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Variational procedures for predicting energy differences of many-electron systems are investigat-
ed. Several different calculations for few-electron systems are considered that illustrate the prob-
lems encountered when a many-electron system is modeled as a core plus outer electrons. It is
shown that sequences of increasingly more accurate calculations for outer correlation may converge
yielding wrong transition energies. At the same time, accurate core-polarization calculations
overestimate the binding energy, requiring a core-valence correction. For the high-spin, core-
excited states of Li, it was found that outer correlation only predicted electron affinities as accurate-
ly as full-correlation studies. This observation suggested a prediction of the core-excited 'P- S tran-
sition in Be, based on observed 'P -'P transition energies of the neutral species, predicted electron
affinities including only outer correlation, and a core-valence correction, that is shown to be in good

0
agreement with experiment. A similar calculation for Mg predicts a wavelength of 2895.1 A for
this transition.

I. INTRODUCTION

In atomic spectroscopy, many properties depend on en-

ergy differences. Examples include transition energies,
ionization potentials, and electron affinities. In many-
electron systems, these properties can be predicted ap-
proximately by simple one-electron models. For example,
in the Hartree-Fock model a self-consistent-field (SCF)
potential is defined that determines the binding of a single
electron in a many-electron system. Differences of such
binding energies determine transition energies. In this
model, the number of electrons in the system does not
affect the complexity of the problem significantly. When
accurate predictions are attempted, which take into ac-
count the correlation in the motion of the electrons, the
situation changes. Variational calculations can deal
efficiently with correlation between two electrons, and
possibly more. The general model is one of a core plus
outer electrons, where correlation among the outer elec-
trons can be dealt with readily, but where correlation
with the core may present difficulty, and hopefully corre-
lation in the core can be neglected.

Using many-body perturbation theory (MBPT), given a
complete basis of radial functions (or occupied and virtu-
al orbitals), it is possible to develop expressions for ener-

gy differences, order by order, in which certain contribu-
tions in the energy difference cancel exactly and therefore
can be omitted in the computational procedure. An ex-
ample is the expression for the second-order binding en-
ergy of the outer electron in the alkali metals as given by
Johnson, Saperstein, and Idrees. '

Many-body perturbation theory often relies on the
zeroth-order wave function being a Hartree-Fock wave
function where the latter is a single Slater determinant.
Thus zero order near degeneracy, as in the ground state
of Be 2s 'S, is not easily dealt with. Lindgren and Mor-

rison describe a one- and two-particle many-body ap-
proach based on a pair equation, which may be evaluated
order by order. This pair approach has been applied to
the study of a number of properties. '

Variational methods such as the multiconfiguration
Hartree-Fock (MCHF) method and its relativistic ana-
log, the multiconfiguration Dirac-Fock method
(MCDF), are general in that they can be applied to any
system, provided energy expressions can be defined in
terms of radial functions and the resulting systems of
coupled, nonlinear integro-differential equations can be
solved. These equations are solved iteratively by the
self-consistent field method. In this paper we explore
procedures of increasing complexity for the prediction of
energy differences. It will be shown that some types of
calculations may "converge" to inaccurate results, that
others may yield an indication of the accuracy which
may provide valuable information in the absence of reli-
able error estimates.

II. HELIUM GROUND STATE

Calculations for the helium ground state illustrate the
difficulties that need to be overcome in the configuration
model of an atom. As suggested by Sinanoglu, a many-
electron problem may, to good approximation, be
separated into a set of two-electron problems. For the
helium ground state, the total wave function may be ex-
pressed in terms of radial pair functions f~(r, , rz) and
spin-angular coupling functions coupling two electrons
with orbital quantum numbers I so that

+=gfI(r, , r, )~l''S) .

The pair functions are solutions of systems of partial
differential equations. A pair program of the coupled
cluster type was developed by Martensson and applied
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fi("i "z ) =ga II' ((r i )~ i("2 )

leading to a "reduced form" for the wave function. '

MCHF calculations for the helium ground state have
been performed in the same manner as those reported by
MArtenssen-Pendrill. The results are compared in Table
I. In the MCHF method, an extrapolation on n needs to
be performed as well as on 1. Since such extrapolations
are sensitive to the accuracy of the individual results, a
smaller grid size was used, one with twice the usual num-
ber of points" for a total of about 225 points in the lnr
variable. Table I shows the largest value of n in the cal-
culation and the corrected value as determined by extra-
polation. The latter was based on the ratio of the energy
differences as a function of n. Let AE„'=E„'—E„'

&
and

r„=b,E„'/b,E„',. The ratio r„ is a slowly increasing
function, and this was used as a test for the SCF conver-
gence and accuracy. Since we expect the correction to be
small, we assumed that r„was constant for the remainder
of the series leading to a geometric series for the correc-
tion. Note that this procedure will slightly underestimate
the correction. The extrapolation on I was performed by
interpolating the last three values of AE'=E' —E' ' to
the expression

ao(l + —,
'

) +a &(I + —,
'

) +a2(1+ —,
'

) (3)

based on Schwartz's (I + —,') law, ' and summing this
expression until the last contribution was less than 10
Because of the slowly converging nature of the series,
values of I up to 100 were required for an energy lower
than —2.903724 a.u. This clarifies the diSculty of full-
correlation studies for many-electron systems. Note that

to the helium ground state. More recent results have
been obtained by Salomonson and Oster. Grid extrapo-
lation is used to estimate errors due to finite difference
approximations and I extrapolation for the truncation of
the infinite series in Eq. (1).

The MCHF method takes advantage of the symmetry
with respect to the interchange of the two coordinates of
each radial pair function and represents the function in
terms of a one-electron radial basis so that

the MCHF extrapolation value is slightly more accurate
than the pair-equation limit which overestimates the en-
ergy.

There is an extensive literature on the extrapolation of
the helium ground-state energy. The formula derived by
Schwartz omitted the odd-order terms of Eq. (3), but like
others, ' we have included )his term in our empirical ex-
trapolation. A general theory for the rates of conver-
gence for the Rayleigh-Ritz variational method for atoms
and molecules has been derived by Hill. ' This theory,
when applied to the helium ground state, leads to the pre-
diction that

E' E=c—, (1+1) +c~(1 +1) +0(1 ),
where c

&
and c2 have been determined from exact

Hylleraas-type wave functions. This simpler correction,
applied to E in Table I, overestimated the energy by
1.68 X 10 a.u. , and is not quite as accurate as our extra-
polated value. The semiempirical formula used here, has
been surprisingly accurate.

III. GROUND STATE OF LITHIUM

The 1s 2s S ground state of lithium consists of a
helium-like core plus an extra 2s electron. All the prob-
lems associated with the helium ground-state problem
will be present, but the prediction of the binding energy
of the 2s electron should be a simpler problem.

Table II reports the results obtained from calculations
that include more and more orbitals in the wave-function
expansion, the parameter characterizing the calculation
being n, the largest principal quantum number. Thus the
first row is for calculations in which the wave-function
expansion contains all configuration states that can be
formed from 1s, 2s, and 2p orbitals. Such an expansion is
an "active space" expansion. Any orthogonal transfor-
mation of orbitals with the same angular momenta trans-
forms the expansion coefficients of the total wave func-
tion but does not change the energy. Hence a variational
procedure for determining the radial functions does not
ha~e a unique solution. One possibility is to determine
solutions for which the off-diagonal Lagrange multipliers

TABLE I. Total energies (in a.u. ) are reported for a sequence of MCHF calculations for helium. Ex-
trapolated values are compared with similar results obtained using pair functions.

E (MCHF) MCHF
E (extrapolated)

Salomonson et al. '

12
13
14
14
14
14

—2.879 028 617
—2.900 515 903
—2.902 766 353
—2.903 320 252
—2.903 517 316
—2.903 603 854

—2.879 028 732
—2.900 516088
—2.902 766 775
—2.903 320 980
—2.903 518464
—2.903 605 520

—2.879 028 8
—2.900 5162
—2.902 766 8
—2.903 321 1
—2.903 518 6
—2.903 605 8

Exactb

'Reference 9.
bReference 12.

—2.903 724 080
—2.903 724 35. . .

—2.903 724 8
—2.903 724 35. . .
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TABLE II. Total energies and energy di8'erences (in a.u. ) for a series of fully variational calculations
for Li+ 1s 'Sand Li 1s 2s S.

Basis Li+ 'S Li 'S Variable Li+ Fixed Li+

—7.272 607 565
—7.277 527 301
—7.278 858 005
—7.279 357 471
—7.279 585 453
—7.279 703 984

—7.454 565 281
—7.473 184 268
—7.476 203 010
—7.477 159 86
—7.477 577 76
—7.477 766 62

0.181 957 7
0.195 657 0
0.197 345 0
0.197 802 4
0.197992 3
0.198062 6

0.196436 3

0.196 512 9
0.197 739 3
0.197938 8
0.198077 0
0.198 109 2

are zero, ' but experience has shown that stability for the
SCF iteration is computationally more important than
the omission of the calculation of off-diagonal Lagrange
multipliers, that the best stability was obtained by "ap-
plying Brillouin's Theorem, " or, equivalently, deleting
those configuration states from the wave-function expan-
sion that differed from a major component of the wave
function by one electron without a change in the spin-
angular coupling. Thus, it was desirable to generate the
configuration states in a way that facilitates this goal.
For configuration states such as ls3s (' S)2s, the applica-
tion of Brillouin's theorem would delete the Is3s('S}2s
configuration state since it differs from the major
ls ('S)2s component by exactly one electron without a
change in coupling. For higher angular momenta, it was
helpful to see which was the largest component in the
previous calculation before deciding on the configuration
state to which Brillouin's Theorem should be applied.
Generally, for this case, the nln'I('S)2s configuration
states were removed, although at the n =4 stage the
Is2p ('P)4p configuration state became a large com-
ponent and the Is2p('P }np configuration states were re-
moved for n =5, . . . , 7. Once the radial functions had
been determined, if convergence appeared difficult, a
configuration-interaction (CI) calculation for an active
space expansion was performed. In some cases, the
energy was lowered, indicating the difficulty
the multiconfiguration —self-consistent-field (MC-SCF)
method had in achieving the rotation for a minimum en-
ergy.

Two types of energy differences are reported. The first
is the difference of the two energies given in Table II ob-
tained by optimizing the orbitals separately for each sys-
tern. This was the scheme that had been used successful-
ly in the calculations' for the binding of Ca . But it
seems reasonable that the core energy should be comput-
ed using the same orbitals as the full system and this
difference is tabulated in the last column. Indeed, the
values in this column are more accurate. It is tempting
to extrapolate the values, but a regular pattern has not
been established to do so reliably. Our procedure com-
bines the calculation of different singlet and triplet pair
functions for which the asymptotic convergence rate is
[—,'(I +I')] and [—,'(I +I')], respectively, '~ and in-
cludes not only the pair functions of a first-order wave
function, which may explain the lack of an asymptotic

pattern.
In MBPT, the binding energy of the alkalis can be ex-

pressed simply in terms of certain sums that do not re-
quire the calculation of correlation in the core. Such a
procedure could aid a variational process as well, since
the orbitals could then be optimized to represent the
correlation of the outer electron with the core.

The simplest type of calculation is one which includes
correlation with the core, also referred to as core polar-
ization. In such a calculation, the configuration states
that are included in the expansion are ones which can be
obtained by single and double replacements from the
reference configuration, or Hartree-Fock approximation,
one of the orbitals being the valence orbital. In the
Hartree-Fock approximation, the binding energy is al-
ways too small —correlation is needed to being results
into agreement with observation. However, a core-
polarization calculation, carried to convergence, will pre-
dict binding energies that are too large. This is seen in
Table III. Thus we have a situation where a calculation
may stop and be in excellent agreement with observation
without being complete.

The reason for this overestimate is the neglect of core-
valence interference. The presence of the valence elec-
tron reduces the correlation in the core. For example,
the 1s ~2s replacement is allowed in Li+, but not in
the 1s 2s ground state. The expression for E' ' given by
Johnson, Saperstein, and Idrees' has some sums with a
positive sign, whereas others are negative. These positive
terms represent the core-valence interference, also re-
ferred to as an exclusion effect by Muller, Fleisch, and
Meyer' in their study of intershell correlation effects.

In the next section of Table III, the orbitals from a
core-polarization calculation are used in a full CI calcula-
tion, both for the three-electron system and the 1s 'S
core. This difference now defines the binding energy. In
this table, results are also compared with other theories
and experiment. It should be noted that lithium is a light
element and, in addition to a relativistic shift correction
R, an elementary mass correction and a mass-
polarization correction M need to be estimated and add-
ed to the non-relativistic NR energy before valid con-
clusions can be reached upon comparison with observa-
tion. The elementary mass correction is accounted for by
using the Rydberg constant %L,= 109728. 727 in convert-
ing from cm ' to atomic units. MCHF calculations
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Type of calculation

(i) Core polarization only
FCHF
3
4
5

(ii) With core-valence corrections
3
4
5

2$

0.196 321
0.198455
0.198 748
0.198 816

0.197 761
0.198047
0.198 102

0.128 673
0.130054
0.130229
0.130337

0.130 120
0.130231
0.130246

(iii) With R+M

Pair theory' R

MBPTb R+M

Observed'

0.198 113 0.130250

0.198 154 0.130221

0.198 1584 0.130235

0.198 157 7 0.130245 3

TABLE III. Calculations for the binding energies (in a.u. ) of
2s and 2p electrons in lithium. An integer i as a type of calcula-

tion implies that all configuration states are included in the ex-

pansion of the wave functions with orbitals whose principal
quantum numbers are n ~ i. FCHF is a fixed-core Hartree-Fock
calculation.

values to their reported value for present comparison
purposes. In a variational calculation, the prediction of
the binding of the 2p electron is more rapidly convergent
than that of the 2s. It is therefore surprising that this is
not the case in these other theories.

Core-polarization calculations are easier to perform
than fully variational calculations. The SCF iterations
were stable with the application of Brillouin's theorem
only to the 1s 2s or 1s 2p components. Since the 1s or-
bital was fixed, having been determined from a HF calcu-
lation for the 1s 2p state, the only deleted configurations
were 1s ns and 1s np for the S and P states, respective-
ly. When state-of-the-art results are not required, this
approach is preferred, though an estimate of the core-
valence interference should be included. An even simpler
approach is the use of a core-polarization potential. A
review of this approach is given by Muller, Fleish, and
Meyer, ' who also compare the results with ab initio
configuration interaction calculations. In this approach,
the core-valence correction, along with other corrections,
are all treated as though they are part of core polariza-
tion.

'Reference 20.
Reference 21.

'Reference 22.

corrected for R are obtained by diagonalizing an interac-
tion matrix in which the individual elements contain the
J-independent Breit-Pauli corrections, ' namely one- and
two-body Darwin terms, mass-velocity correction, spin-
spin contact, and mass polarization. The orbit-orbit (0-
0) interactions are omitted. Similarly, for R+M calcula-
tions the matrix elements include the mass-polarization
effects. Note that R includes a part of a Breit correction.
Also, our procedure includes the effect of correlation on
these quantities.

Results are compared with values reported by
Lindgren using nonrelativistic, coupled-cluster pair
theory as well as some recent, highly accurate, and fully
relativistic many-body perturbation theory results report-
ed by Blundell et al. ' The former appears to have used
JPL, =109727.8 in deriving the experimental values in
a.u. and did not include the Breit and mass-polarization
correction. For the 2s ionization energy a relativistic
correction of 0.000016 a.u. was used by Lindgren, which
is the Dirac-Fock correction for the fixed-core Hartree-
Fock ionization energy and is 0.000005 a.u. larger than
the present relativistic shift correction including the
effect of correlation on the operators. The rnass-
polarization correction is small for the 2s but for the 2p,
the relativistic shift correction is negligible: the small
discrepancy with observation in the present work arises
when mass polarization is included. The MBPT results
reported by Blundell et al. start from Dirac-Pock theory
and add Breit and nuclear recoil effects. The latter in-
cludes the reduced mass correction. The experimental
values reported in their paper are derived using R and
so we have added the difference in our two experimental

IV. HIGH-SPIN, CORE-EXCITED STATES OF Li and Li

Optical studies of high-spin, multiply excited states of
atoms have benefited from extensive interaction between
theory and experiment. From a theoretical point of view,
much can be learned about the importance of various
physical effects, yet, when systems are small enough,
theory has been able to make some accurate predictions.
An example is Bunge's prediction of a transition at
3489.8+0.8 A in Li . Core-excited states also play an

important role in continuum processes such as dielectric
recombination. In fact, autoionization is an important
factor in the lifetimes of such states. Mannervik has
compiled an excellent review of both experimental and
theoretical optical studies of multiply excited states.

In many theoretical studies the motivation has been
the identification of observed lines, or even the prediction
of lines. Here it must be remembered that the wave-
lengths of observed lines, if longer than 2000 A, are re-
ported in air, whereas theoretical energy differences, con-
verted to wavelengths, predict wavelengths in vacuum.
When highly accurate results are obtained it is important
to apply Edlen's correction as described by Cowan.

Table IV summarizes results from MCHF calculations
for the 1s2s2p P and 1s2p P states of Li. Note that
the outer correlation calculations have converged, but the
transition wavelength is not correct. When core po1ariza-
tion was included, which is equivalent to a full-
correlation study for this system, the p orbital was found
to be very important and so, for each expansion, an extra
p orbital was included. The notation 3,p is used to indi-
cate a basis of all orbitals with n ~3 plus a 4p orbital.
With such a basis, the transition energy is decreasing
monotonically. An analysis of the contribution showed
that, in the 5,p calculation, the 6p orbital was contribut-
ing slightly more in the 1s 2p P state than in the
1s2s2p P state. Results are close to convergence. A
geometric extrapolation, based on the ratio of the two
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0

TABLE IU. Total energies (in a.u. ), transition energies (in a.u. ), and transition wavelengths (A, in

air) for different types of MCHF calculations for the 1s2s2p P and 1s2p P states of Li compared

with those of other theories and observation. The notation i,p is used to indicate that all orbitals with

n ~i are used in the expansion along with an extra p orbital.

Type of calculation

(i) Outer correlation only
3

5

(ii) With core polarization
3,p
4,p
5,p
Extrapolated

(iii) With R+M
With R+M+O-O

Bunge and Bunge'
NR
Estimated NR

Chung~

NR
R+M+0-O

Observed'

'Reference 29.
Reference 27.

'Reference 28.

E(P)

—5.365 040
—5.365 432
—5.365 498

—5.366 561
—5.367 691
—5.367 917

—5.367 948
—5.367 992

—5.367 870
—5.368 481

E ( P)

—5.240 655
—5.241 174
—5.241 256

—5.243 707
—5.245 007
—5.245 285

—5.245 308
—5.245 351

—5.245 262
—5.245 823

0.124 385
0.124 257
0.124 242

0.122 860
0.122 684
0.122 632
0.122 611

0.122 650
0.122 659

0.122 640
0.122 641

0.122 608
0.122 658

A, (A)

3678.2
3666.1

3666.5

3707.8
3713.1
3714.7
3715.3

3714.1
3713.9

3714.4
3714.4

3715.4
3713.9

3714

differences of hE, produces a value which, when correct-
ed for relativistic effects (including orbit-orbit as reported
by Chung2 ) and mass polarization, is in good agreement
with experiment. In this case, orbit-orbit interaction
affects the wavelength to 0.27 A. Thus it is negligible at

0

the 1-A level, but needs to be included when higher accu-
racy is desired.

It is interesting to compare these results with other
theories. The total energies reported by Bunge and
Bunge are lower than the present ones, but as Chung

TABLE V. Total energies (in a.u. ), transition energies (in a.u.), and transition wavelengths (A, in air)

for different types of MCHF calculations for the 1s2s2p 'P and 1s2p''S states of Li are presented

and compared with those of other theories and experiment. The notation i, sp is used to indicate that all

orbitals with n ~ i are used in the expansion of the wave function along with the one extra s and one ex-

tra p orbital.

Type

(i) Outer correlation only
3
4
5

(ii) Full correlation
3,$p;3,p
4,sp;4, p
S,sp;5,p
Extrapolated

(iii) With R+M

Bunge'
With corrections

Experiment

'Reference 23.
Reference 30.

E ('P)

—5.381 345
—5.383 501
—5.383 820

—5.383 357
—5.385 777
—5.386 262

—5.386 346

E('S)

—5.248 208
—5.251 379
—5.251 675

—5.251 602
—5.255 043
—5.255 777

—5.255 890

0.133 137
0.132 132
0.132 146

0.131 755
0.130734
0.130485
0.130405

0.130453

0.130456

A, (A)

3421.6
3447.6
3447.2

3457.5
3484.5
3491.1
3493.3

3492.0

3491.9
3489.8+0.9

3489.7+0.2
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TABLE VI. Electron affinities (in a.u. ) for core-excited states

of Li as predicted by calculations for outer correlation only, and

fu11 correlation. The type of calculation was n for outer correla-
tion, n, p for full correlation.

Outer Full

1s2p
0.007 553
0.010 194
0.010419

1s2s 2p
0.016 305
0.018 069
0.018 322

0.007 895
0.010036
0.010459

0.016 284
0.018000
0.018 308

pointed out, the agreement with observation was
achieved without correcting for relativistic effects.
Chung's total energies are slightly higher than the
present values, but the NR and R+M+0-0 values of
the transition energies are in excellent agreement with the
present values.

Similar calculations were performed for the 1s2s2p P
and 1s2p S states of Li and these are summarized in
Table V. In this case, it was found that in a 5,p calcula-
tion, the Ss orbital made a substantial contribution to the
1s2s2p P state and very little to the 1s2p S state,
whereas the role of the 6p orbital, though not negligible,
was more balanced. For this reason, calculations were
performed with extra s and p orbitals for the P state, and
only an extra p in the S state. Since this is now a four-
electron system, wave-function expansions become
lengthy and it was necessary to reduce the expansions by
deleting all those configuration states whose coefficients
were less than 0.00005 in a first-order calculation where
only the new orbitals were varied. The extrapolation pro-
cess now leads to a much greater uncertainty.

V. PREDICTION OF P- S WAVELENGTH
IN Be AND Mg

The energies reported in Tables IV and V permit a
study of electron affinities as predicted by different pro-
cedures. Table VI shows that, for these core-excited
states where the extra electron is a p electron, outer-
correlation studies predict the electron ajjVnities as accu
rately as full co-rrelation studies The full co-rrelation
electron affinities were obtained from basis sets of type
n, p as indicated by the second column. The difference in
electron affinities from outer correlation only is
(0.008 752, 0.007 875, 0.007 903}for n =3,4, 5, respective-
ly. If we assume the difference has converged and use the
last value as a correction to the observed energy
difference of 26 915.16 cm ' for the
1s2s2p P —1s2p S transition in the neutral atom, the
predicted wavelength for the 1s2s2p P —1s2p S transi-
tion in the negative ion is 3489.5 A, in excellent agree-
ment with experiment.

This procedure, if correct for other systems as well,
would greatly simplify the prediction of wavelengths in
more complex systems. For example, Gaarsted and An-
dersen ' observed the 1s 2s2p P-1s 2p S transition at
2653.01+0.05 A in Be, whereas Bunge's full correla-
tion studies, with some estimated corrections, predicted
the wavelength to be 2645.0+3.0 A. In effect, the experi-
mental electron affinity for 1s 2p P was found to be 4.2
meV larger and not 10 meV smaller than the electron
affinity for 1s 2s2p P, as predicted by Bunge. Beck and
Nicolaides predicted a transition at 2654+9 A.

Full-correlation studies for Be represents a consider-
able challenge for a variational procedure. Orbitals opti-
mized for the total energy will tend to emphasize the core
because of the larger correlation effects in this region,
whereas the transition energy is largely an outer-electron
property. As Tables III and IV have shown, the transi-
tion energy depends on correlation with the core as well
as core-valence effects. By computing the electron

TABLE VII. Prediction of the P —S transition of Be from outer correlation studies with correc-
tions. JIB,= 109 730.628 was used for conversion.

EA (2s2p P) EA (2p 'P) k( p-s)
(i) Outer correlation only

3
4
5

6

0.008 761 1

0.010423 0
0.010668 7
0.010706 7

0.008 153 2
0.010795 5

0.011016 1

0.011054 5

0.006079
—0.000 372 5
—0.000 347 4
—0.000 347 9

2560.1

2656.4
2656.0
2656.0

(ii) With core-valence correction

(iii) With R+M

Bunge'

Beck and Nicolaides

Gaardsted and Andersen'

'Reference 32.
Reference 33.

'Reference 31 ~

—0.000 181 0 2653.4
—0.000 186 8 2653.2

2645.0+3.0

2654.0+9.0

2653.01+0.05
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TABLE VIII. Prediction of the P- S transition of Mg from outer correlation studies with correc-
tions. A«= 109734.95 was used for conversion.

EA (3s3p 'P) EA (3p 'P) S (4P-4g

(i) Outer correlation only
3
4
5

(ii) With R+M

(iii) With 3s 3p -valence interference

Beck'

'Reference 34.

0.007 365 1

0.013 530 6
0.013 956 1

0.013 874 0

0.013 864 9
0.019902 8

0.020 277 8

0.020 273 8

—0.006 499 8
—0.007 372 2
—0.006 321 7

—0.006 399 8

—0.006 522 2

2894.7
2910.8
2891.2

2892.8

2895.1

2921

TABLE IX. Comparison of MCHF results for Mg and
those reported by Beck (Ref. 34).

State Beck MCHF Difference

E (3s3p P)
E (3s3p P)
EA (3s3p 'P)

E (3p''P)
E (3p S)
EA (3p 'P)

—199.553 125 —199.553 200
—199.566 617 —199.567 156

0.013492 0.013 956

—199.392 813 —199.392 820
—199.412 765 —199.412 993

0.019952 0.020 278

0.000075
0.000 539

—0.000464

0.000007
0.000 228

—0.000 326

affinities for 1s 2s2p P and 1s 2p P, including only
outer correlation effects, and using the observed transition
energy for the neutral atom, the core-polarization effects
would be included along with some of the core-valence
interference. But not all such interference. In the P —S
transition under consideration, in all cases except the
1s 2p S state the 1s ~2p replacement is allowed.
This correction must be included in the determination of
a prediction of this transition energy based on the ob-
served transition energy for P —P. This procedure is
shown in Table VII for the P —S transition of Be . The
difference in electron affinities (EA) is indeed negative, as
predicted by experiment.

Similar calculations have been performed for Mg and
are reported in Table VIII. Here the double replace-
ments for the valence interference were restricted to the
2s 2p core of the major components of the wave func-
tion, namely, 3&3p, 3&4p, 3&3d, 3p 3d, 4&3p3d, and
3p4p3d for the P state and 3p, 3p4p, and 3p3d for the
S state. This value is significantly different from the

value reported by Beck.
It is interesting to compare these results with the re-

cent values obtained by Beck. The calculations for the
3s3p P state are the more difficult ones. Indeed, the
outer-correlation study of Mg consisted of a wave-
function expansion of 172 configuration states for the
3s3p P state compared with only 55 for the 3p S state.
Table IX presents a comparison of the two outer-
correlation studies. The present total energies are con-
sistently lower, though there is good agreement in the

case of the neutral atom. The major difference arises in
the calculation for the negative ion states where the
present energies are lower, the largest difference being for
the most difficult case.

VI. SUMMARY AND CONCLUSIONS

The variational method has been evaluated for a num-
ber of atomic systems. In the ground state of helium
where highly accurate (well-converged) results could be
obtained for each angular pair function, the data could be
extrapolated and good accuracy achieved, though not of
the same quality as the Pekeris' energies where the r, 2

interelectron distance is introduced explicitly into the
wave-function expansion. For the 2s and 2p binding en-
ergies of Li, the simplest and most accurate calculations
were core-polarization MCHF calculations, followed by
full CI calculations for both Li and Li+ core, to estimate
the core-valence interference effect. The latter varied
slightly with the size of the basis. Unlike the pair calcu-
lations for helium, the maximum principal quantum
number n and orbital quantum number I both were in-
creased by 1 in going from one stage to the next in a se-
quence of calculations. A disadvantage of this scheme is
that the I extrapolations, as described for helium and
similar to those used by Lindgren and Blundell et al. ,

'

could not be used. Such extrapolations are important for
the 2s binding energy.

In the core-excited states of Li and Li there is no
correlation in the core, and core-polarization calculations
do not need to be corrected for core-valence interference,
though core polarization is crucial to the prediction of a
transition energy. For Li, the transition energy from the
sequence of calculations was so close to convergence that
a geometric extrapolation produced results in excellent
agreement with experiment. For Li, extrapolation is a
larger correction and the agreement is not as good. The
observation that core polarization was not important in
the prediction of electron affinities for the core-excited
states of Li, both states acquiring an extra p electron, sug-
gested a scheme for predicting transition energies for the
P —S excited states of Be and Mg

%henever a many-electron system can be modeled as
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core plus outer electrons, three types of correlation need
to be considered: (i) outer correlation, (ii) correlation
with the core, and (iii) correlation in the core. In many
energy differences some of the latter two effects may can-
cel. The present calculations suggest that better accuracy
is achieved when the MCHF variational procedure is ap-
plied to outer correlation, and the other effects estimated
through CI calculations.

In many instances, the sequence of calculations ter-
minated with the n =5 basis (15 orbitals), largely because
of code limitations. The full correlation studies of Li,
where the S selection rule kept the expansion from in-
creasing too rapidly, exhibited convergence problems for
the larger bases. More calculations with larger bases
need to be tried, but better numerical accuracy, stability,
and convergence rate for the MCHF-SCF procedure also
would be desirable. No reasonable procedure for estimat-
ing the error resulted from this study.

At a high level of accuracy, many physical effects need
to be included when comparing with observation. The
present study was a nonrelativistic one, focusing on the
correlation problem and correcting for relativistic effects
in the Breit-Pauli approximation, in a manner which in-
cluded the effect of correlation on these operators.
Higher-order effects were not included, but the main con-
clusions about the variational process would also apply to
MCDF calculation corrected for Breit and QED effects,
along with nuclear recoil.
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