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We present an implementaion of the Feshbach formalism to calculate energy positions and widths

of doubly excited states of Be-like ions. These systems can be treated formally as two-electron prob-
lems by using a suitable model potential to describe the effect of the 1s' core. In this respect, we

discuss the pertinence of using the one-parameter model potential V =2r ' —2r '(1+ar)e
Energies and widths for 1s 414l' 'S' and 'P' autoionizing states of N'+ and Ne + are reported.

I. INTRODUCTION

Resonant and bound two-valence-electron states out-
side a 1s core have received particular attention in the
last years. The interest for such systems has been spurred
by the increasing experimental work in the formation of
doubly excited states in collisions between multicharged
ions and gaseous targets. ' ' One major difficulty for the
experimentalists is the lack of knowledge of the energy
levels and partial widths of the resonant states, especially
for multicharged ions. In the case of heliumlike ions
many calculations have been performed. In particular it
has been shown, in a recent work, that the Feshbach for-
malism provides results which permit the interpretation
of the experimental spectrum. This is very interesting in
view of the versatility of this method which allows to cal-
culate partial widths, energies, and structure of resonant
states.

Recently Martin et al have proposed a generalization
of the Feshbach method to the study of ls nln'I' doubly
excited states of Be-like systems, where the effect of the
1s core is represented by a model potential V . The use
of model potentials for the description of "passive" elec-
trons in atomic and molecular systems is a topic that has
received continuous attention from the beginning of
atomic and molecular physics (see, for example, Refs.
9—11). They not only provide a much simpler way to
study many electron systems that would be scarce with
fully ab initio techniques, but are also useful in under-
standing the physical interpretation of phenomena in
which a reduced number of electrons are involved. In
dynamical processes such as atomic collisions, electron-
atom collisions, etc. , generally a reduced number of elec-
trons are active and the remaining ones play an almost
passive role. Then, the use of a model Hamiltonian for
the active electrons, which includes the average effect of
the passive ones, seems to be a good description. The use
of a unique form for this averaged potential, which can
describe all the states of the active electrons, greatly
simplifies the treatment. This picture is not restricted to
the study of processes in which only bound states are in-
volved. We analyze, in this paper, how a model potential
can also be used to describe resonant states with an inner
core.

As this paper is devoted to the study of doubly excited
states with the Feshbach approach, one has to analyze
how the same potential V may be used to represent the
"ls +1 electron" states (which are used to build the pro-
jection operator P ) and the doubly excited states
1s nln'l' consistently. We shall justify and analyze the
degree of approximation involved in our "Feshbach-
model potential" approach. The basic problem in all
these studies is to find an analytical expression for the
model potential which accounts for the intershell interac-
tions. We will consider in this paper only the nonrela-
tivistic limit and, consequently, a nuclear charge smaller,
or equal to, 10 a.u. As the interpretation of the spectrum
obtained by electron spectroscopy experiences requires an
absolute precision of 0.1—0.2 eV for the theoretical ener-
gies, our goal is to provide results whose accuracy lies
within this range.

In a first step, the "one-active electron" problem is
solved in order to define V and the P operator (Sec. II).
Then the "two-active electron" case will be considered
(Sec. III). Although our interest concerns mainly the
case of multicharged ions, most of the comparisons will
be made with Li, Be, Be+ (which are "unfavorable" cases
for us) for which most of the calculations have been per-
formed until now.

Atomic units will be used throughout, unless otherwise
stated.

II. ONE ELECTRON IN THE FIELD OF A 1s CORK

A. The model potential

V (r)= ———(1+ar)e2 2 —2ar
r r

(2)

A number of analytical model potentials have been
proposed in the literature (for a review of them, see, for
example, Ref. 10). A simple one is given by the electro-
static potential produced by a nucleus of charge Z and
two 1s electrons

ZV(r)= ——+ V (r)
r

with V a (model) potential of the form

41 3534 1990 The American Physical Society



41 FESHBACH-MODEL POTENTIAL APPROACH FOR THE STUDY. . . 3535

where o. is the effective charge felt by the two electrons
described by Is orbitals (a =Z ). This function verifies

the correct asymptotic conditions

cx, (a.u. )

Z —2V(r)— (3)

Z
V(r) ———

0
(4)

5-
The model potential defined in Eq. (2) has been widely

used to calculate bound states of three- and four-electron
systems (see, for example, Ref. 12 and references therein).
In these works, the parameter a is fitted to reproduce the
experimental energy of the S(ls 2s) ground state and
the corresponding model potential is used to calculate
their excited states as well as the ground or excited states
of the four-electron system. In all cases the results are in
agreement with the experimental data or with more ela-
borate calculations. Unfortunately, this agreement has
been stated as an empirical fact and there is no rigorous
quantitative justification for it.

In the Hartree-Fock (HF) approach the wave function
for a valence electron in the presence of a 1s core is the
solution of

[h HF(i) —s„]p„(r,) =0

&0
I

Z (a.u. )

Z, =Z —e; the minimum energy for the core electrons is
obtained for o. =

—,', . Then, in general,

FIG. l. Plot of the a parameter [see Eq. (2)] vs the nuclear
charge Z. (~ ) a'" ' obtained by fitting the second eigenvalue of
Eq. (11) to the 'S(1s'2s ) experimental energy (Ref. 15); ( ~ )

fit of the previous values for Z &10 [see Eq. (18)]; (
———) a

values obtained when only the direct potential V" is considered
[Eq. (10) with 0 =

—,'6]; ( ) a values obtained when both
direct V and exchange V'" potentials are considered [Eq. (17)].

with Q —Z CT (10)

and the subscript r indicates that the integration must be
done over this coordinate. In a first-order approxima-
tion, we can use hydrogenic functions to describe the
frozen 1s core and the valence electron. Then, the direct
term takes the well-known form

d. —2 2 2Zl'
2V (r, )=———(1+Zr;)e (9)

which is formally equivalent to the electrostatic potential
of Eq. (2) with a=Z. We could better describe the ls2
core by using hydrogenic orbitals with an effective charge

l

h HF(i ) = —
—,
' V; ——+2 V (r, ) —V'"(r, ),

I

where V (r; ) and V'"(r, ) are the usual direct and (nonlo-
cal) exchange potentials, respectively,

V (r;)P, (r;)=($„(r,)lr;, ~P„(r, )), P, (r;) (7)

V'"(;)P„(;)=(((„(,)I;, 'lg„(, ))„P„(;) (&)

The electrostatic tnodel that is used to justify Eq. (2)
corresponds to the direct potential in the Hartree-Fock
equations.

Here, we determine the parameter a by fitting the
second lowest eigenvalue of the Schrodinger equation:

(H E)$„1=0,—

where

H = —
—,'V ——+ V (r)Z

(12)

to the experimental energy of the S(1s 2s ) ground state
[the lowest eigenvalue is associated to the S(ls Is) vir-
tual state]. The resulting values a'"~' (Fig. 1) differ from
those given in Eq. (10). The a'"~' values follow a straight
line for nuclear charges Z & 10 a.u. , but the slope is quite
different from that of Eq. (10). This difference can be al-
lotted to the exchange potential.

To illustrate this point, let us consider the 1s 2s and
1s 2p states. %e approximate the exchange potentials by

(C „(r,, '[e„)e„(-r)
V2", (r ) =

4~, (r )

(~„l.„-'Ie„)~„(.)
V2" (r) =

N2 (r)

32+48Z, r —2z ~

27(2 Z, r)—
—z rl2 1024 —2z I' e 8 32 64=e —16e

243Z r 3 9 27r 81Z r 243Z r

(13)

(14)

where +„I are hydrogenic wave functions calculated with
a nuclear charge Z, .

These potentials are represented in Fig. 2 for the Be+
ion. It must be noticed that the exchange potential for

I

the 2s orbital presents a singularity at r =2/Z„while the
2p one does not. This is a well-known effect' for all the
orbitals with n Pl+1, resulting from the approximation
used to represent the exchange potential. However, we
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5-

0-

o -5-
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I-
Z
LLI

o -10-

(a)

can use it in the region of small r, where the exchange
with the core electrons is more important. In Fig. 2 we
have also drawn the direct potential defined in Eq. (9) for
the effective charge Z„and the model potential V [Eq.
(2)] obtained with the value a'""'. To make this compar-
ison more apparent, in both cases we have suppressed the
common 2lr term. It can be seen that the direct poten-
tial 2V" is substantially different from the model poten-
tial that gives the correct ground-state energy. However,
when the exchange potentials of Eqs. (13) and (14) are
added to 2V", the resulting 2V"—V„'I" potentials coincide
with V in the region r ~ Z, ', where the core electrons
are present. As a consequence, the fitted model poten-
tials V correctly account for the exchange potentials of
the 2s and 2p orbitals. This qualitative observation can
be justified quantitatively by an analytical development of
the HF model potential:

-15-

m =
in the core region (r~0). Using (A3) of Appendix A
that gives V„',"(r=0) for the exchange potential of a 4„,
orbital, the identity (15) becomes

2a2, z
=2Z, —V„'("(r =0) =2Z, —

—,",Z, (16)

-20 I I I I I I I

0 0.1 0.2 Q3 0.4 Q.5 0 07 r (e.u. )

for both 2s and 2p orbitals. For the effective charge
Z Z

I 6 mentioned above

= —"Z——"=0.7Z —0.22$, 2p 27 43/ (17)

0-
which is also shown in Fig. 1. It can be seen in this figure
that this equation agrees fairly well with the empirical
law

a'"~' =0.7Z —0.4

ci

(D

Z
UJI-0~ -10-

-15-

-20
.,0

I I t I I I

0.1 Q2 0.3 04 05 0.6 0.7 r te.u. )

The departure from this behavior for higher values of
Z (Z & 10) is due to the increasing importance of relativ-
istic effects. In fact, the relativistic effects increase as Z
and are particularly important for the core electrons. We
have checked, by using an independent electron model
and the hydrogenic relativistic corrections to the energy,
that the linear behavior is present when these relativistic
contributions are removed.

Another important consequence of Figs. 1 and 2 is that
the exchange potential is the same for the 2s and 2p orbit-
als in the limit r =0 and very similar in the core region.
This justifies that an /-independent model potential can
give a simultaneous good description of both.

We now discuss the appropriateness of V [Eq. (2)] to
obtain more excited states. Considering V'" as a pertur-
bation, it is easy to show that, for highly excited states,
the first-order correction to the energy E,'„" produced by
the exchange potentials varies as'

FIG. 2. Comparison between the model potential V ( }
of Eq. (2) with a =2.333 710 [which fits the second eigenvalue of
Eq. (11) to the S(ls 2s) experimental energy of Be+] and (a)

( ——.—) the direct potential 2V of Eq. (9); (. . . ) the ex-
change potential —V2", of Eq. (13); ( ———) 2V —V;", ; (b)

( —.—.—.) the direct potential 2V of Eq. (9); (. . ) the ex-

change potential —V» of Eq. (14); ( ———) 2V —V2~, for
Z=4 and o.=

—, . In both figures the term 2/r has been re-

moved from V and 2V . r is the distance to the nucleus.

E'" -Znex (19)

Therefore, for n »1, the exchange potential can be
neglected and even a bad description of it does not affect
the energies of highly excited states. However, for
moderate values of n (n & 2), a bad description of the ex-
change, potential could lead to important errors. Then it
is worth estimating these exchange potentials for every
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TABLE I. STO basis set used in the calculations of the wave functions in Eqs. (11) and (25). The—(Z —1.7)t, r
definition ofeach STO is P„i (r)=N„ir" 'e '

Yl (g, y).

1=0 1=2 1=3

1—2

1—3 2-3

7—9 7—9 7—9 5-7

orbital. This has been done in Appendix A in the limit
r ~0. It can be seen there that, for the 3s, 3p, and 3d or-
bitals, the exchange potential differs only slightly from
the exchange potential associated with the 2s and 2p or-
bitals.

B. Calculations

%'e have calculated the eigenenergies and eigenfunc-
tions of the one-electron Schrodinger equation (11) in the

representation of Slater-type orbitals (STO) in Table I.
This basis set can be considered as complete to represent
orbitals with n &4. In Table II we show the energies for
the Be+( ls n! ) and Ne +( ls n! ) systems calculated with
a=2.333710 and 6.366365, respectively, chosen to ex-
actly reproduce the S( ls 2s ) ground states. For com-
parison, this table also includes the corresponding 1s n!
experimental energies' and some other results' ' ob-
tained with different model potential approaches for Be+.
It can be observed that for Be+ the difference between

TABLE II. Energies for the 1$'nl states of Be and Ne'+ ions obtained with a=2.333710 and
a=6.366365, respectively, and the basis set of Table I. Comparison with previous calculations. The
experimental data are taken from Ref. 15. All the values are referred to the X' '+(1s ) core energy.
~AEi is the absolute value of the difference between our results and the experimental ones. The first-
order correction E„I' has been calculated according to Eq. (B4) of Appendix B with a„I given in Eq.
(83), except those indicated by an asterisk which have been evaluated with a» of Eq. (B6).

—E (a.u. )

nl
Our

result
Expt.

(Ref. 15) i&El

Be+

IE„'I')
Laughlin

et al. (Ref. 16) Lin (Ref. 17)

2s
3s
4s
Ss

2p
3p
4p
5p

3d
4d
5d

0.669 248
0.267 685
0.143 381
0.089 196

0.523 718
0.229 798
0.128 255
0.081 687

0.222 404
0.125 103
0.080018

0.669 246
0.267 233
0.143 153
0.089 065

0.523 768
0.229 582
0.128 134
0.081 610

0.222 478
0.125 124
0.080067

0.000002
0.000452
0.000 228
0.000 131

0.000050
0.000 216
0.000 121
0.000077

0.000 074
0.000021
0.000049

6x 10-"
3x 10-'
2x10
4x 10-'*
2�x1-'
01x�
7X10

3 x10-'
2x 10-'
1x10-'

0.669 18
0.267 39
0.143 26
0.089 12

0.523 79
0.229 45
0.128 10
0.081 59

0.222 45
0.125 14
0.080 08

0.6697
0.237 35
0.142 75

0.5247
0.229 45
0.127 45

0.222 35
0.124 85

2$

3$

4s
5$

2p

3p
4p
5p

3d
4d
5d

8.786 705
3.777 423
2.091 777
1.326 451

8.214 384
3.620 236
2.027 378
1.293 832

3.559 267
2.002 043
1.280 18

8.786 705
3.774 744
2.090 726
1.326 128

8.202 803
3.618007
2.025 570
1.282 433

3.558 774
2.000 510
1.280 155

0.000002
0.002 679
0.001 051
0.000 323

0.011 581
0.002 229
0.001 808
0.011 399

0.000493
0.001 533
0.000025

Ne'+

3x 1O-'

1x10 '
9X10

3 x10-'
2xlo '
1X 10
7x10 '
8x10
Sx 1O-4

3x10 '
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our calculated energies and the experimental results is
very small in all cases ( (5X10 a.u. ), and of the same
order than those of Laughlin et al. ' and Lin', which
used more complicated model potentials. In particular,
this difference is extremely small for the ls 2p state, as
discussed above. The largest difference with experimen-
tal data is found for the n =3 states, which is due to their
slightly different exchange potential with respect to that
of the n =2 electron (see Appendix A). In this respect, it
should be noted that the use of a l-dependent model po-
tential would not provide a better description for the Be+
ion, since the main source of error is the variation in the
exchange potential as a function of n. Although the 3d
orbital presents the most different exchange potential (see
Appendix A), its energy is in quite good agreement (as
that of the 3s and 3p) with the experimental one. This
can be explained with the help of the first-order perturba-
tion treatment of Appendix B, whose results are also
given in Table II. It can be seen that this treatment
reasonably predicts the order of magnitude of the small
discrepancies between theory and experiment. Although
the exchange potential differs from that of the 2s orbital
for the largest values of n, its effect on the energies gets
progressively smaller. In fact, these first-order correc-
tions to the energies behave asymptotically as Eq. (19).

For the Ne + ion, the absolute differences with the ex-
perimental data are also small, although larger than for
Be+. The reason is that the slight difference between our
V of Eq. (2) and the "real" potential 2V —V'" gives
corrections to the energy that increase like Z (Appendix
B). In this system, a much larger energy difference is
found for the 2p orbital than for Be+. Moreover, while
our perturbative treatment provides a good estimate for
Be+ (and also for Li and B + ), it fails for more charged
ions. This abnormally great energy difference for the 2p

state can be only attributed to relativistic effects (in fact,
they increase as Z from C + to Mg ). For Ne +, the
L-S splitting of the 2p state is about 0.2 eV. For more ex-
cited states, these relativistic effects are almost negligible.

It is also interesting to compare our results with those
obtained with different model potentials for the Li atom,
since it constitutes a benchmark for testing different mod-
el potential approaches and much work has been done on
it. In Table III, we compare the energies of several
S, P, and D states of the Li atom [obtained with
a=1.600365 in Eq. (2) and the STO basis set of Table I]
with some previous results found in the literature. ' '
In spite of the simplicity of our model potential, we find
similar or better agreement with the experimental results
as that obtained with other —sometimes more
elaborate —model (or pseudo) potentials. Only the results
of Laughlin and Victor are systematically better than
ours, since they use a model potential that takes into ac-
count core polarization effects. Such effects are discussed
in Sec. III.

III. TWO ELECTRONS IN THE FIELD OF A 1s CORE

A. The two-electron Hamiltonian

In Sec. II we have shown how a first-order approxima-
tion of the direct and exchange terms in Eqs. (7) and (8)
leads to the simple form of the model potential V . This
section is devoted to the study of the use of V for the
case of two-active electrons in the field of a 1s core. Be-
sides the interaction between the two-active electrons, the
modification of the core effects due to the additional elec-
tron is a new feature of the problem.

The two-electron equation can be written in the gen-
eral form

TABLE III. Comparison between our energies (calculated with a=1.600365 and the basis set of
Table I) and other theoretical values for the 1s'nl states of Li. The experimental data" are also includ-
ed. All the values are referred to the X' "+(1s')core energy.

—E (a.u. )

nl
Our

results

Kahn Laughlin
and and

Goddard Victor
(Ref. 21) (Ref. 22)

Valance Moore
Expt. Ganas et al. Goddard et al.

(Ref. 15) (Ref. 18) (Ref. 19) (Ref. 20) (Ref. 23)

2$

3$

4s
5s
6s

2p
3p
4p
5p
6p

0.198 14
0.074 35
0.038 70
0.023 69
0.015 97

0.130 16
0.057 28
0.031 99
0.020 39
0.014 12

0.198 14
0.074 18
0.038 62
0.023 64
0.015 94

0.13024
0.057 24
0.031 97
0.020 37
0.014 11

0.1985
0.0745
0.0385
0.0235
0.0160

0.1305
0.0575
0.0320
0.0205
0.0140

0.198 14
0.075 07
0.038 69
0.023 56

0.13023
0.057 80
0.032 21
0.020 49

0.196 33
0.074 75
0.038 93
0.023 81
0.01605

0.11233
0.051 07

0.196 16
0.074 79
0.038 95
0.023 82
0.01605

0.128 75
0.056 85
0.031 82
0.020 30
0.01405

0.198 15
0.074 19
0.038 62
0.023 64
0.015 95

0.13020
0.057 23
0.031 98
0.020 38
0.014 11

0.19809
0.074 17
0.038 61
0.023 64

0.13005
0.057 17
0.031 95
0.020 36

3d
4d
5d
6d

0.055 58
0.031 26
0.02001
0.013 89

0.055 61
0.031 27
0.02001
0.013 90

0.0555
0.0315
0.0200
0.0140

0.055 37
0.031 14
0.01994

0.055 33 0.055 58
0.031 26
0.020 00
0.013 88

0.055 62
0.031 28
0.02002

0.055 61
0.031 28
0.02001



41 FESHBACH-MODEL POTENTIAL APPROACH FOR THE STUDY. . . 3539

AM(1, 2)=H (1)+H (2)+ V(1,2), (20)

where H (i ) has been defined in Eq. (12). The term
V(1,2) includes the interaction 1/r, z between the two-
active electrons as well as additional "long-range" terms
associated to polarization effects. If we retain only the
two-pole polarization of the core, the polarization term
has the form V~„-ad(r, /r, +rz/rz) . Due to the pres-
ence of the dielectric term [r,rz/(r, rz)], the potential

Vp J cannot be taken into account in our Feshbach ap-
proach (the same model potential must be used in the
one-active and two-active electron cases). On the other
hand, the terms of the form ad/r; could be included in
V (r). In this work we neglect the polarization effects,
such approximation is justified in our case for the follow-
ing reasons.

(i) We are essentially interested in the case of heavy
multicharged ions, and the polarization terms introduce
two-order correction terms in the 1/Z energy expansion.

(ii) Only the long-range part of the wave functions will
be affected; this should not affect the calculation of the
widths whose values are determined by a "short-range
operator" [in (28)—see below Q&MP—reduces to 1/r»
in practice].

B. Theoretical approach for resonances and bound states

We have to solve the Schrodinger equation

[&M(1,2) —E]X ' =0, (21)

where %M is defined in (20) [with V(1,2) =1/r, z] and L
and S are, respective1y, the total angular momentum and
the total spin.

In IIA we have noted the presence of a virtual state
among the eigensolutions of Eq. (11). Due to the pres-
ence of this pseudoionization threshold, the resolution of
Eq. (21) gives an infinite number of virtual states. The
presence of such states is due to the model adopted here
for the core 1s and has no physical signification. It has
been pointed out ' that the calculation of bound states
is formally equivalent to the problem of the determina-
tion of doubly excited states. Indeed, the bound states
and resonances lie above one or more ionization thresh-
olds (for bound states it is a virtual one). As a conse-
quence the bound states are embedded in a pseudocontin-
uum and they may be treated formally as resonances.
The method adopted here is similar to the Feshbach ap-
proach applied by Bachau for the two-electron case.
We introduce the projection operators P and Q defined by

mation is limited to the virtual P„(i) states; for autoion-
izing states one must include all the threshold states
whose energies lie below that of the N threshold. For ex-
ample, for the 1s 31n'I' series, the operator P includes the

P„, (()z„and Pz wave functions. Then the unshifted en-

ergy of the states under consideration is obtained through
the resolution of the equation

(Q~MQ-E, )x,"=o (25)

The function y, is expanded on a set of configurations
of a given symmetry:

Xl.,s y —UL, s (26)

with

U„=A/„ I (1)p„ I (2)PI'i (1,2), (27)

(PJY P E)x~'~ =0— (29)

with E=E,. After diagonalization of PAMP for each
(P, y ) channel in an appropriate L2 basis set (Ref. 8), the
total width I is given by

(30)

where A is the antisymmetrization operator, P„I(i ) is the
radial part of the wave function P„i(i ) defined in Eq. (11),
and P~ '

i (1,2) is the usual angular part.

The coefficients a„, are determined through diagonali-
zation of Eq. (25) in the representation of the U„' basis.
At this point it is worth recalling that our definition of
the operator P is consistent with the first-order approxi-
mation (see III A) where both electrons "see" the same
model potential V . Then, in our calculation, all terms
of first order in a 1/Z expansion are consistently includ-
ed.

For resonant states, we briefly recall the golden-rule-
like expression for partial widths:

(28)

X@r is a nonresonant function of the continuum, p is the
final state of the ion (2s, 2p, 3s, 3p, 3d, . . . ), and y
represents the orbital quantum number of the ejected
electron (es, ep, . . . ). X~'r is obtained in the static ex-
change approximation through a discretization procedure
(see Ref. 8 and references therein) by solving

=1—P, (22) C. Calculations

where

P =P& +P2 PIP2
N —I n —I I

(23)

and P, = & & & l&„i (i)&&&„~ (i)l . (24)
n=1 1=0 m= —1

N specifies the threshold above the series of bound or au-
toionizing states considered, and P„i (i ) is a one-electron
orbital [Eq. (11)] associated to each (real or virtual) ion-
ization threshold. Therefore, for bound states the sum-

For illustration we have chosen the Be and Ne + sys-
tems. We have solved the secular equation corresponding
to the model Hamiltonian of Eq. (25) in a basis of
configurations built from the basis set of Slater-type or-
bitals given in Table I. The values of the parameter a are
the same of those given in Sec. II (2.333 710 and
6.366 365, respectively) which were chosen to exactly
reproduce the experimental S(ls 2s) ground-state ener-

gy. In Table IV we present our results for several bound
and resonant states for both systems, compared with oth-
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er experimental' and theoretical data. ' ' ' ' For the
bound states of Be given in this table
(2s, 2s3s, 2s4s, 2s2p, 2s3p), the agreement with the ex-
perimental data is very good. The differences ( —10
a.u. ) are comparable to those given in Table II for the
1s nl states.

The 'S'(ls 2p ) state of Be was considered for a long
tiine as a bound state (see for example Refs. 15, 31, and
32). However, recent experiments and calcula-
tions' ' ' ' ' have shown that it is a resonant state. In
this case our Feshbach calculations (which include the
((i„and Pz, orbitals in P—[see Eq. (24)]) give an unshifted
energy which lies below the 2s ionization threshold. Due
to the closeness of the 2s and 2p ionization thresholds one
can expect that the Feshbach approach is inadequate to
calculate the position of the 'S'(ls 2p ) state; in other
words the shift should be calculated. Therefore, we have
used a stabilization procedure [where the 2sns

configurations are included, that is, only the P„orbital is
included in Eq. (24)]. The positions of the 'S'(ls 2p )

state is that given in Table IV ( —0.65508 a.u. ) and it lies
above the ionization threshold 1s 2s. This confirms that
the 'S'(ls 2p ) state is resonant and presents strong con-
tributions of the 2sns configurations, as pointed out by
Norcross and Seaton. Our results also show that the
energies of the 1s 2pnp and 1s 2pnd states with n )2 lie
above the 1s 2s ionization threshold of Be. Unfortunate-
ly, few accurate experimental values are available and
then our comparison is carried out with other theoretical
calculations. For the 1s 2pnp and 1s 2pnd states with
n )2, the general agreement is very good (the discrepan-
cies are of the same order than for bound states). Our re-
sult for the 1s 2p state agrees very well with two of the
four previous theoretical calculations. ' For the Ne +

ion, all the 1s 2pnp and 1s 2pnd states are bound. The
agreement of our results with the experimental data leads

TABLE IV. Energies for some 'S' and 'P' 1$'2lnl' bound and resonant states of (a) Be and (b) Ne +,
obtained with a=2.333710 and a=6.366365, respectively, the basis set of Table I, and all possible

P„&P„& configurations with n, n' ~ 5 [see Eq. (27)]. Comparison between our results and other theoreti-
cal and experimental" data. All the values are referred to the X' '+(1$ ) core energy.

2lnl'

lg 2 2

2$3$
2$4$

This
work

1.007 43
0.761 19
0.713 92

Expt.
(Ref. 15)

1.011 85
0.762 72
0.714 57

—F (a.u. )

Laughlin
and

Victor
(Ref. 22)

(a) Be
1.009 25
0,7618
0.7142

Norcross
and

Seaton
(Ref. 30)

1.0111
0.7625

Moccia'
and

Spizzo
(Ref. 29)

0.763 43
0.715 43

Lin
(Ref. 17)

1.008 55
0.757 45
0.711 95

Threshold

2p
2p 3p

'P' 2$2p
2$3p
2$4p

Threshold

2p 3$

2p4$
2p 3l
2p5$
2p4d

$'
2p

2$3$
2$4$

'P' 2$2p
2$3p
2p 3$

2p 3'

0.669 25

0.655 08
0.577 13

0.81006
0.734 92
0.704 37

0.669 25

0.639 98
0.589 91
0.575 50
0.561 23
0.549 20

16.3955
14.5944
11.8459
10.4314

15.4064
11.7284
11.2096
10.8471

0.669 25

0.6647

0.817 90
0.737 61

0.669 25

0 5759

16.4039
14.6024
11.8555
10.4511

15.4245
11.7306
11.1944
10.8581

0.6551

0.8105
0.7335
0.7054

0.61605
0.566 25
0.5745

0.551 35

(b) Ne +

0.657 20

0.8154
0.7370

0.6088

0.662 27
0.577 58

0.817 89
0.738 25
0.707 16

0.573 57

0.551 17

0.6598
0.577 85

0.8061
0.726 55
0.7012

0.6264
0.571 15
0.5761

0.5538

'All energies reported by these authors are referred to the 1$2$' ground-state energy. In order to com-
pare with other results we have shifted their values according to the experimental 1$2$' energy.
Experimental values of Clark et al. (Ref. 35). They have been shifted according to the experimental

energies of the 1$2$' and 1$2$ states given here.
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TABLE V. Energies, partial widths, and total widths of the 1s-'4141' 'S' and 'P' resonant states of N'+ and Ne'+ obtained with

a =4 402 872 and a =6 366 365, respectively, and the basis set given in Table VI. All possible P„t$„, configurations with 4 ~ n, n
' ~ 8

are built. All the values are referred to the X" '+(ls') core energy. [—x] denotes X 10

—E (a.u. )

1.5128
1.4153
1.3385
1.2362

3.9323
3.7637

3.6278
3.4134

I" (eV)

0.576[—1]
0.2227
0.5511
0.438[—1]

0.765[—2]
0.896[—1]
0.384[—1]
0.194[—2]

I uses

0.552[—2]
0.482[—2]
0.218[—5]
0.524[ —2]

0.690[—2]
0.486[—2]

0.208[—4]
0.181[—3]

0.107[—2]
0.367[—1]
0.203[—3]
0.894[—3]

Ne" +

0.747[—3]
0.452[—I]
0.111[—3]
0.353[—3]

0.509[—1]
0.318[—1]
0.362[—1]
0.325[—1]

0.395[—1]

0.382[—1]
0.183[—4]

0.1493
0.1159
0.514[—2]

0.132[—2]

0.3987
0.849[—5]

0.584[—4]

—E (a.u. ) I (eV) I 3d.p ~3def

1.4541
1.3763
1.2665

0.652[—1] 0.899[—2] 0.156[—1] 0.401[—2] 0.365[—1]
0.5023 0.116[—4] 0.893[—3] 0.227[—2] 0.519[—1] 0.582[—1]
0.889[—1] 0.153[—3] 0.358[—4] 0.274[—2] 0.101[—2] 0.147[—5]

0.1003 0.2072 0.815[—1]
0.135[—1] 0.142[—2] 0.701[—1]

3.8327
3.6947
3.4955

0.333[—1] 0.104[—1]
0.692[—1] 0.292[—4]
0.1119 0.318[—3]

0.175[—1]
0.125[—2]
0.434[—4]

Ne" 'P'
0.531[—2]
0.403[—2]
0.351[—2]

0.639[—1]
0.138[—2] 0.283[—3] 0.206[—1] 0.103[—2] 0.846[—1]

to the same conclusions as for Be. In this case, the
discrepancies are greater than for Be ( 50.01 a.u. ) and we
have tested that they increase linearly with Z. As we
have mentioned above this is due to the fact that Eq. (1S)
is not exactly verified since a very small contribution of
the exchange potential is neglected.

Very recently Boudjema et al. have compared (using
a fitting procedure) the 3' +(ls 3131') lines observed
in A' '+(ls )+He collisions (Z=7, 8, and 10). A
very nice fit of the observed lines is obtained with the
theoretical values calculated through our procedure. We
have made calculations for the A' '

( ls 3ln'1') states
with Z =4-10 and n

' =3,4. We have considered
1,3Se 1,3Pe, o 1,3De,o,3Fe, o and, Ge, o symmetries
The partial widths associated with the A' '+(ls 2s)
and A' '+( ls 2p ) final states have been also calculat-
ed, as well as information about the structure of the
states. Presentation of this amount of data is out of the
scope of the present publication and has been reported
elsewhere.

We have extended these calculations to the 1s 414I'
doubly excited states. This case has a special interest
since, depending on the nuclear charge, some of these res-
onances lie above or below the 1s 3l ionization limits
(this has been observed experimentally by Bordenave-
Montesquieu et al. for the N ). As a consequence
there are strong variations of the widths in the isoelect-
ronic series. In Table V we present energy positions, par-
tial widths, and total widths for the 'S' and 'P' 1s 4l4I'
resonant states of N and Ne + calculated with the
basis set shown in Table VI. These have been obtained

TABLE VI. STO basis set used in the calculation of energies
in Table V. See the definition of each STO in Table I, here

(,= I/N

l=o

1

1—2
1—3
4-6

7—9

2

2—3

4—6

7—9

1=2

3

3—4
5—6

n

l=3

4
4—5

6—7

l=4

5

5—6
7

1=5 l=6

with a P operator which includes the P„, $2„
Q3 $3p and $3d solutions of ( I I ) . In this case the

n =3 and n =4 thresholds are well separated in energy,
which justifies our P Qpartitionin-g. The variation of the
widths for N and Ne + mentioned above is clearly il-
lustrated in Table V. For example, the lowest 'S' state of
N + lies above the 1s 3s ionization threshold whereas it
is below such threshold for Ne +. As a consequence
there is a large difference between the widths of this state
in the two cases. The numerical accuracy of the results
has been checked by varying the basis sets (for open and
closed channels). As an example we show in Table VII
the parameters obtained for the two lowest 'S' states of
N +(4141'), using different basis sets for the closed chan-
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TABLE VII. Energies, partial widths, and total widths of the two lowest 1s 4141' 'S' resonant states

of N'+ calculated with diff'erent basis sets. The configurations P„,(t„( used are shown in the table.

[—x] denotes X10

—E (a.u. )

1.5127
1.4147

r (eV)

0.588([—1]
0.233

I uses

4 n, n' 7
0.579[—2]
0.497[—2]

0.115[—2]
0.383[—1]

0.519[—1]
0.328[—1]

~3pep

0.157

1.5128
1.4153

0.576[(—1]
0.223

4~n, n' 8

0.552[—2]
0.482[—21

0.107[—2]
0.367[—1]

0.509[—1]
0.318[—1] 0.149

nels. We note the good stability of the energies and
widths, in the case of partial width the relative differences
do not exceed 10%. A systematic study of all the series is

in progress.

IV. CONCLUSIONS

We have studied the use of the model potential of Eq.
(2) for nonrelativistic one-and two-electron systems in the
field of a 1s core and the approximations involved in us-

ing this form. We have shown that for 1s nl states the
model potential of Eq. (2) can account to a good approxi-
mation for the direct and (nonlocal) exchange potentials
of the outer electron with the core. We have quantita-
tively explained why this can be achieved by simply
fitting its a parameter to reproduce the exact S(ls 2s)
ground-state energy. In this way, good agreement with
the experimental energies is also found for the excited
states, almost independently of l. In this respect, we have
shown that the exchange potential between a 2p electron
and the core is very similar, up to first order, as that of a
2s electron for small r and that the progressive difference
in exchange potentials for more excited states barely
affects their energy positions.

For two electrons in the field of the ls core ( ls nln'1'
states), we have shown that the model potential of Eq. (2}
with the a value fitted to the 1s 2s energy is still valid.
This has been illustrated by our calculations of the ener-
gies of bound and resonant states of Be and Ne +.

Our one-parameter model potential provides energy re-
sults for 1s 313l' resonant states which has permitted, for
the first time, a correct interpretation of experimental re-
sults. One must note that the resolution of such experi-
mental spectrum requires the calculations of the positions
and partial widths. In this case, the accuracy is of the
same order of magnitude as the typical average experi-
mental error, so that the use of this model potential ap-
proach can provide theoretical results that help to inter-
prete electron spectra and analyze the structure and
characteristics of the resonant states. In this paper we
have given new results for the energies and widths of the
1s 414l' 'S' and 'P' states of N + and Ne +.

The advantage of our approach is that it leads to a
two-electron problem and the extension of the Feshbach
techniques for the calculation of resonant states can be
carried out in a simple way. This is particularly remark-
able since the implementation of the Feshbach method

for three- or four-electron systems is a cumbersome
task. ' ' It must be stressed that our treatment of the
two-valence electrons in the presence of the 1s core goes
beyond a simple Hartree-Fock approach because a direct
configuration-interaction calculation is performed. Simi-
lar quantitative conclusions for excited two-valence-
electron states in the field of more complicated closed-
shell cores are not guaranteed by our present study and a
further analysis would be necessary.
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APPENDIX A: FIRST-ORDER CALCULATION
OF THE EXCHANGE POTENTIAL

OF AN ELECTRON WITH A 1s CORE
IN THE LIMIT r =0

The exchange potential for one electron in a P„( orbit-
al, which is in the field of a ls core, is defined [see Eqs.
(13) and (14)]:

V„'("(r, )—:
V'"(r, )$„((r, )

(t'„((r, )

J 41 (r2)r12 0 l(r2)dr2 41 ( 1 }

4.((rt }
(Al)

Using hydrogenic orbitals to describe the P„( orbitals and
the expansion of r &z in spherical harmonics, integrating
over the angular coordinates leads to the equation

R,o(r, )

Vn((rt )=
I

R(Q(r2)R„((r2)(2l+1 R„( r, o

I

X r2 dr2
r (

(A2}

where R„I are the radial hydrogenic functions. It may be
easily shown that
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n —I —1

V„'t" r =0)= (n —l —1)!(21+ 1)!
2l +1 t, o (n —l —1 —k )!(21+1+k )!(n + 1)"+ (A3)

For the n =2 and n = 3 cases, this equation gives

Vz", (r =0)= Vzz(r =0)=
—,",Z =0.5926Z,

V;,"(r =0)= V;~ ( r =0)=
—,', Z =0.5625Z,

V;"„(r=0)=
—,', Z =0.45Z .

The difference between V2", and Vz~ comes from the first-order term in r ln. deed, Eqs. (13}and (14) lead to

V;",(r ) —
t,'Z+ZO(Zr'),

r~p

V'"(r ) —"Z 'Z—'r+—Z—o(Zr'}
P p27 27r~p

{A4)

(A5)

(A6)

(A7)

(A8)

(notice that V2", has no term in r since it presents a maximum at r =0, see Fig. 2).

APPENDIX B: A PERTURBATION APPROACH TO ESTIMATE THE ERROR IN THE ENERGY OF A 1s nl STATE

In the previous Appendix we have shown that the exchange potential between an outer electron and two 1s core elec-
trons depends on n and 1. Then, different model potentials should be used for different values of n and 1. However, in
practice, one uses the same model potential of Eq. (2)—with a value of a, which gives the ls 2s ground-state energy —to
obtain all the states. Thus, the error in the potential for the nl excited states can be written

(B1)

where az, and a„I are the values associated to the energies of the ground 2s and excited nl states, respectively. In a
first-order approximation, the corrections to the energies of the excited states will be

(B2)

where V~ is given by (Bl). Since we are only interested in obtaining an estimation of this correction, we can use, for tz2,
and a„I, the exchange potentials in r =0 calculated in Appendix A. Then we find

n —I —1

a„t =Z — (n —l —1)!(21+1)!21+1
t, =o (n —I —1 —k)!(2l+1+k)!(n+1)"+z (B3)

Using Eqs. (B3) and (Bl) and hydrogenic orbitals with

Z, =Z —2 in Eq. (B2), E„'t can be easily calculated. The
results are given in Table II.

To find the energy error in the 2p orbital, we must use
the more elaborate exchange potential of (A8} since
V2" = Vz", at r =0. Using hydrogenic orbitals with

Z, =Z —2, the mean value (EVz" ), of the r-dependent
part of Vzz(r ) [Eq. (A8)] in the core region will be given
approximately by

1/Z
(b, V'" )—:f R (r)( —,', Z r)r dr—

0
3

1/Z e —Zr 4Z, e 'r ( ——'Z r)dr .
3 2 0 27

(B4}

I

The integration of Eq. (B4) leads to

8 Z

e

(B5)

8 Z
2tz =2Z — Z+ ( —'"e '+5)

27 27 Z
(B6)

For the 2p orbitals of Table II, we have used this expres-
sion in Eq. (Bl) to estimate E2" in Eq. (B2).

This expression accounts for the very slight difference
shown in Fig. 2 between the empirical V potential and
our theoretical one 2V —V2" in the core region. Then, a
more precise value of o.2 will be
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