For the case r, z =A.c/8, we observe the signature of quan-
tum beats in the photon statistics for a parallel orienta-
tion.

V. CONCLUSIONS

In this paper we have been especially concerned with
time-dependent resonance fluorescence from two atoms,
separated by r&2 comparable to the resonant wavelength.
Particular attention has been paid to the effects of the
atomic line orientation in the external driving field on the
time-dependent resonance fluorescence intensity and pho-
ton statistics.

We have shown that by not assuming that the atoms
are perpendicular to the driving field, which is a common
assumption, quantum beats appear in the time-
dependent resonance fluorescence intensity for a weak
driving field. These beats vanish for noninteracting
atoms as well as for atoms separated by r, 2 much smaller
than the resonant wavelength. For the interatomic sepa-
rations comparable to the resonant wavelength, quantum

beats are well resolved. Further analysis of the photon
statistics of the fluorescent radiation demonstrates the
presence of quantum beats for the case of the external
driving field not propagating perpendicular to the intera-
tomic axis. The photon statistics depend on the intera-
tomic separation and on the interatomic axis orientation
in the external driving field. For noninteracting atoms
the photon statistics are sub-Poissonian, but super-
Poissonian statistics arise for small interatomic separa-
tions. However, a parallel orientation of the atotns in the
driving field produces transient sub-Poissonian statistics
for small separations due to quantum beats.

We have studied the transient features of the resonance
fluorescence intensity and photon statistics as they de-
pend on the interatomic separation and on the atomic
orientation in the driving field. Experimental detection
of these interference effects is desirable, but it is an open
question as to whether these effects are accessible to ob-
servation. Possible realizations of the dynamics discussed
here include experiments with two trapped ions' ' or
with two atoms fixed either in organic layers or on the
surface of a plane dielectric plate. ' ' We hope that this
research will contribute towards the clarification of col-
lective effects in multiatom systems and will prove useful
in designing future experiments.

ACKNOWLEDGMENTS

We would like to thank Professor P. D. Drummond
and Dr. G. J. Milburn for many valuable discussions.
One of us (B.C.S.) has been supported by the Australian
Research Council.

'On leave from Institute of Physics, A. Mickiewicz University,
Poznan, Poland.

tPresent address: Department of Physics, University of Waika-

to, Hamilton, New Zealand.
'R. H. Dicke, Phys. Rev. 93, 99 (1954).
J. H. Eberly and N. E. Rehler, Phys. Rev. A 2, 1607 (1970).
G. S. Agarwal, Phys. Rev. A 2, 2038 (1970).

4R. Bonifacio and L. A. Lugiato, Phys. Rev. A 11, 1507 {1975}.
5M. Gross and S. Haroche, Phys. Rep. 93, 301 (1982).
M. J. Stephen, J. Chem. Phys. 40, 669 (1964).

7Y. C. Lee and D. L. Lin, Phys. Rev. 183, 147 (1969).
W. W. Chow, M. O. Scully, and J. O. Stoner, Jr., Phys. Rev. A

11, 1380 (1975).
R. M. Herman, H. Grotch, R. Kornblith, and J. H. Eberly,

Phys. Rev. A 11, 1389 (1975).
I. R. Senitzky, Phys. Rev. A 15, 292 (1977).
G. S. Agarwal, F. Haake, and G. Schroder, Opt. Commun. 34,
283 (1980).
Z. Ficek, R. Tanas, and S. Kielich, Physica 146A, 452 (1987).

' M. Lewenstein and J. Javanainen, Phys. Rev. Lett. 59, 1289
(1987).

'4A. S. Shumovsky, R. Tanas, and T. Quang, Opt. Commun. 64,
45 (1987).

' B. H. W. Hendriks and G. Nienhuis, J. Mod. Opt. 35, 1331
(1988).

' M. S. Kim, F. A. M. de Oliveira, and P. L. Knight, Opt. Com-

mun. 70, 473 (1989).
'7H. M. Gibbs, Q. H. F. Vrehen, and H. M. J. Hikspoors, Phys.

Rev. Lett. 39, 547 (1977).
' S. Haroche, High-resolution Laser Spectroscopy, edited by K.

Shimoda (Springer, Berlin, 1976), p. 253.
' W. Neuhauser and T. Sauter, Comm. At. Mol. Phys. 21, 83

(1988).
I. R. Senitzky, Phys. Rev. Lett. 40, 1334 {1978).
H. J. Carmichael, Phys. Rev. Lett. 43, 1106 (1979).
G. S. Agarwal, R. Saxena, L. M. Narducci, D. H. Feng, and
R. Gilmore, Phys. Rev. A 21, 257 (1980); P. D. Drummond
and S. S. Hassan, ibid. 22, 662 (1980).
Z. Ficek, R. Tanas, and S. Kielich, Optica Acta 30, 713 (1983).
B.R. Mollow, Phys. Rev. 188, 1969 (1969).
H. J. Kimble and L. Mandel, Phys. Rev. A 13, 2123 (1976).
A. S.J. Amin and J. G. Cordes, Phys. Rev. A 18, 1298 (1978).
Z. Ficek, R. Tanas, and S. Kielich, Opt. Commun. 36, 121
{1981).
H. S. Freedho5; Phys. Rev. A 26, 684 (1982).
M. Wiegand, J. Phys. B 16, 1133 (1983).

30Y. Ben-Aryeh and C. M. Bowden, IEEE J. Quantum Electron.
QE-24, 1376 (1988).

'R. H. Lehmberg, Phys. Rev. A 2, 883 (1970).
G. Breit, Rev. Mod. Phys. 5, 91 (1933).
L. Mandel, Opt. Lett. 4, 205 (1979).

3~G. S. Agarwal, Quantum Optics, Vol. 70 of Springer Tracts in



368 Z. FICEK AND B.C. SANDERS 41

Modern Physics, edited by G. Hohler (Springer, Berlin, 1974).
L. Allen and J. H. Eberly, Optical Resonance and Two Level
Atoms (Wiley, New York, 1975).
P. W. Milonni and P. L. Knight, Phys. Rev. A I0, 1096 (1974).
L. Mandel, Phys. Scr. T 12, 34 (1986).
T. Sauter, R. Blatt, W. Neuhauser, and P. E. Toschek, Opt.

Commun. 60, 287 (1986).
K. H. Drexhage, Progr. Opt. 12, 165 (1974).

~S. Garoff, D. A. Weitz, T. J. Gramila, and C. D. Hanson, Opt.
Lett. 6, 245 (1981).

'D. A. Weitz, S. Garoff, C. D. Hanson, T. J. Gramila, and J. I.
Gersten, Opt. Lett. 7, 89 (1982).


