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Method for locating errors in Hamiltonian matrices
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A method for locating errors in matrices representing Hermitian operators in Hilbert spaces is

discussed. The method is based on invariance properties of the first two moments of the spectral

density distribution of these operators with respect to unitary transformations of the basis. In par-

ticular, applications to eigenvalue problems of the ¹lectron Hamiltonians in finite-dimensional

spin-adapted Hilbert spaces are studied in detail.

I. INTRODUCTION

Algorithms for constructing matrices representing
Hermitian operators in finite-dimensional N-particle
spin-adapted Hilbert spaces are, in general, very com-
plex. ' With no limitations imposed upon the N-

particle basis, different matrix elements can be construct-
ed according to many different and to a large extent mu-
tually independent algorithms. Particularly important is
the case of Hilbert spaces being antisymmetric subspaces
of the N-fold Cartesian products of a one-particle space.
In nuclear physics this formulation leads to the nuclear-
shell model. In the theory of ¹lectron systems the ei-
genvalue problem of the Hamiltonian in this space is
known as the configuration-interaction (CI) method and
the space is referred to as the full CI space. During the
past decade an unprecedented advancement in CI metho-
dology has taken place. Several highly sophisticated and
general methods for constructing CI matrices have been
developed and implemented. These new concepts
combined with the developments in computer technology
have resulted in new computer codes ' designed to per-
form CI calculations using large sets of general N-
electron basis functions. Developing new algorithms of
high complexity creates a need for efficient tests of both
the formal and numerical correctness of the associated
programs and also for simple ways of locating errors.
The most common way to prove the correctness of a CI
program is to check the invariance of the eigenvalues
against unitary transformations of the one-electron func-
tions. This approach is certainly quite useful for globally
checking the correctness of a CI program but it is of little
or no help in locating the error. Recently, expressions
have been derived for the first two moments of the spec-
tral density distribution of the Hamiltonian matrix' and
have been shown useful in locating the specific sections of
a CI program containing errors. ' The method consists
of comparing dispersions of the Hamiltonian matrix cal-
culated by different algorithms. The application of this
method to debugging a direct CI program has demon-
strated the high efficiency of this approach as well as
difficulties associated with round-off errors. ' ' lt is re-
called that the dispersion contains the expression TrH,
which is a sum of D terms where D is the dimension of

the matrix H. Thus for larger matrices (D ~10 ) the
contribution of the round-off error of the individual ma-
trix elements to the sum may become comparable to the
error of the specific matrix element to be located. The
aim of this study is to check the loss of accuracy in calcu-
lating TrH due to round-off errors in case of a matrix
representing a real quantum-chemical system and to
modify the method of locating errors in the Hamiltonian
matrix such that the round-off errors do not affect the re-
sult or are avoided completely, respectively. It is demon-
strated that accumulating TrH in a double-precision
variable improves the accuracy by several orders of mag-
nitude. Further, it is shown how to avoid any round-off
effects by choosing the interaction integrals entering the
matrix elements and the transformation matrices such
that the resulting dispersion has integer values. The table
of dispersion values supplied may be used as standard
reference against which dispersions calculated by a
configuration interaction program may be compared.
Certainly, the same approach can be used in nuclear-
she11-model calculations.

II. METHOD

Let us consider the operator

N N8= y f, (t)+ y f, (t,j), (1)
i=1 l (J

1&J =1

where h, (1) and hz(1, 2) describe, respectively, one- and

two-body interactions. In order to focus attention it is

assumed that H represents a Hamiltonian and that the
particles are electrons. However, since the formalism
does not depend upon the explicit form of h, and h2, all

considerations remain valid for an arbitrary operator
containing one- and/or two-body interactions and for any
system of X identical Fermions. In particular, either ht
or h2 may be set equal to zero. The operator H is

represented in an antisymmetric and spin-adapted Hil-
bert space. The basis for this space is constructed from
spin-adapted antisymmetrized products of orthonormal
orbitals Iy, I, The spin-adapted basis functions are
the eigenfunctions of the total spin operators S and S,
with the eigenvalues S(S+1) and M, respectively. The
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rather nontrivial methodology of constructing this basis
and of calculating the matrix elements of 8 is discussed
in several recent reviews. '

The form of the Hamiltonian matrix depends on the
representation chosen. However, the Hamiltonian spec-
trum and the moments of the spectral density distribu-
tion are representation independent. Therefore the
values of these invariants calculated by using the Hamil-
tonian matrix expressed in different representations may
be used to check for both formal correctness and numeri-
cal accuracy of the algorithm. Different representations
may be obtained through unitary transformations of the
basis in the D-dimensional Hilbert space. All these trans-
formations form the unitary group U(D). The subgroup
of U(D) generated by unitary transformations of the or-
bitals [y;j; &

proves to be particularly useful for the
present purpose.

For fixed values of N, K, and S the dimension of the
Hilbert space is equal to"

K+1 K+1
+ + 1 N~2 —S N ~2+S + 1

The average value of A' in the Hilbert space is defined as

The moments are defined by Eqs. (3)—(5) in terms of the
Hamiltonian matrix elements. On the other hand, the
same quantities may be expressed directly in terms of
one- and two-electron integrals involving f, (1) and
h2(1, 2) defined, respectively, as

(plq)= &q, (1)lh, (1)lq, (1)&,
'~

(pqlr» =
& q, (1)I & q, (2)

1 &2(1,2) lq, (2) & lp, (1)& (7)

By comparing the values of the moments calculated by
summation of the matrix elements of 8 with those calcu-
lated directly from the list of integrals, both the correct-
ness and the numerical accuracy of the algorithms can be
checked.

E[H(2,S))=2&k, &+ (&d&a&A&),
EC +1 (8)

A. T~o-electron case

In the two-electron case the average value of 8 be-
comes'

E [H(N, S)]= TrH(N, —S),1
(3)

where the + (
—

) signs correspond to S =0 (1),

where H(N, S) is the matrix representation of 8. The nth
moment of the spectral density distribution is defined as

M„[H(N, S)]= Tr[H(N, —S) E[H(N, S—)]j" . (4)
1

In particular, the second moment, or dispersion, of the
spectrum may be expressed in the form

o (N, S)—:M2[H(N, S)]
1

TrH(N, S) —E[M(N, S)]—

K
&&&=—g (pplqq),

p, q=l

&&& =—g (pqlqp),
p, q=l

(10)

D
1

D

Hjj HJ'j 2 g Hj j Hjjij=l D ij=l
(5) and similarly

K

Tr[H ( 2,S)2] = —,
'

p, q, r, s =1
(pqlr»+(pslrq)+ [«Ij)tiki(kl~)fi;, +«II»k, (klj»;i]—

2

(12)

where again the + ( —) signs correspond to S =0 (1).
In order to check the correctness of an algorithm and

the associated computer code the values of o or of TrH
calculated from Eqs. (8)—(12) are compared with those ob-
tained directly from the matrix according to Eq. (5).
Since TrH is a sum of non-negative contributions, no
fortuitous cancellation of errors can occur. If the values
computed in both ways differ from each other, the error
can be located easily by a proper choice of the values of
the (plq) and/or (pqlrs) integrals. There are three main
classes of matrix elements of H depending on the kind of
integrals being involved: ' (I) the matrix elements de-
pending on (pip), (pplqq), and (pqlqp); (II) the matrix ele-

ments depending on (plq), (pqlrr), (prlrq), and (pqlqq),
pAq; (III) the matrix elements depending on (pqlrs),
pWqWrAs. For details concerning this classification see,
e.g. , Ref. 6. Assuming that only integrals of one selected
class are different from zero at a time, each of the three
main sections of the program may be checked separately.
Finally, taking, for example, just one integral to be
different from zero at a time, specific parts of the algo-
rithm and/or associated computer code may be checked.

It is worthwhile to point out a useful consequence of
the invariance properties of the moments. If two sets of
orbitals, [fj and [&p j, are connected by a unitary trans-
formation, i.e., if
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K
(1)= g U pq&p(1),

p=1

where
K

Ump Unp 5mn
p=1

(13)

(14)

This is true because the formula for a matrix element de-
pends not only on the distribution of the occupation
numbers over the orbitals but also on the relative ar-
rangement of the orbitals in the two ¹lectron basis
functions involved.

The average value of H in the ¹lectron case is'

then also the resulting two sets of ¹lectron basis func-
tions (the one derived from [g j &

and the other de-
rived from I yp j p &

) are connected by a unitary transfor-
mation. In consequence, the moments calculated in the
two bases are the same. If ( k l

~
m n ) is a two-electron in-

tegral (7) calculated in the basis [4 j, then

(k 1~m n}= g U„U, U „U„,(pq rs) . (15)
p, q, r, s =1

E[H(N, S}]=a+E[H(2,0)]+a E[H(2, 1)]

N(—N —2) ( h I ),
where

1 N N
a =———+1 —S(S+1)

2 2 2

(18)

(19)

(k l
l
m n ) = Uk, UI, U ) U„, (16)

and TrH =
—,'(11~11) =1 in both the bases. The U

m =1,2, . . . , K, have to fulfil only the normalization
condition

K
U =1.m1 (17)

In particular, if all integrals in the basis [g j, are
set equal to 0 except for one, say (11~11), which is set
equal to 1, then

N(N —1)
2

(20)

The general expressions for TrH(N, S) and for the
dispersion cr (N, S) have been published elsewhere. ' For
the present purpose it is convenient to use separate ex-
pressions for the dispersions of the one-body and of the
two-body parts of H (i.e., assuming that either f, =0 or
62=0). Then, according to Ref. 16, in the case of f2=0,
the dispersion is given by

m=1 o, (N, S)= A, o,(1,—,
' ), (21)

Independently of the choice of U&, integrals (17) must

always lead to an H matrix for which TrH = 1. Obvious-

ly, applying different variations of this idea, specific parts
of the algorithm and of the associated computer code can
be checked.

where

2E N N
(K + 1)(K —1) 2 2K

(22)
B. N-electron case

When checking a CI program for correctness it is wise

to start from a two-electron case. Then the spin part is
trivial and checking is limited essentially to the orbital
part only. More types of elements appear in the matrix if
the number of electrons N is increased (consult Refs. 6
and 20 for details). All different types of matrix elements

appear in the matrix only if N~6. However, a com-
piete check of the program is possible only for N~9.

K
o', (I,—,')= —g (plq)' —(~) )'

p, q =1
(23)

where

+B oz(8 %')+C—+o z(A), (24}

Similarly, in the case of h1 =0 the dispersion is given by

o2(N, S)= A2 o2(2, 0)+ A~ o2(2, 1)+B+o2(d"+%')

a+
K(K —1)

K —— K ——+1 —S(S+1)N
2 2

(25)

A = —K —— N K ——F(1,1,3)—(K+1)F(1,4, —6)N N
2 2 2 2

—S(S+1) 2N K ——F(1,3, —3) KF(5, —1, —6)—N

+2[S(S+1)]F(1,—3, 3) K(K+1)— A2 (26)

B+= Ma+
(K + 1)(K —1)(K —2)

——1 (2K —1)—S(S +1)
2

(27)
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K N N
N K —— ——1 [NF(0, 2, —1)—2F(0, 1,7)](K+ l)(K —1) 2 2

—2S(S+1)[N F(0, 1,2) 2N—F(0,4, 3)+12F(0,1,0)]—[S(S+1)]F(0,0, 4) B—+, (28)

pK +qK+r
(K —2}(K—3)

2K a+ N
(K+1}(K—1)(K —2) 2

——1 —S(S+1)N
2

(29)

(30)

1
K

oz(2, s) = g [(pq~rs)+(ps~rq)) [E [H—(2,s)]]
2K (K+1)

(31)

where + ( —) corresponds to s =0 (1),
K

02(acP+b%')= —g (a/ +bA )

p, q=1

K—g (ac/ +b%' )
p=1

1=—g (pq~kk),

'2

(32)

the one- and two-electron integrals are valid for complete
spaces only.

Values of the dispersions in the complete (i.e., includ-
ing both one- and two-electron interactions) Hamiltonian
spectrum, cr (N, S), are collected in Table I. The expres-
sion for cr (N, S) may be easily obtained from that for
o z(N, S) [Eq. (24)] by replacing all (pq~rs) integrals with'

(pqlrs)+[5&~(rls)+~„(plq)]/(N —1) .

(33}

Thus, for a given set of orbitals, the dispersions are ex-
pressed as fourth-order polynomials in N and S. Using
the same techniques as described for systems of two elec-
trons, the correctness of a program can be checked rather
easily by comparing the dispersions calculated directly
from the Hamiltonian matrix with those derived from
Eqs. (21) and (24).

III. IMPLEMENTATIONS

In this section two sets of calculations of dispersions of
spectra of many-electron Hamiltonians are presented. In
the first case different states of the H20 molecule in its
ground-state equilibrium geometry are considered. This
case has been set by several authors as a benchmark for
studying different approaches to solving the Schrodinger
equation for molecules. ' In the second case all spin
states of a model system of spin- —,

' particles (2 N 9) in

a regular nonogonal potential are considered.
The one-electron basis for H20 is formed by 14 orbitals

obtained as solutions of the Hartree-Fock equations in
the Gaussian double-g Huzinaga-Dunning O(9s Sp /
4s2p), H(4s/2s) basis. ' Since the Hamiltonian trans-
forms according to C2, point-group symmetry, the ten-
electron full CI space may be factorized into four sub-
spaces corresponding to the four irreducible representa-
tions: A1, A2, 8„and 82. However, the moments for
the subspaces have been calculated directly from the
Hamiltonian matrix [Eqs. (2)—(5)) because Eqs. (18)—(33)
in which the moments are expressed directly in terms of

In the consecutive columns of Table I are displayed the
total dispersion cr (N, S) and the dispersions [o (N, S)]c,
C = I,II,III obtained assumming that only integrals enter-
ing class C of matrix elements (see Sec. II) are different
from zero. In a11 cases the same orbitals are used to con-
struct the Hilbert space. Calculations have been per-
formed for all possible values of the total spin. The en-
tries in Table I marked by an asterisk correspond to
dispersions calculated using the expressions in terms of
the one- and two-electron integrals. All other dispersions
have been obtained by summing the Hamiltonian matrix
elements. The corresponding numbers calculated in both
ways agree up to 11—14 significant figures for S=5
(D =10 ), up to 8—10 figures for S =4 (D =3X10 ), and
up to 7—8 figures for S =0 (D =10 ). The matrix ele-
ments have been computed in the CRAY single precision,
i.e., they are accurate to at most 14 significant figures.
Since the main contribution to TrH, and to the cumula-
tive error, is due to the diagonal elements of H, the
minimum error resulting from the round-off contribu-
tions is 10 ' D. This estimate leads to the minimum rel-
ative error of o. equal to 10 ", 3X10 ', and 10 for
S =5, S =4, and S =0, respectively. It agrees with the
data in Table I and proves that there is virtually no loss
of accuracy in the procedure for determining the values
of H, To check this result independently, the sum of
H;~ is accumulated in the CRAY double precision, with
all other variables in single precision. Then the results
are accurate up to at least 14 figures. In Table II the con-
tributions to o.

, and to cr, (the dispersions due to the one-
and two-electron parts of the Hamiltonian, respectively)
are displayed. These data are considered to be useful as a
reference for locating errors in CI programs.
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The results obtained in the case of the model Hamil-
tonian are intended exclusively as a set of numbers for
checking the correctness of arbitrary programs evaluat-
ing matrix elements of one- and/or two-electron opera-
tors in ¹lectron spin-adapted Hilbert spaces. All spin
states of a model system with K =9 and X =2, 3, . . . , 9
are considered. The dispersions are calculated using for
the one- and two-electron integrals the values

l
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ql =g

0 otherwise (34)

and

(pqlr~) =&„&„[3—min(lp —ql, 9—
lp ql ))—, (35)

and for the orbital transformation [according to Eq. (13)]
the following matrix:

U= a

b c 0 d
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where a =
—,', b =

—,'&2, c = I/&2, d =
—,', e =

—,'v 2, and

f =-', v'2.
In Table III values for the dispersions in the

transformed basis are displayed. The dispersions are
multiplied by factors assuring that the resulting numbers
are integers. The dispersions 0. , and Oz are invariant
with respect to unitary transformations of the orbitals.
However, this is not the case for o, (N, S)z and oz(N, S)&.
In particular, in the original basis the following equations
hold: o, (N, S)=o&(N, S)«, o 2(N, S)=o z(N, S)&, and
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= cr z(N, S)«&=0. In general, the fol-
lowing relations hold independently of the unitary trans-
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The data displayed in Table III are independent of the
nature of the interaction. They may be used equally well
in atomic physics and in the theory of nuclear structure.
In these cases there are other constants of motion than
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spin, such as the total angular momentum, orbital angu-
lar momentum, or isospin. Unfortunately, formulas for
dispersions in subspaces adapted to these constants of
motion are not known. However, in each case cr (X,S)
may be calculated combining contributions from different
subspaces in the appropriate way.
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