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The R-matrix method for electron-molecule collisions has been applied to autoionizing doubly ex-

cited adiabatic states of H2 with 'X~ symmetry for internuclear distances from 1 to 5 a.u. Above
the previously known three states we have found many other doubly excited states for the first time.
These states are classified into two Rydberg series, namely, (lo „)(npcr) and (1cr „)(nfcr) series up to
n = 10. They are characterized by their complex quantum defect, the imaginary part corresponding
to the width of each Rydberg state. For the smaller internuclear distances R these Rydberg states
are isolated resonances, but for R & 4 a.u. some of them begin to overlap and present a problem of
multichannel autoionizing Rydberg series, although there is only one common series limit in the

present case. This work exemplifies the usefulness of the R-matrix method for studying molecular
doubly excited Rydberg states.

I. INTRODUCTION

Highly excited Rydberg states of atoms have been
studied extensively in recent years because of their unique
physical properties; they are quite stable against radiative
decay, but are highly reactive to charged particles and to
external fields due to their weak binding and to the large
size of the electron cloud. ' The binding energy
E(ao ) —E(n) of a single-channel Rydberg electron in a
neutral atom may be represented by the Rydberg formula
E(co) E(n)=[n —p(n)] —Ry with a quantum defect
p(n) whic, h is usually a slowly varying function of the
principal quantum number n. This quantum defect arises
from occasional elastic collisions between the Rydberg
electron and the residual ion core. If an electron in the
ion core is excited then the collisions may be superelastic,
in which case the Rydberg electron may acquire enough
energy to escape from the ion core. In other words a
two-electron excited Rydberg atom, or doubly excited
Rydberg atom, has a finite lifetime in the absence of a ra-
diation field. Therefore, its energy eigenvalue E(n) is
complex, the imaginary part —

—,'l ln) being the half-

width of this decaying state. One may modify the Ryd-
berg formula by replacing the quantum defect p(n) by a
complex quantity q(n)=p(n)+E'y(n) for the purpose of
representing the complex energies, ' namely,

E( cc ) E(n)= j n —[p(n)—+iy(n)]I

=[n p(n)] —+2iy(n)[n —p(n)]

in rydbergs, where the last approximate expression is va1-
id for y « (n —lc) . One may refer to q (n) as a complex

quantum defect. The first term on the right-hand side of
Eq. (1) is the usual Rydberg formula. The second term
representing the width is appropriate for high Rydberg
states as is seen from the normalization constant of the
Rydberg wave function.

Doubly excited Rydberg states of molecules are su-

perexcited states, and have many different decay chan-
nels, namely, (1) dissociation channels in which neutral
fragments or a fragment ion pair may be produced in the
ground or excited states, and (2) electron-ion scattering
channels in which the nuclear as well as the electronic
motion of the molecular ion may be excited. If the ion is
formed in a repulsive state, it may dissociate into ionic
and neutral fragments. Doubly excited molecular Ryd-
berg states M'* may be formed from any of these chan-
nels, by single-photon or multiphoton absorption, or by
electron-impact excitation. Therefore these states may
play an important role as intermediate resonance states in
(for example, for the hydrogen molecule) elastic scatter-
ing

e +H2 Hz* H2 +e,
vibrational excitation

e+&2 (U) H2 H2 (U )+e

dissociative recombination

e +H2+ H2* H+H*,

ion-pair formation"

e+Hz+ ~H&* ~H++H
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associative ionization

H +H Hz* Hz +e,
H*+H* H2* H2++e,

transfer ionization'

H +H ~H~* H+H +e,
photodissociation"

h v+Hq~H~*~H*+H*,

photoionization' '
h v+ H2 H2' H2++ e,

dissociative photoionization'

h v+H H** H++e H+H +e,
resonantly enhanced multiphoton ionization and dissoci-
ation with coupling with doubly excited states'

hv+H2 ~H2* H2 +e,
h v+H~ ~H2* ~H+H*,

dissociative excitation by electron impact

e+H2~H~*+e~H +H*+e,
dissociative ionization by electron impact

e +H2~Hz*+e ~H+H++2e,
and so on.

The knowledge of doubly excited adiabatic Rydberg
states by itself is insufficient for understanding these dy-
namic processes. The coupling between the electronic
motion and the nuclear motion is essential in general in
these processes. The effect of this coupling is different de-
pending on the process, and has to be studied separately
for each process. The associated adiabatic Rydberg
states are, however, common to all the processes and
serve as the basis for studying them, possibly leading to a
unified physical view of them. Furthermore, in some pro-
cesses in which Franck-Condon transitions appear to be
important, experimental measurements directly afford in-
formation on doubly excited adiabatic potential curves. '

Thus detailed ab initio calculations of adiabatic Rydberg
states are highly desirable. This paper reports an exam-
ple of such calculations taking up a prototype problem of
the hydrogen molecule with 'X symmetry.

Being the smallest and simplest molecule, the hydrogen
molecule has been studied in considerable detail in the
literature. However, so far only two or three lowest-lying
doubly excited levels of each symmetry have been com-
puted. ' In this work we calculate many more
levels, which are classified into two Rydberg series and
which satisfy the complex Rydberg formula (l) with a
complex quantum defect varying smoothly with n.

II. THE R-MATRIX METHOD

The R-matrix method for electron-molecule collisions,
described in detail in earlier papers and review arti-

cles, is particularly appropriate for the description
of molecular Rydberg states. In essence, configuration
space is divided into two regions by a sphere of radius a
that just envelopes the electron cloud of the core states
that are considered. In the inner region the Rydberg
electron lies within this electron cloud and interacts
strongly with the core electrons. A multicenter,
configuration-interaction expansion of the total wave
function is then appropriate. In the outer region, the
Rydberg electron does not overlap the core electron
cloud. Hence there are no electron exchange effects be-
tween the Rydberg electron and the core electrons and
the interaction is weak. The wave function can then be
accurately described by a single-center multichannel ex-
pansion.

The method adopted in the present calculations of the
doubly excited Rydberg states of Hz('X+) is as follows.
We include two electronic channels in the outer region,
namely, that associated with the ground state 1' X+ of
H2+ and that with the first excited state 10„X„+.The
ground state is a bonding state and the first excited state
is an antibonding repulsive state; see Fig. 1. The ground
state of H2+ is coupled with scr, do, and go. orbitals of
the Rydberg electron to form a wave function of the total
H2 system of 'X+ symmetry, and the first excited state is
coupled with per, fcr, and her Rydberg orbitals. Thus
the wave function in the outer region is expressed as

0'„„,= g 4';I (x, , r~, cr~;R)F;t (r2),
i, 1,

where l, =0, 2, and 4 for i =10.
g and l;=1, 3, and 5 for

i =10„;x, =(r„r~,a, ) denotes the space-spin coordi-
nates of the core electron; x2=(rz, rz, oz) those of the
Rydberg electron; R is the internuclear distance; 4;I are

I

obtained by coupling the wave functions of H2+ with the
angular and spin functions of the Rydberg electron; and
F,I are the partial-wave channel functions of the Rydberg

electron.
The core wave functions are represented by three-term

linear-combination-of-atomic-orbitals molecular orbitals
(LCAO MO) with optimized exponents, similar to those
determined by Cohen and Bardsley ' and employed in
previous calculations of doubly excited states. ' A prob-
lem arises in our case, since we are concerned with a
rather large region of R in this paper. Because of multi-
ple minima of the energy expectation value of the le„
state as a function of the exponents, one of the optimum
exponents for the lowest minimum grows rapidly with R
around R =2.5 a.u. and another minimum, for which
this exponent has quite a different value, becomes lower
for R & 2. 8 a.u. In other words there is an abrupt change
in one of the optimum exponents, and hence in the opti-
mized wave function, as a function of R. To avoid this
unsatisfactory discontinuity we switch from one
minimum to another by smoothly and artificially chang-
ing this exponent as we increase R in a small region
around R =2.5 a.u. By a careful examination of a few
different ways of smoothly changing this exponent we
have been able to obtain energy expectation values that
deviate from the lowest minimum only by a negligibly
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TABLE I. Energy expectation values and transition moments of the two lowest states of H, +

represented by three-term LCAO MO. R, internuclear distance; E, total energy including the nuclear

repulsion term; b,E, error in energy; Q, quadrupole moment; and D, transition dipole. All of these

quantities are given in atomic units.

1.0
1.2
1.4
1.5
1.6

1.8
2.0
2.2
2.4
2.5

2.6
2.8
3.0
3.25
3.50

3.75
4.00
4.25
4.50
4.75

5.00
5.25
5.50
5.75
6.00

—0.451 14
—0.528 27
—0.569 25
—0.581 57
—0.590 18

—0.599 48
—0.601 85
—0.600 05
—0.595 76
—0.593 03

—0.59003
—0.583 55
—0.576 76
—0.568 25
—0.560 06

—0.552 37
—0.545 31
—0.538 93
—0.533 24
—0.528 21

—0.523 83
—0.52003
—0.516 76
—0.513 97
—0.511 61

la X+
g g

AE

6.5 x10-'
7.0x10-'
7.4x10-'
7.5 x 10-'
7.6x10-'

7.8x 10-'
7.9x 10-'
7.9x10-'
8.0x 10-'
8.0x 10-'

8.0x 10-'
8.0x 10-'
8.0x 10-'
8.0x 10
8.0x10-'

7.9x 10-'
7.7 x10-'

7.0x 10-'

5.9x 10

4.7x 10-'

3.6x 10-'

0.093
0.139
0.196
0.230
0.268

0.353
0.454
0.573
0.712
0.788

0.870
1.052
1.256
1.548
1.882

2.260
2.683
3.154
3.673
4.240

4.854
5.512
6.214
6.956
7.734

0.435 198
0.244 744
0.102 219
0.043 512

—0.008 604

—0.096 660
—0.167 516
—0.224 990
—0.271 878
—0.292 034

—0.310300
—0.341 913
—0.368 037
—0.394490
—0.415 474

—0.432 185
—0.445 536
—0.456 230
—0.464 815
—0.471 718

—0.477 276
—0.481 755
—0.485 366
—0.488 278
—0.490 625

1'„X„
AE

1.2x10-'
1.2x10-'
1.3 x10-'
1.3 x10-'
1.4x10-'

1.5 x10-'
1.8x10-'
2.4x10-'
3.2 x 10
3.8x10-'

4.7 x10-'
6.3 x10-'
4.8 X 10
3.0x10-'
2.2 x10-'

1.6 x 10--'

1.5 x 10--'

1.4x10-'

1.5 x10--'

1.7 x10-'

1.9 x 10--'

2.430
2.312
2.242
2.226
2.223

2.251
2.322
2.430
2.570
2.652

2.740
2.931
3.136
3.424
3.753

4.119
4.520
4.957
5.427
5.933

6.474
7.050
7.661
8.308
8.990

10. 'X
2y+

D

—0.674
—0.752
—0.828
—0.865
—0.902

—0.975
—1.048
—1.122
—1.197
—1.235

—1.273
—1.352
—1.433
—1.538
—1.647

—1.760
—1.876
—1,995
-2.117
—2.241

—2.368
—2.496
—2.625
—2.755
—2.885

small amount compared with the difference between the
lowest minimum and the exact eigenvalue. Even with
this procedure the energies we have obtained are lower
than those in Ref. 41 for those values of R for which Ref.
41 gives results. Table I shows the energy expectation

values and their errors, and also the quadrupole moments
and the transition dipole moments, calculated with the
LCAO-MO wave functions.

In the inner region the wave function is written as a
linear combination of 74 configurations

TABLE II. Positions E„{n) and widths I (n) of the three lowest resonances in 'Xg scattering of elec-
trons by H2+(X Xg ) with its internuclear distance fixed at 2.0 a.u. The energies are given in atomic
units.

R-matrix method
Two state+ correlation

Present TNS' TN
Four state

TN

Linear-algebraic method
Two state Four state

CS' CS"

E„(2)
I (2)

E,{3)
I (3)
E„(4)
r(4)

0.204 2
0.050 9
0.365 5

0.004 96
0.398 1

0.001 89

0.2044
0.053
0.3661
0.005

0.2029
0.051
0.3646
0.0049
0.3976
0.0019

0.2027
0.055
0.3639
0.0062
0.3973
0.0024

0.2219
0.051

0.2161
0.057

0.3657
0.0059

'Tennyson et al. (Ref. 4).
Tennyson and Noble (Ref. 5).

'Collins and Schneider (Ref. 7).
Schneider and Collins (Ref. 7).
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4 =A g 4;((x, , rz, oz, R)f (,(r z)c~;(,
3, 1,$

+ g Pk(x), xz;R)c k,
k

(3)

—0.3—

—0.4-

in which the functions f,(,(rz) are numerically defined
l

continuum basis functions centered on the center of grav-
ity and satisfy the boundary condition that their deriva-
tives are zero on the boundary between the inner and
outer regions, i.e., [df (,(rz)ldrz]„,=0. These func-

"2

tions are eventually continued to the outer-region func-
tions F,~ (rz) in Eq. (2). The configurations Pk decay be-

fore they reach the boundary. Some of them include oc-
cupied and unoccupied bound core orbitals of 0. type, and
others include approximate m virtual orbitals represented
by a single-g basis function. The first sum in Eq. (3) and
some of the terms in the second sum together constitute a
converged two- (electronic) state close-coupling wave
function. Other terms in the second sum represent corre-
lation effects. In reality the terms in Eq. (3) are rear-
ranged by constructing orthonormal o orbitals in terms
of the bound 0 orbitals and the continuum basis func-

tions. The m virtual orbitals need not be accurate for the
present purpose, because they are used merely to con-
struct correlation terms to allow for short-range polariza-
tion of the core ion. The Hamiltonian matrix defined
over the inner region and constructed with the
configurations in Eq. (3) is then diagonalized.

We define the R matrix by

dF~( (rz)
F,((a)= gR, ( j) (E;a) rz

l t j P2
J& )

r =a
. 2

in terms of the channel wave functions F,((rz) of the

Rydberg electron. Each element of the R matrix is cal-
culable from the eigenvalues E'—' and the eigenvectors cp
of the modified Hamiltonian matrix as

Wil p/8~l p
R,(,( (E;a)= g (zt )"p p

with

il p il s p il s

To correct this R matrix approximately for the functional
space disregarded in Eq. (3), we apply the method pro-
posed by Buttle.

In the outer region the wave function (2) is substituted
into the Schrodinger equation. This leads to six coupled
second-order ordinary differential equations. They are
numerically solved using the R-matrix propagation
method ' from the boundary r2=a, starting with the
boundary condition (4), out to a certain point of rz
From there on, the Gailitis expansion method is used to
obtain the asymptotic form of the solutions, and hence
the K matrix. It is then diagonalized and the eigenphase
sum 5(E) is calculated. We repeat these calculations

—().5 05—

H, (la„)(npo')'X~+

—0.6—
03—

~x R=3 5

R=2.0

—0.7—
(.
E ~

I I

2 3 4

R (a.u. )

0.2—
X~x~X~X X X X

R= 1.4

FIG. 1. Potential-energy curves of the two lowest states of
Hz+ and doubly excited states of H2. The energy is the total en-

ergy including the nuclear repulsion term. Solid curves: H2
Thin curves: six lowest members of the series
H&(1o.„)(npo.) 'X~ . Dashed curves: two lowest members of the
series Hz(lrr, )(nfo)'X . (See Table. V for higher members. )

Dot-dashed curves: bound states of H, .

0.1
6 8 10

FIG. 2. The real part p of the quantum defect of the
H2(1o.„)(npo.) 'Xg state as a function of the principal quantum
number n. R is the internuclear distance in atomic units.
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State Present HDB' HSb

{lo„) 2.68
(1o „)(3po.) 4.58
(1 „)(4p ) 5.5
(lo „)(4fa) 5.6

'Hazi et al. (Ref. 31).
Hara and Sato (Ref. 32).

2.65 2.53

TABLE IV. Stabilization points R, in atomic units for disso-
ciation of superexcited states H2( 10„)(nlo) 'X~+.

changing the energy F, and search for an abrupt increase
of 5(E) by a, corresponding to a resonance. The shape of
the resonant behavior of 6(E) is fitted to the Breit-Wigner
formula, and the complex energies of doubly excited
Rydberg states are determined.

To search for very narrow resonances, say, of the order
of 10 Ry, we have to repeat the calculations for ener-
gies F. at extremely fine intervals. In fact, this is easily
accomplished and does not involve much computer time,
once the eigenvalues and the eigenvectors of the modified

TABLE V. Complex quantum defects p(n)+ iy(n) of doubly excited Rydberg states of Hp( Xg ) R, internuclear distance;
4.30[ —2]=4. 30 X 10

R = 1.2 a.u.
(la„)(npcr) 'Xg

p(n) y(n)
(lo„)(nfcr)'Xg+

p(n) y(n)

R=1.8 a.u.
(10„)(npcr) 'Xg+

p(n) y(n)
(lo „)(nfcr)'Xg+

p(n) y(n)

7
8

9
10

0.391
0.215
0.200
0.196
0.195

0.194
0.193
0.193
0.192

4.30[—2]
3.26[—2]
3.56[—2]
3.87[—2]
4. 14[—2]

4.38[—2]
4.57[—2]
4.73[—2]
4.85[—2]

—0.0114
—0.0116
—0.0116
—0.0116
—0.0116
—0.0116
—0.0116

7.90[—5]
1.68[—4]
2.59[—4]

3.43[—4]
4.18[—4]
4.83[—4]
5.37[—4]

7
8
9

10

0.498
0.288
0.268
0.262
0.258

0.256
0.255
0.254
0.254

7.34[—2]
4.57[—2]
4.60[—2]
4.62[—2]
4.63[—2]

4.64[—2]
4.65[—2]
4.66[—2]
4.66[—2]

—0.0067
—0.0071
—0.0073

—0.0074
—0.0075
—0.0076

2.03[—4]
3.20[—4]
3.88[—4]

4.30[—4]
4.59[—4]
4.78[—4]

R = 1.4 a.u.
(lcr„)(npo ) 'Xg

p(n) y(n)
(lo„)(nfo)'X,+

p(n) y(n)

R =2.0 a.u.
(lcr„){npo) 'Xg+

p(n) y(n)
(lo „)(nfo) 'Xg+

p(n) y(n)

7
8
9

10

0.425
0.240
0.224
0.218
0.215

0.214
0.213
0.213
0.212

5.39[—2]
3.76[—2]
3.90[—2]
4.00[—2]
4.08[—2]

4.13[—2]
4.17[—2]
4.19[—2]
4.21[—2]

—0.0096
—0.0099
—0.0101

—0.0101
—0.0102
—0.0102
—0.0102

8.37[—5]
1.40[—4]
1.78[—4]

2.04[—4]
2.23[—4]
2.37[—4]
2.47[—4]

7
8

9
10

0.533
0.307
0.286
0.278
0.275

0.273
0.271
0.270
0.270

8.08[—2]
4.85[—2]
4.85[—2]
4.85[—2]
4.86[—2]

4.87[—2]
4.87[—2]
4.88[—2]
4.88[—2]

—0.0055
—0.0060
—0.0063

—0.0064
—0.0065
—0.0066
—0.0067

3.29[—4]
5.11[—4]
6.16[—4]

6.81[—4]
7.24[—4]
7.54[—4]
7.75[—4]

R = 1.6 a.u.
(1~„)(np~)'X,+

p(n) y(n)
(lo„)(nfcr)'Xg

p(n) y(n)

R =2.2 a.u.
(10.„){npo. ) 'Xg+

p(n) y(n)
(la„)(nfa)'X+

p(n) y(n)

7
8
9

10

0.461
0.266
0.247
0.241
0.238

0.236
0.235
0.235
0.234

6.43[—2]
4.22[—2]
4.28[—2]
4.33[—2]
4.37[—2]

4.39[—2]
4.40[—2]
4.41[—2]
4.42[—2]

—0.0080
—0.0084
—0.0086

—0.0087
—0.0088
—0.0088
—0.0088

1.27[—4]
2.02[—4]
2.48[—4]

2.77[—4]
2.97[—4]
3.10[—4]
3.21[—4]

7
8
9

10

0.565
0.321
0.299
0.291
0.287

0.285
0.283
0.282
0.282

8.70[—2]
5.06[—2]
5.06[—2]
5.07[—2]
5.08[—2]

5.08[—2]
5.09[—2]
5.09[—2]
5.09[—2]

—0.0046
—0.0052
—0.0055

—0.0057
—0.0058
—0.0059
—0.0060

5.24[—4]
8.04[—4]
9.64[—4]

1.06[—3]
1.13[—3]
1.17[—3]
1.20[—3]
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TABLE V. (Continued).

7
8

9
10

R =2.4 a.u.
(lo.„)(npo.) 'Xg

p(n) y(n)

0.597
0.331
0.308
0.299
0.295

0.292
0.291
0.290
0.289

9.09[—2]
5.25[—2]
5.28[—2]
5.30[—2]
5.31[—2]

5.32[—2]
5.32[—2]
5.32[—2]
5.33[—2]

0.624
0.337
0.312
0.303
0.299

9.17[—2]
5.45[—2]
5.53[—2]
5.56[—2]
5.59[—2]

R =2.6 a.u.
(lcr„)(npcr) 'Xg

p(n) y(n)

(lcr„)(nfcT) 'Xg

p{n)

—0.0039
—0.0047
—0.0050

—0.0052
—0.0054
—0.0055
—0.0055

8.18[—4]
1.24[—3]
1.48[—3]

1.62[—3]
1.72[—3]
1.79[—3]
1.84[—3]

—0.0036
—0.0044
—0.0049

1.26[—3]
1.89[—3]
2.24[—3]

(lo„)(nfo)'X~

p(n) y(n)

7
8

9
10

n

2
3
4
5

6

7

8

9
10

0.285
0.283
0.282
0.281

6.99[—2]
7.02[—2]
7.05[—2]
7.07[—2]

R =3.5
(lo „)(npcr) 'Xg+

p(n) y(n)

0.317
0.291
0.281
0.276

0.273
0.271
0.269

6.58[—2]
7.21[—2]
7.48[—2]
7.63[—2]

7.70[—2]
7.76[—2]
7.79[—2]

R =3.25
(lo „)(npcr) 'Xg+

p(n) y(n)

0.293 6.83[—2]
0.288 6.93[—2]

a.u.

a.u.

—0.0073
—0.0075
—0.0076

8.03[—3]
8.40[—3]
8.66[—3]

(lo „)(nfo ) 'Xg+

p(n) y(n)

—0.0077
—0.0089
—0.0094

—0.0096
—0.0098
—0.0099

7.10[—3]
9.93[—3]
1.14[—2]

1.22[—2]
1.27[—2]
1.30[—2]

(lo.„)(nfo ) 'Xg+

p(n) y(n)
—0.0064 6.48[—3]—0.0070 7.47[—3]

7
8
9

10

0.296
0.294
0.293
0.292

5.60[—2]
5.60[—2]
5.61[—2]
5.62[—2]

R =2.8
(lcr„)(npcr ) 'Xg

p(n) y(n)

a.u.

—0.0051
—0.0053
—0.0054
—0.0055

2.44[—3]
2.58[—3]
2.67[—3]
2.74[—3]

(lo„)(nfo ) 'Xg

p(n) y(n)

n

2

3

4
5

6

0.299
0.274
0.263
0.258

7.04[—2]
7.93[—2]
8.32[—2]
8.53[—2]

R =3.75
(lcr„)(npcr ) 'Xg+

p(n) y(n)

a.u.

—0.0116
—0.0125
—0.0128

1.08[—2]
1.48[—2]
1.68[—2]

(lo „)(nfo) 'Xg+

p(n) y(n)

0.340
0.314
0.304
0.299

5.67[—2]
5.83[—2]
5.89[—2]
5.92[—2]

—0.0036
—0.0046
—0.0051

1.91[—3]
2.82[—3]
3.31[—3]

7

8

9
10

0.255
0.253
0.252
0.251

8.62[—2]
8.70[—2]
8.74[—2]
8.80[—2]

—0.0129
—0.0130
—0.0130

1.78[—2]
1.85[—2]
1.87[—2]

7
8

9
10

0.296
0.294
0.293
0.293

5.94[—2]
5.95[—2]
5.95[—2]
5.97[—2]

R =3.0 a.u.
(lo.„)(npo) 'Xg+

p(n } y(n)

—0.0054
—0.0055
—0.0057

3.65[—3]
3.79[—3]
3.92[—3]

(lo„)(nfo)'Xg

p(n) y(n)

n

2
3
4
5

6

0.278
0.252
0.241
0.235

7.50[—2]
8.85[—2]
9.41[—2]
9.82[—2]

R =4.0
(lcr„)(npcr ) 'X+

p(n) y(n)

a.u.

—0.0172
—0.0174
—0.0172

1.62[—2]
2.16[—2]
2.41[—2]

(1o „)(nfcr ) 'X~

p(n) y(n)

7
8

9
]0

0.338
0.312
0.301
0.296

0.293
0.291
0.290
0.289

5.88[—2]
6.18[—2]
6.29[—2]
6.35[—2]

6.37[—2]
6.39[—2]
6.41[—2]
6.42[—2]

0.331
0.304

6.17[—2]
6.64[—2]

R =3.25
(lo.„)(npo.) 'X

p(n) y(n)

a.u.

—0.0039
—0.0050
—0.0056

—0.0059
—0.0060
—0.0062
—0.0063

2.83[—3]
4.13[—3]
4.81[—3]

5.18[—3]
5.48[—3]
5.64[—3]
5.76[—3]

—0.0052 4.54[—3]

(lo„)(nfo)'Xg

p(n) y(n)

7
8

9
10

n

2
3
4
5
6

8
9

10

0.231
0.229

1.03[—1]
1.02[—1]

0.252
0.225
0.211
0.202

0.193

0.185

7.88[—2]
1.00[—1]
1.1 1[—1]
1.20[—1]

1.35[—1]

1.39[—1]

R =4.25
(lcr„)(npcr ) 'Xg

p{n) y(n)

a.u.

—0.0171
—0.0169

2.55[—2]
2.63[—2]

—0.0246
—0.0234
—0.0225

—0.0218
—0.0213
—0.0208
—0.0207

2.35[—2]
3.08[—2]
3.39[—2]

3.55[—2]
3.67[—2]
3.73[—2]
3.72[—2]

(lo.„)(nfo) 'Xg

p(n) y(n)
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Hamiltonian, which contains the detailed information on
the H2 system over the inner region, have been calculat-
ed. Since to and E'—"' in Eq. (5) are both independent of
E, they need to be calculated only once. The E-
dependent Buttle correction for the R matrix is easily cal-
culated, and the E-dependent outer-region coupled equa-
tions are solved extremely rapidly. Thus the R-matrix
method is particularly useful for our purpose not only
from the physical point of view as stated in the beginning
of this section but also from the computational
viewpoint.

III. RESULTS

0.10—

0.05—

H, (1o„)(npo)'X~+

We have carried out calculations at some 30 internu-
clear distances R up to 5 a.u. adopting an inner-region ra-
dius a of 12 a.u. For large R we have also tried a larger
inner region with a=16 a.u. and have confirmed that the
results are independent of the radius. For R 4 a.u.
many isolated resonances have been found for the first
time above the previously known three resonances, as
shown in Fig. 1, and are classified into two series, one of
which is considerably narrower than the other. The three
lowest resonances belong to the broader series. The ener-

gy position of each resonance satisfies the Rydberg for-
mula with an effective principal quantum number n*
close to an integer. The broader series starts from a
member with n *=2 and the narrower series with n * =4.
We identify the former to be the (lo„)(npo ) Rydberg
series and the latter to be the (1cr„)(nf0 ) series, though
the lowest npo. member has two electrons in the same
molecular orbital and has little Rydberg character.

The three lowest npv resonances (n=2, 3,4) are fully
discussed in the literature for R ~ 2.6 a.u.
Rather than repeating discussion of all previous calcula-
tions Table II briefly compares the positions of these res-
onances E„(n)above the ground state of Hz and the en-

ergy widths I (n) at R =2 a.u. with previous calculations
of close-coupling type. "' ' Naturally, the results of pre-
vious R-matrix calculations similar to the present ones
are close to the present results.

Table III compares the results for the two lowest reso-
nances with those of bound-state-type calculations car-
ried out up to large internuclear distances. ' ' Agree-
ment among different calculations is seen to be good. In
particular the results of Refs. 31 and 33 are close to the
present results. Extrapolation of the resonance potential
curves gives the crossing points R, of these curves with
the threshold of the continuum, i.e., with the potential
curve of the ground state of H2+ (Fig. 1). These crossing
points, which are included in Table IV, are important as
the stabilization points of dissociative recombination
through the lowest resonances. One of the dissociation
fragments H from this process is in the ground state and
the other is in an excited state that depends on the inter-
mediate resonance state.

The complex quantum defect has been calculated from
the resonance position and width for each Rydberg state
and the results are given in Table V. Note that the real
part p is slightly different from what would be obtained
from only the real part of the energy; see Eq. (1). Figures
2 and 3 show the quantum defect for npo. series for some

4 6 8 10

FIG. 3. The imaginary part y of the quantum defect of the
H&(1o.„)(npo) 'X~+ state as a function of the principal quantum
number n. R is the internuclear distance in atomic units.

small values of R as functions of n. Both the real and
imaginary parts approach smoothly and quickly the
series limit values, and exemplify the usefulness of the
complex quantum defect in characterizing doubly excited

H, (1 o'„)(nio)'Zg+

0.3— n=4

0.2—

n=1
(jf np o'

/,$' ooo
00 \

I \

0 I

I ~

(1/3)X (n= 2)

0.1—

0.02—

0.01—

& (a.u. )

FIG. 4. The real part p of the quantum defect of the
H2(1o„)(nlo.) 'Xg state as a function of the internuclear dis-
tance R. Open circles: recovered from the figure of the diabatic
potential curve (1o.„)in Ref. 31.
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0.10-

0.08-

0.06-

0.04 -& —5
n=4 n=5

f

0.02-

H, (lo„)(nltr)'Xe a behavior quite different from that of other members in
the series; the real part of the quantum defect keeps in-
creasing with R up to the crossing point, and the imagi-
nary part bends over as has been discussed previously.
If we use the results of the diabatic extrapolation of this
resonance of Hazi et al. beyond the crossing point, as are
included in Table III, ' the real part of the quantum de-
fect is seen to have a maximum around R =3.0—3.2 a.u.
in a manner similar to the higher members.

The upper members of the two Rydberg series begin to
overlap each other for R & 4 a.u. where the energy of the
series limit lies above the ground state of the H2+ core by
only a small amount. There the two series mix with each
other and the quantum defect (especially its imaginary
part) behaves irregularly as a function of R and of n

Here we have an example of multichannel quantum de-
fect theory of autoionizing Rydberg series with a single
common series limit.

IV. CONCLUSION

4

R (a.u. )

FIG. 5. The imaginary part y of the quantum defect of the
H2(1o.„)(nlo)'Xg state as a function of the internuclear dis-
tance R.

Rydberg states. In particular, the imaginary part is quite
stable for n 3 for 2.0 a.u. ~R 2.4 a.u.

Figures 4 and 5 show the variation of the complex
quantum defects for nptr and nfo series with the inter-
nuclear distance. Both the real and imaginary parts of
the quantum defect for nf tr are much smaller than those
for npo. . This is due to a weaker interaction between the
ion core and the Rydberg electron with a higher angular
momentum, i.e., with a higher potential barrier that
prevents the electron from penetrating the inner region.
The real part of the quantum defect for npcr with n ~ 3
has a maximum around R =2.6—2. 8 a.u. , whereas that
for nftr has a minimum around there. On the other
hand, the imaginary part continues to increase with R
more rapidly for larger R for both the npo and nfo
series. The lowest nptr resonance, or the (10„)reso-
nance, has little Rydberg character and appears to show

We have applied the R-matrix method for electron-
molecule collisions to the doubly excited adiabatic Ryd-
berg series ( 1o „)(np tr )

'X+ and (1cr„)(nfa ) 'X+ of the
hydrogen molecule. Unlike the only previous R-matrix
calculations of molecular Rydberg states (of CH), we
have obtained smoothly behaving complex quantum de-
fects. Detailed calculations of doubly excited states of
Hz('X+) reported in the literature are limited to three
lowest members of the (lcr„)(npo ) series for the smaller
internuclear distances. The present study has revealed
the global feature of the Rydberg-state parameters along
each series up to high n and as functions of R over a wide
range. The results illustrate the usefulness of the R-
matrix method for dealing with doubly excited molecular
Rydberg series and pave the way to accurate studies of
other symmetries and higher-lying series of H2, to exten-
sions to many other molecules, and to studies of dynamic
processes that occur via these superexcited states.
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