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Quadratic Zeeman eKect in positronium
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The orbital pL 8 and diamagnetic A interactions of electrons and positrons with an external
magnetic field lead to a small quadratic Zeeman shift in the L =0, m&=+1 states of positronium,
which, unlike the mz =0 states, are not affected by the usual, spin-induced Zeeman shifts. For the
n =1 states, this shift would be about 2 kHz in a field of 1000 G. These additional shifts are the
same in all spin states for L =0 but do depend on n.

The Zeeman effect in the L =0 states of positronium
(Ps) has been studied for many years. ' It is well known
that the two hyperfine states with mz =0 both show large
quadratic Zeeman shifts in opposite directions. These
shifts arise as a second-order effect of the spin magnetic
dipole interactions of electron and positron, coupling the
hyperfine singlet and triplet states. The Zeeman shifts
correspond to magnetic polarizabilities of order a,
where a is the hydrogen Bohr radius. The impression is
usually given that L =O,m~ =+1 states have no quadratic
Zeeman effect. For example, the text by Akhiezer and
Berestetski says that these states "do not interact with a
magnetic field. " The authors of Ref. 1 indicate more cau-
tiously only that any Zeeman effect is the same in both
the m& = + 1 and m& = —1 states, which may be proven
using the symmetry under rotation through m about an
axis perpendicular to the field, followed by charge conju-
gation.

However, there actually is a small quadratic Zeeman
shift in the L =O, mz =+1 states of positronium, corre-
sponding to a magnetic polarizability of order a a . This
shift arises as a combination of a first-order effect of the
diamagnetic 3 term in the interaction of nonrelativistic
charges with electromagnetic fields and a second-order
effect of the orbital magnetic-moment interactions of the
charges with the magnetic field. The latter contributes
even in states for which the relative orbital angular
momentum L is zero, because the difference of the orbital
angular momenta of electron and positron, which are
what appears in the interaction, involves operators that
couple orbital motion with center-of-mass motion and
that are not zero, acting on states with L =0. In order to
calculate the effect of these operators correctly, it is
necessary to treat the center-of-mass motion carefully.

The combined result of these interactions is to generate
a diamagnetic polarizability contribution that is the same
in all spin states corresponding to the same n and L
values. In particular, they give the same contribution to
the quadratic Zeeman shift in a11 of the four n =1

hyperfine states of Ps. For the m&=0 states, this is a
small correction to the spin-induced Zeeman effect. On
the other hand, for the m~ =+1 states, it is the only con-
tribution. Because this diamagnetic contribution is the
same in all four ground states, it does not change the en-
ergy differences between these states. However, the di-
amagnetic quadratic Zeeman shifts are not the same for
states with different n values, so that this contribution
must be considered when evaluating precision measure-
ments of such quantities as the 2S-1S splitting.

For the n =1 states, the diamagnetic quadratic Zee-
man shifts do not appear to have been discussed previous-
ly. For n =2 states, these shifts are correctly contained
in the work of Lewis and Hughes, who calculate all
relevant contributions to the n=2 Zeeman effect. These
authors do not explicitly calculate the spin-independent
shifts for states other than n =2.

To determine the quadratic Zeeman shift due to the or-
bital and diamagnetic interactions, we consider the in-
teraction with an external magnetic field of the e+ and
e in Ps, given in the nonrelativistic limit by

H,„,=H~+HL+HD

where

(la)

Hs= p+ B p —'B

HL= —pL B,
HD=(e /2m)(A++A ) .

(lb)

A+ = —r+ XB/2, A = —r XB/2 ~ (2a)

The spin magnetic moments of positron and electron are
p+ and p, respectively, and pL is the orbital magnetic-
moment operator

Here B is the external field, taken as constant; A+ is
short for the vector potential evaluated at the position of
the positron; and A the same for the electron, so that in
a suitable gauge
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pL=e(L+ L— }/2m . (2b) H', = —e(rXP B)/M .

H =HO +H ] +HD c ITI
+HD I.e] (3a)

Note that pl is proportional to the difference of the or-
bital moments of electron and positron. The term HD
contains the usua1 diamagnetic interaction for each parti-
cle.

The operator H& vanishes when acting on a state with

mz =+1, so that there is no spin contribution to the Zee-

man effect in these states. However, contributions to the
Zeeman shift in these states do arise in first order from
the term HD and in second order from the term HI.
These contributions are both independent of spin so they
do not affect the energy of hyperfine transitions within
the n =1 multiplet. However, they would contribute to
transitions in which the principal quantum number
changes.

In order to calculate the shifts arising from HL and

HD, it is convenient to express all operators in terms of
relative and center-of-mass coordinates. To do this, we
note that r+=r/2+R, r = —r/2+R, where r is the
relative coordinate of electron and positron and R the
center-of-mass coordinate. Similarly, we have
p+=p+P/2, p = —p+P/2, where p is the relative
momentum and P the center-of-mass momentum.

In terms of these operators the total Hamiltonian can
be written as

In this form the Hamiltonian is appropriate for calcu-
lating the spin-independent quadratic Zeeman shifts in
I.=0 states for any two bound particles of opposite
charge, whatever their masses. (For LAO and unequal
masses, another term must be added to H', ).

We note that this transformation has resulted in multi-

plying HD „]by the factor M/p, which is a factor of 4 in

Ps. Its other effects are the elimination of one of the two
terms that couple the relative and center-of-mass
motions, and the diamagnetic term HL, , involving the
center-of-mass coordinate R. The remaining term H'„ in

Eq. (4}, which is twice the corresponding term in Eq. (3),
represents what is referred to as the "motional Stark
effect" in Ref. 2. It contributes zero for a center-of-mass
eigenstate of momentum zero. It is worth noting that the
same quadratic Zeeman shift is obtained by this canoni-
cal transformation as by the direct method of adding the
second-order contribution of H, and the first-order con-
tribution of HD.

The contribution of the operator (Mlp)HD „,~ is given

by its expectation value in the unperturbed state. Since
HD „] does not involve a center-of-mass operator, we
need only calculate its expectation value in the state
~n, L,ML ) describing relative motion, provided that the
center-of-mass state is taken to be normalized. For L =0
and arbitrary n we have

where
&, (M Ip)HD )„L=o=(e'/12p)B'(r') „,=0 . (5)

HO=P /2M+p /2p+ V,

H, = —e/2[RXp B/p+rXP B/M],

HD, =e (RXB) /8p,

HD „,~=e (rXB} /8M .

(3b)

H =H +Ho& +(Mlp)HD

where

Here M=2m is the total mass, p=m/2 is the reduced
mass, and Vis the potential.

We note that H], which arises from the term previous-
ly called HI, is a sum of terms, each of which is a prod-
uct of one factor involving the relative motion and one
factor involving the center-of-mass motion. Because this
is uncommon in atomic problems, the calculation is
somewhat more subtle than might be expected. It can be
carried out by at least two distinct methods. One in-
volves obtaining the energy shift proportional to 8 by
adding the first-order matrix element of HD to the
second-order contribution of H, . In order to do this
unambiguously, it is convenient to introduce a binding
potential that acts on the center-of-mass coordinate R.
This is done in order to make the center-of-mass wave
functions norrnalizable, so that matrix elements evaluated
between such states are finite, and also to give precise
meaning to the energy shift.

Alternatively, one can carry out a canonical transfor-
mation U =exp(i R X r B/2), which changes the Hamil-
tonian into the form

E =a a B n (5n + 1)/3 (7)

To get an idea of the magnitude of this shift, we take
n =1 and an external field of 1000 G. Then ED/h =2
kHz. For n = 1, this is approximately 16000 times small-
er than the spin-induced quadratic Zeeman shift in the
m~ =0 states.

The shift ED occurs equally in all spin states of Ps. In
the states with m&=+1 it represents the full quadratic
Zeeman shift, whereas in the states with m~ =0 it must
be added to the spin-induced shifts. It is not difficult to
show that even when relativistic effects are included, any
contribution of spin magnetic moments to these Zeeman
shifts of the m& =+1 states is higher order in a than ED.
On the other hand, relativistic corrections to the spin-
induced shifts in the states with m&=0 can be of the
same order in a as ED. The energy differences among
the n = 1 states in a magnetic field are determined by cal-
culating only the effects of the spin interactions, since the
ED of Eq. (7) applies equally to all four states. However,
the energy differences between, for example, n =1 and 2

For the remainder of our discussion, we again special-
ize to the case of Ps, where p=m/2. The remaining ex-
pectation value in (5) is, because of the smaller Ps re-
duced mass, four times greater than the corresponding
value in the hydrogen and is given by

(r )„L o=a 2n (5n +1) .

The total quadratic Zeeman shift in the L =0 state with

m& =+1 is therefore given by
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states now contain an additional contribution from ED in

units of kHz (B/1000 G) .

KED(n =2,L =0;n =1,L =0)=26a a B —30,
(8)

EED(n =3,L =0;n =1,L =0)=136a a B 160 .

These terms represent the fu11 quadratic Zeeman shifts to
this order for states with m~ =+1.

It is possible that a contribution of this magnitude may
be observable in future precision measurements, since we
understand that measurements of the n = 1 to n =2 tran-
sition, eventually at the 10-kHz level of accuracy, are
now in preparation.

It is of interest to consider the effect of HD „~ on the
annihilation rate of Ps. There are several effects that can
be considered. One is the effect of the phase space of the
change in ener y. Since the latter is of the order of
ED/mc —10 ' for a 1000-G field, it is uninteresting. A

potentially larger effect would be due to the change in the
annihilation matrix element, which is proportional to the
square of the relative wave function at r =0. This change
can be calculated exactly to first order in HD „& by the
methods of Sternheimer, Dalgarno, and Lewis, and oth-
ers. Interestingly, we find that there is no change in the
annihilation matrix element because to this order the
change 4, in the wave function vanishes at r =0:

4
~

=const X ( 1 —cos 0)( r /6a + r /a )

X exp( —r /2a ) .

Finally, no additional mixing between the singlet and
triplet I&=0 states is induced by HD „~, so that there is
no effect on the decay rate for that reason either.

We conclude with two final points. The first point is
that energy shifts in Ps can contain parts arising from an-
nihilation. Some effects of these annihilation terms on
measured energy differences have been discussed previ-
ously. Their additional effect on the ED of Eq. (7) is very
small, and could easily be incorporated. The second
point is that, in astrophysical contexts, Ps could be found
in regions of very high magnetic fields (106—10 G near
white dwarfs, 10' —10' G near neutron stars). In such
circumstances a nonperturbative analysis of the Ps sys-
tem including HD is necessary, such as that carried out
by Herold et al.
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