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The problem of quantum interference in the presence of an environment is considered by two ap-
proaches. One treats the problem from the point of view of the trace left by the interfering particle
on its environment. The other regards the phase accumulation of the interfering waves as a statisti-
cal process, and explains the loss of interference in terms of uncertainty in the relative phase. The
equivalence of the two approaches is proven for the general case. The two approaches are applied
to dephasing of electron interference by photon modes in coherent and thermal states, and to de-

phasing by electromagnetic fluctuations in metals.

INTRODUCTION

The suppression of quantum interference due to the
coupling of the interfering degree of freedom to many
other degrees of freedom is a central subject in the under-
standing of quantum phenomena. ' Recent develop-
ments in the physics of mesoscopic systems emphasize
the importance of this subject. The most general ap-
proach to deal with this subject is the influence functional
method, due to Feynman and Vernon. ' In this approach
the influence of the environment on the interference of
two Feynman paths is expressed in terms of a functional
of the two paths, and this functional is given in terms of a
sum over paths of the environment degrees of freedom.
Physically, this influence is commonly explained either by
changes the interfering particle induces in the environ-
ment, or by the randomization of the interfering
particle's phase. Due to the latter, the process is some-
tirnes called "dephasing. "

In a previous work, we examined the reduction of the
interference term due to the interaction with the environ-
ment. Using two thought experiments, we showed that
the loss of interference can be explained either by the lack
of overlap between the two environment's states coupled
to the two interfering partial waves, or by the width of
the probability distribution of the particle's phase being
comparable to 2m. . We claimed that the two explanations
are equivalent, and used the two thought experiments to
support our claim.

In the present work we discuss the details of the two
explanations and prove their equivalence for the general
case of two interfering partial waves interacting with
their environment. Our work yields a new interpretation

of the influence functional, expressed by the statistical
properties of the relative phase of two interfering paths.
The outline of the paper is as follows. In Sec. I we
present the two explanations. In Sec. II we demonstrate
their equivalence for a simple two-states environment.
This section is a brief review of part of our previous
work. In Sec. III we prove the equivalence for all envi-
ronments that do not have their own independent dynam-
ics. Those will be referred to as nondynamical. In Sec.
IV we include the dynamics of the environments in the
generalized proof. Section V deals with the case of two
partial waves interacting with the same environment. We
analyze in this section the possibility of different phase-
breaking times (r&'s) for h /e and h /2e conductance oscil-
lations. In Secs. VI and VII we present two applications
of our approach. In Sec. VI we investigate dephasing
caused by photon modes in coherent versus thermal
states, and in Sec. VII we discuss dephasing by elec-
tromagnetic fluctuations in metals.

I. TWO DESCRIPTIONS FOR THE LOSS
OF QUANTUM INTERFERENCE

As mentioned above, we discuss here the interference
of two given paths (we will later comment on the way
these two paths are chosen). As a guiding example, one
may consider an Aharonov-Bohm interference experi-
ment on a ring (see Fig. 1). This experiment starts by a
construction of two electron wave packets l (x) and r(x),
(I, r stand for left, right) crossing the ring along two oppo-
site sides. The interference is examined after each of the
two wave packets traverses half of the ring's circumfer-
ence. Therefore the initial wave function of the electron
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FIG. 1. Schematics of interference experiments in A -B rings.
Each partial wave traverses half the ring, and the interference is

examined at the point B. This kind of interference gives rise to
h /e osci11ations of the conductance.

q(r, ) =t(x, ro)tgy, (g)+r(x, ro)eX„(g),

and the interference term is

2Re l*(x ro)r(x, ro) f dgyI (rt}y.(rt)
L

(1.2)

(1.3)

Had there been no environment present in the experi-
ment, the interference term would have been just
2 Re[1 (x, ro)r(x, ro)]. So the effect of the interaction is

to multiply the interference term by f dgyt'(g)g„(g).
The first way to understand this effect is seen directly
from this expression, which is the scalar product of the
two environment's states coupled to the two partial
waves. At t =0 these two states are identical. During
the time of the experiment, each partial wave has its own
interaction with the environment, and therefore the two
states become different. Since the environment is not ob-
served in the interference experiment, its coordinate is in-

tegrated upon, i.e., the scalar product of the two states is
taken. When the two states do not overlap at all, the final

state of the environment identifies the path the electron
took. Quantum interference, which is the result of an un-

certainty in this path, is then lost. Thus interference is
lost when the two interfering partial waves shift the envi-
ronrnent into states orthogonal to each other.

The second explanation for the loss of quantum in-
terference regards it from the point of view of how the
environment affects the partial waves, rather than how

(whose coordinate is x) and the environement (whose set
of coordinates is denoted by q) is

g(t =0)=[1 (x)+r ( )x]g (go) .

At time 'Tp when the interference is examined, the wave

function is, in general,

the waves affect the environment. It is well known that
when a static potential V(x } is exerted on one of the par-
tial waves, this wave accumulates a phase (a system of
units where fr= 1 is applied)

(t
= —f V(x (t) )dt, (1.4)

and the interference term is multiplied by e'~. "A static
potential" here, and throughout this paper, is a potential
that is a function of the particle's coordinate and rnomen-

tum only, and does not involve any other degrees of free-
dom. For a given particle's path, the value of a static po-
tential is well defined. When V is not static, but created
by environment degree(s) of freedom, its value is not well

defined any more. The uncertainty in its value results
from the quantum uncertainty in the state of the environ-
ment. Therefore P is not definite, too. In fact, P becomes
a statistical variable, described by a distribution function
P (P). (The details of this descriptioin will be given in the
following sections. ) The effect of the environment on the
interference is then to multiply the interference term by
the average value of e'~, i.e.,

(e'~) = f dP P(P)e'~ . (1.5)

(e'~) is the infiuence functional, a functional of the two
interfering paths. Since e'~ is periodic in P, (e'~) tends
to zero when P (P) is slowly varying over a region much
larger than one period, i.e., 2m. This is, then, the second
explanation for the loss of quantum interference.

Our statement of equivalence between the two explana-
tions is then put into an equation,

( e") = f d q g'(g)y„(rt) . (1.6)

This relationship is a central result of this paper, since it
relates a description in terms of the environment to a
description in terms of the interfering waves. We will

demonstrate now this equivalence on several particular
examples, ending with the general proof. Each of these
examples will be used to emphasize a different feature of
this equivalence.

II. NONDYNAMICAI. TWO STATES ENVIRONMENT

Our first example considers an environment composed
of one scatterer, a spin —,'. This spin is localized some-

where along the right path, so that it interacts only with
the right partial wave. The interaction takes place along
a short interaction range I. The spin-electron interaction
is (o is the scatterer spin) Voo, when the electron is in

the region of interaction and zero outside this region.
(This interaction may be thought of as an Ising-like in-

teraction, where the electron's spin is in an eigenstate of
its z component. )

Now, if at t =0 the spin o. is in an eigenstate of o.„
then the scattering is elastic. It causes the right corn-
ponent of the electron a phase shift, which multiplies the
interference term by a phase factor.

But if at t =0 the spin is, e.g. , in the state ~cr„=+1),
the scattering is inelastic in the sense that the quantum
state of the scatterer is changed. Note that this change in
the scatterer's state does not involve any exchange of en-
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ergy with the electron. This inelastic scattering causes
dephasing. Let us analyze such a situation in detail.

At t =0 the system's (electron and spin) wave function
1S

1—[r(t =0)+i(t =0)]C3I(lo, =+1&+lcr, = —1& ) .

the uncertainty in the relative phase of the two partial
waves that describes the dephasing. The one scatterer ex-
ample discussed in this section also demonstrates that
neither an exchange of energy, nor a continuum of de-
grees of freedom are a necessary condition for an envi-
ronrnent to dephase the interference.

(2.1)

Under the semiclassical approximation, to first order in
V, the wave function evolves in time to

1—r(t)[~cr, =+1&exp( iVor—)+ ~cr, = —1&exp(iVor)]

+ —1(~)(lcr, =+1&+lcr, = —1&),
l

(2.2)

+cos( Vcr)2 Re[r*(B,~&)l (B,ro)], (2.3)

i.e., the interference term is reduced by the factor
cos( Vpr ). This result can be interpreted in two alterna-
tive ways.

(a) The right partial wave changed the state of the spin.
This can be seen by noting that in (2.2) the right partial
wave rotated the spin by an angle 2Vp~, as expected for a
spin put for a time ~ in a magnetic field Vp ~ In the case of
Vcr=a/2 the wave function is

(2.4)

where r(t) and l(t) describe the evolution in time of the
right and left partial waves in the absence of the scatterer
and r= l/(P/rn) is the time the right partial wave spends
in the region of interaction. The probability of finding
the electron at the point 8 will then be

III. NONDYNAMICAL CONTINUOUS
ENVIRONMENT

The above gedanken experiment of a one-spin environ-
ment is usually an oversimplification of reality —the envi-
ronment is composed of only one degree of freedom, the
state of this degree of freedom is described by a two-
dimensional Hilbert space, and, perhaps most important-
ly, the environment has no dynamics of its own. The
latter means, of course, that all states of the environment
are degenerate in energy, so that it cannot model a
thermal bath. Being aware of these simplifications, we
will now modify the above gedanken experiment in order
to examine more complicated cases.

First, we consider an environment composed of one
heavy free particle (replacing the spin in the former ex-
ample). The initial state of this particle is localized at the
same point the spin used to be (i.e., somewhere along the
right arm of the ring), and its average momentum is zero.
The coordinate and momentum of this particle are denot-
ed by ri and p„, respectively (see Fig. 2). The particle's
mass M is large enough so that (hp„/M)ro((hg, where
vp is the duration of the experiment. Consequently, the
particle's wave function does not change appreciably dur-
ing the experiment and its kinetic energy plays no role in
its time evolution. So, our environment is composed now
of one degree of freedom, with no significant dynamics of
its own, but with an infinite-dimensional Hilbert space.
The interaction between the interfering electron and the
environment is assumed to have the form

1(ro)+e' r(~o), (2.5)

where P, the electron's phase, is now a statistical variable
whose probability distribution is

0.5 for the phase to be —Var
Pch='

0.5 for the phase to be+ Vor . 2.6

and the interference is completely destroyed.
(b) The right partial wave accumulated a "phase uncer-

tainty" of +Vp7 ~ In this interpretation, we look only at
the electron and write its wave function as

H,„,= V(x, ri}, (3.1)

where V is nonzero within some short range of interac-
tion. x here is the position of the interfering particle on
the ring, while g is, e.g. , the position of the environment
particle on the plane of the ring (see Fig. 2).

As before, the experiment starts with the initial state

When the interference term is calculated, it is obtained as
a function of the phase, and then averaged over the phase
distribution function. Due to the periodicity of e'~, the
maximal phase uncertainty is +m/2, and it is exactly this
value of Vpv which destroys the interference.

Our conclusion is, therefore, that the physical process
of dephasing by one scatterer can be described by either
of the two alternative and equivalent descriptions: (a) by
di6'erent electron partial waves leaving the environment
in states different from each other, or (b) by one (or some)
of the electron's partial waves accumulating phase uncer-
tainty. In the following sections we will show that it is

-x(t)

FIG. 2. The right path x„(t) interacts with an environment
composed of one heavy free particle whose coordinate is g.
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[i(x)+r(x)]yo(g) . (3.2)

The left partial wave does not interact with the environ-
ment, so that its propagation does not affect the latter.
The right partial wave interacts with the environment,
and the wave function at time 70 is

p( ) = li( 0) )yo(ri)

alternatively, the interference term reduces to zero when
its average value, averaged over all possible states of the
environment, is zero. By further inspection of (3.6}, the
second condition can be rephrased in terms of the phase
distribution function P (P }. The environment multiplies
the interference term by the factor given by (3.6), and this
factor is

Tp

+ r(ro) )exp i — dtV(x„(t), ri) go(g) .
0

{e'~)= f dPP($)e'~=e'(~} f dPP(P)e'~

(3.8)

The interference term then becomes

2Re I'(x, ro)r(x, ro)

(3.3)
where (P):—f QP($)dg is the average phase shift. If
P(P) is a narrow distribution function, (3.8) can be ap-
proximated by

e'(&) d r 1+i
7 p

X (yo(ri)lexp i f— dtV(x„(t},ri) yo(g))
0

(3.4)

=e' ~ (1 —
—,'{5$ ) )(valid for (5$ ) &&1) . (3.9)

Hence the whole effect of the environment on the in-
terference term shows up in the expression

7 p

(go(ri) exp i f—dtV(x„(t), ri) lyo(g)) .
0

As before, this expression can be interpreted in terms of
the effect of the electron on the environment, or in terms
of the effect of the environment on the electron. The first
follows from looking at Eq. (3.5) as a scalar product of
two environment states, one coupled to the left partial
wave, and the other coupled to the right partial wave.
The second is a bit more subtle. For a given

P(q)—:—f 0 dtV(x„(t), ri) is the phase shift the electron
would have experienced had the environment particle
been in a position ri. Equation (3.5) is then just

f driyo(ri)e'~'"'yo(ri)= f d(}) lyo(ri(P))l e'iy de'

(3.6)

The limits of the last integral depend on the function
(})(q), and are not relevant for our present discussion. (In
cases where several values of ri lead to the same P, the
right-hand side of this equation has to include a summa-
tion over these values of g.) The last integral leads us to
the second interpretation: this integral is the average
value of e'~, averaged over a probability for the phase
shift P. This distribution function, as seen in (3.6), is

The effect of the environment on the electron, which
would have been a well determined phase shift for a
"classical" environment, becomes the average value of all
possible phase shifts when the quantum nature of the en-
vironment is taken into account.

%hen does the environment destroy the interference
pattern? Again, there are two ways to answer this ques-
tion, corresponding to the two interpretations discussed
above. The interference term reduces to zero when the
environment's state coupled to the right partial wave is
orthogonal to the one coupled to the left partial wave, or,

Thus, in the limit of a narrow distribution function, the
main effect of the interaction with the environment is to
induce a phase shift {P ) in the interference pattern, to-
gether with a small reduction in its intensity. It is worth
noting that, by (3.6),

&y)= f f dqdtly (g)l V(x„(t),g)

=f (V(x,(t)))dr,
0

(3.10)

V(x, (t),g)= V(x„(t),r)=0)+V„V(x„(t)) ri, (3.11)

where q=0 is chosen to be the center of the minimal
wave packet. The zeroth-order contribution to the ex-
pansion is just a static potential, which induces a well-

defined phase shift. By (3.3), the state of the environment
(i.e., the free particle) after the interaction is

7p

exp i dt —riV„V(x„(t)) yo(q),
0

(3.12)

i.e., the average phase shift is the phase shift induced by
the expectation value of the potential. Hence, as far as
the interfering particle is concerned, the environment po-
tential can, in this limit, be replaced by a static potential
V(x).

On the other hand, when P(P) is very broad, i.e.,
(5P ) ))1, there is an appreciable probability for various
values of phase shifts, extending over a range much larger
than 2m. Then, excluding pathological cases of extremely
nonsmooth distribution functions, the intensity of the in-
terference pattern tends to zero. In this limit, the
environment's potential cannot be approximated by a
static potential, and the analysis of the experiment has to
be done in terms of the system plus environment. The ex-
periment involves then a transition of the particle from a
pure state to a mixed state.

The equivalence between the two descriptions dis-
cussed above can also be understood in terms of the un-
certainty principle. Suppose that the free particle's state
is initially a minimal wave packet, i.e., AgAp„—1. Sup-
pose also that the interaction between the free particle
and the interfering particle is smooth enough so that it
can be expanded as
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so that the interaction shifts the free particle's momen-

tum by J o'dt V „V(x„(t)}. When this momentum shift is

larger than the uncertainty in the free particle's momen-
turn Ap„, the environment is shifted into a state orthogo-
nal to its original one and the interference is destroyed.
The condition for this destruction is, therefore,

f dtV „V(x„(t)})bp„. {3.13)
0

On the other hand, by looking at this loss of interference
from the point of view of phase uncertainty, we find that
the condition for this loss is

(5$'}'"=f dtV„V(x„(t))bri) 1 .

The assertion Aghp„—1 yields the agreement of the two
conditions. When the uncertainty in momentum is large,
it takes a large momentum shift, i.e., a long interaction
time, in order to shift the environment to a state orthogo-
nal to its initial one. On the other hand, large momen-
turn uncertainty yields small uncertainty in position.
This, in turn, yields a well-defined potential, and again, a
long interaction time is needed for the phase to become
uncertain. Thus the equivalence between the two
descriptions is a consequence of the momentum-position
uncertainty in the minimal wave packet. The case of a
nonminimal wave packet will be discussed later in this
work.

IV. DYNAMICAL ENVIRONMENT

The second modification in our spin thought experi-
ment involves an environment with a nontrivial indepen-
dent dynamics of its own. The Hamiltonian of the envi-
ronment will be denoted by H,„„(ri,p„), while the in-
teraction term is still V(x„(t),ri). As before, the left par-
tial wave does not interact with the environment.

Starting with the initial wave function (3.2) the wave
function at time ~0 is

P(ro) =1(ro)e '"" 'yo(i))

+r(ro)T exp i f dt(—H,„„+V) go(i)),
0

(4.1)

where T is the time ordering operator. It is useful at this
point to write (vo) in terms of Vt(t)

iH~ t—= e '"" V(x„(t),ri)e '"", i.e., the potential V in the in-
teraction picture. Using Vt, g(ro) can be written as

Hence the interference term is multiplied by

(yo~e
'"" ' Texp —i f dt(H, „„+V) ~go)

0

= (go~ T exp —i f dt Vt(x„(t), t ) ~yo }
0

(4.3)

The interpretation of this expression in terms of a scalar
product of two environment states at time ~0 is obvious.
The interpretation in terms phase uncertainty emerges
from the observation that Eq. (4.3) is the expectation
value of a unitary operator. As all unitary operators, this
operator can be expressed as the exponent of an Hermi-
tian operator P, i.e.,

(y, [1exp i f—dtV, (x„(t),t )y, }=(y,(e'~)g, ) .
0

(4.4)

Hence the effect of the interaction with the environment
is to multiply the interference term by ( e'~ },where the
averaging is done with respect to the phase probability
distribution, as determined by the environmental state y0.

The phase operator P was introduced here by means of
the mathematical properties of unitary transformations,
so that it still deserves a physical explanation. To obtain
such an explanation, we first discuss the case where the
potentials exerted by the environment at different points
along the particle's path are commutative, i.e.,

[V,(x„(t},t ), V, (x,(t'), t')]=0 .

Then,

(4.5)

(e&4) e&(b}(1 i (5y2} ) (4.7)

and the environment's potential can be approximated by
a single-particle (possibly time-dependent) potential

(y ~Of'exp i f —dtVt(x„(t), t) ~yo}
0

= {yo~ Texp i f dt V—t(x„(t),t ~yo }, (4.6)
0

and ((= —fo'dt Vt(x„{t),t). In this case iI), the rate of
accumulation of the phase, is just the local potential act-
ing on the interferring particle, independent of earlier in-
teractions of the particle with the environment. Similar
to the nondynamical case, one should distinguish here be-
tween two limits: for (5t)} ) « 1 Eq. (4.4) yields

P(ro) =1(~o)g e '"" 'yo(i) ) (V,(x„(t),t)&=(y ~V, (x„(t),t)~y ) . (4.&)

+r(ro)ge '"" ' T

0
X exP —i dt V&(x, (t), t ) g0(g) .

0
(4.2)

For (5(() }))1, on the other hand, the interference term
tends to zero. The crossover between the two regimes is
then at

(5$')= f dt f dt'[(V, (x„(t),t)V, (x„(t'),t')) —(V,(x„(t),t)}(V,(x„(t'),t'))]
0 0

7 7= f dt f dt' f drt f dq'y*(g', t')V{x„(t'),g')(q'~e
' '""" "~rt& V(x„(t),ri)y(q, t)

—f dgy*{rt, t)V(x„(t),rt)y(t), t) f dg'y*(g', t')V(x„(t'), q')y(rt', t') (4.9)
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where yo(g, t):e— '"" go(g) is the environment state as
it evolves in time under H,„„.

When is the condition in Eq. (4.5) valid, and what hap-
pens when it is not? A typical case where the potentials
at different points along the path are commutative is the
case of an interfering electron interacting with a free elec-
trornagnetic field. In that case the interaction is

V, (x„(t),t)= ——x„(t) A(x„(t),t),
C

where A(x, t), the electromagnetic free field, is

(4.10)

' 1/2
27TC

A(x, t) =g e„q
kA

'
Nk

(
1k X (Crit+ t Ik'X+lfdi)

(4. 1 1)

and [Vt(x, t), Vt( x', t')]= 0 unless ~x —x'~ =
~ct

—t' .
Since x„(t)(c, condition (4.5) is valid. Generally, this
condition is valid when there is no amplitude for an envi-
ronment excitation created at (x„(t),t) to be annihilated
at (x„(t '

), t '
), i.e., when a change induced in the

environment's state at (x„(t),t ) does not influence the po-
tential the environment exerts on the interfering particle
at (x„(t'),t'). In the above example, a photon emitted by
the electron at (x„(t),t ) will not be at (x„(t'),t') when the
electron gets there.

If instead of discussing the interaction with a photons
field we turn our attention to the interaction with pho-
nons, the speed of light in Eqs. (4.10) and (4.11) is re-
placed by the sound velocity. Then, a phonon emitted by
the electron at (x„(t),t) might be encountered again by
the electron at (x„(t'),t'}. Hence lattice excitations excit-
ed by the electron along its path affect the potential it
feels at a later stage of the path. The potential the elec-
tron feels at a given point of its path is now not a local
function of that point, but depends on the path since it
includes a "back reaction" of the environment to the po-
tential exerted by the electron. Therefore this potential
will be different from Vt(x„(t), t ), and consequently, the
rate of phase accumulation will also differ from
Vt(x„(t),t}. However, in many-body environments the
potential exerted by the environment on the interfering
particle is usually independent of the particle's history
since the environment's memory time is very short.
Therefore Eq. (4.5) can be assumed to hold.

We thus see that the loss of interference due to an in-
teraction with a dynamical environment can be under-
stood in the same two ways used in the former examples.
The interference is destroyed either when the state of the
environment coupled to the right wave is orthogonal to
that coupled to left wave, or, alternatively, when the
width of the phase distribution function exceeds a magni-
tude of order unity. The interaction with the dynamical
environment turns the phase into a statistical variable,
and this, together with the phase being defined only over
a range of 2~, determines the conditions for the phase to
become completely uncertain. If the potential exerted by
the environment on the interfering particle at a given
point along its path is assumed to be independent of the
path, the phase uncertainty is given by

&5P'& = f dt f dt'[& V, (x„(t),t)V, (x„(t'),t') &

X & V, (x„(t'),t') &] . (4.12)

The exact behavior of the interference term for
&5P »&1, i.e., the value of &

e'~
& for broad distribution

functions, depends on the phase distribution P(P). How-
ever, the description of the phase as a statistical variable
enables us, under appropriate conditions, to apply the
central limit theorem, and conclude that P (P) is a normal
distribution. The central limit theorem is applicable, for
example, when the phase is accumulated in a series of un-
correlated events (e.g. , by a series of scattering events off
different, noninteracting, scatterers}, or, more generally,
whenever the potential-potential correlation function de-
cays to zero with a characteristic decay time much short-
er than the duration of the experiment. In particular, the
central limit theorem is usually applicable for coupling to
a heat bath. For a normal distribution,

& eip &
i(b) —i1/2)(sp ) (4.13)

(b) When s&r;„,»1, the integrals over t and t' cover

and the phase is accumulated in a diffusionlike process.
This expression is exact for the model of an environment
composed of harmonic oscillators with a linear coupling
to the interfering waves. The evaluation of &

e'~& by Eq.
(4.13) reproduces the result obtained by Feynman and
Vernon' for that model. Feynman and Vernon's result
was obtained by integration of the environment's paths.
This model was proven in recent years to be very useful
in the investigation of the effect of the environment on
quantum phenomena. ' Equation (4.13) is therefore a
convenient way to calculate the inhuence functional for
many-body environments, where the central limit
theorem is usually applicable.

This is an appropriate point to discuss the time depen-
dence of the phase uncertainty & 5P &. Due to unitarity,
this uncertainty is a positive quantity; but it is not neces-
sarily a monotonic function of time. This was demon-
strated in the spin thought experiment (Sec. II), where
& 5$ & oscillates when r is varied, due to the cyclic
definition of the phase. The following thought experi-
ment supplies another example for a nonmonotonic
&5$ &. Consider an environment made of an Einstein
model oscillator with frequency co. Calculating the phase
uncertainty for this case [Eq. (4.9)] we find that the prop-—iH, „(t'—t)
agator & g'

~

e '""
~ q & is a periodic function of

co(t' t), whose avera—ge over a period is zero. The in-
tegrals over t and t' have contributions only during a
period v.;„, when a significant part of the interfering
particle's wave packet is in the region of nonzero V. So,
there exist two different limits for the phase uncertainty.

(a) When cur, „,((1 the propagator can be approximat-
ed by 1. Then, the environment is almost stationary dur-
ing the interaction and the phase uncertainty is just the
potential uncertainty (which is also constant during the
interaction) multiplied by ~;„„or

(4.14)
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many periods of the environment propagator, accumu1at-
ing a significant contribution only during a period of the
order of 1/co. In that case the phase uncertainty will be
of order of

2« lot
(4.15)

i.e., very small.
Now, if the wave packet's width Ax is larger than the

region where V is nonzero, then r,„,=b,x/u, where u is
the wave packet's velocity. If Ax is of the order of 1/p,
the inverse momentum of the wave packet then
1/r;„, =pu is of the order of the energy of the wave pack-
et. Therefore the condition that distinguishes case (a)
from (b) is the frequency of the oscillator being smaller
[case (a)] or larger [case (b)] than the energy of the wave
packet.

It is then easy to understand the crossover at co~-1
from the point of view of the change in the state of the
oscillator. Case (a) is the case where the partial wave has
enough energy to excite the oscillator, while case (b) is
the case where the wave does not have this energy, i.e., it
cannot change the state of its environment. Similar con-
siderations are known in the context of the Mossbauer
effect.

As seen from Eq. (4.9) the phase uncertainty remains
constant when the interfering wave does not interact with
the environment. Thus, if a trace is left by a partial wave
on its environment, this trace cannot be wiped out after
the interaction is over. Neither internal interactions of
the environment, nor a deliberate application of a classi-
cal force on it, can reduce back the phase uncertainty
after the interaction with the environment is over. This
statement can be proved also from the point of view of
the change the interfering wave induces in its environ-
ment. This proof follows simply from unitarity. The
scalar product of two states that evolve in time under the
same Hamiltonian does not change in time. Therefore, if
the state of the system (electron plus environment) after
the electron environment interaction took place is

(4.16)

then the scalar product (y,"„„'(t)~g', „'„(t)) does not change
in time. The only way to change it is by another interac-
tion of the electron with the same environment. Such an
interaction keeps the product (y,'„"„(t )

~ y,'„„'(t ) )
(r (r) ~1(t) ) constant, but changes (g',„"„(t)~y',„'„(r)).

The interference will be retrieved only if the orthogonali-
ty is transferred from the environment wave function to
the electronic wave functions, which are not traced on in
the experiment.

versed with respect to the other. A typical example of
such interference is found in A-8 rings, when the in-
terference is examined after each of the partial waves
encircles the whole ring once (see Fig. 3). This is the
weak localization, h/2e flux periodic, contribution. It
was shown there that in this case each of the partial
waves flips the spin so that the final state of the spin is the
same for both partial waves, and the interference is not
affected. This process was also described in terms of
phase uncertainty —even though the flip of the spin by
each of the partial waves corresponds to a complete un-
certainty of each of the two partial waves' phases, the rel-
ative phase remains well defined, and therefore, the in-
terference, which depends on the relative phase of the
two partial waves, is not affected. We then have an envi-
ronment which dephases the interference of two half cir-
cle paths (the h /e flux periodic interference), but does not
dephase the interference of two full circle paths (h/2e
flux periodic). Experimentally, this is an interesting
phenomenon, since it yields different phase breaking
times r&'s for h/e and h/2e conductance oscillations.
For this phenomenon to survive in a more realistic envi-
ronment, this environment has to satisfy the following
two conditions: first, the interaction with this environ-
ment has to be one that does not distinguish between the
two time reversed, full circle, paths [it cannot, e.g., be
proportional to x(t)]; and second, the internal dynamics
of the environment has to be one that does not distin-
guish between the two paths. In the spin case, for exam-
ple, the interaction of the spin with the two waves is the
same interaction, but it happens at different times. If the
spin is coupled to some other degree(s) of freedom, its
state might change during the time between the interac-
tions with the two partial waves. Then the final spin

V. INTERACTION OF THE ENVIRONMENT
WITH TWO PARTIAL WAVES

The next step in our generalization scheme is con-
cerned with an environment that interacts with both par-
tial waves. Such a typical case was discussed in our pre-
vious work. There we considered the spin thought exper-
iment discussed in Sec. II, with one path being time re-

(h/2e)
FIG. 3. Full circle interference experiment in an A -B ring.

Both partial waves interact with the same environment degrees
of freedom, possibly at diferent times. This kind of interference
gives rise to h /2e oscillations of the conductance.
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states coupled to the two waves are not necessarily identi-
cal, and the interference might be affected.

Assuming that the interaction of electrons with mag-
netic impurities in a mesoscopic ring is a spin-spin in-
teraction,

V = V (x)r.o, (5.1)

7p

Xexp i —dtVt(x„(t), t) yp(g),
0

(5.2)

and the interference term is then multiplied by

7p

&gp~ f'exp i f dtVt(xt(t), t)
0

X 1'exp i f d—tVt(x„(t), t) ~yp&
0

=&go
' ' '

'~y, & . (53)
If the two phase operators commute, then Eq. (5.3) is

&role' " "IXo& (5.4)

Hence the phase P of Eq. (4.4) is replaced, in the case of
an environment interacting with both partial waves, by

I

where r and cr are the electron and impurity spins, re-
spectively, and x is the electron-impurity separation, the
conditions for the full circle interference to survive the
dephasing by magnetic impurities are then long spin-
lattice relaxation times (long compared to the time it
takes an electron to traverse the ring) and weak spin-spin
scattering (or low magnetic impurities concentration-
we consider here coupling to effectively one spin only).
The latter is needed since, if each partial wave interacts
with more than one spin, the change in the state of the
electron's spin is different for each of the two waves, and
the interference is affected. When these two conditions
are fulfilled, the dephasing time due to magnetic impuri-
ties is expected to be significantly longer for full circle in-
terference compared to half circle one.

We will now generalize this description of an environ-
ment interacting with the two waves for the dynamical
environment of Sec. IV. In a derivation similar to that of
Sec. IV

f(~o)=l(ro)e '"" 'f'
7 p

X exp i f —dtVt(x&(t), t ) yp(g)
0

env p+ r(~p)ge

VI. THERMAL STATE VERSUS COHERENT
STATE —AN APPLICATION

We now turn to a discussion of several applications of
the general principle. In the first application the environ-
ment is a photon mode. We examine the effect of this en-
vironment on the interference pattern. First, we derive
general expressions for the first two moments of the
phase probability distribution. Then we analyze these ex-
pressions for the cases of the photon mode being in a
coherent state and in a thermal state. Then we interpret
the results in terms of changes the interfering wave in-
duces in the state of the photon mode.

The interaction of the interfering particle with this
photon mode, assuming (for brevity) that the dipole ap-
proximation can be made and that the mode's polariza-
tion is parallel to the particle's momentum, is of the form

1/2

(a e' '+ae ' ') (6.1)
ep (t) 2n.

m co

where p(t)=mx(t) is the interfering particle's momen-
tum, and a and a are photon annihilation-creation
operators.

The environment's state, in its most general form, is

go=pc„e' " n &, (6.2)

where c„and y „are real and positive, and g„~c„~ = l.
The average phase shift is then

the relative phase P„—P, , and it is the uncertainty in that
phase which determines the loss of quantum interference.
This uncertainty is always smaller than, or equal to, the
sum of uncertainties in the two partial waves' phases.
The case of noncommuting phases will be discussed else-
where.

A typical example where the same environment in-
teracts with the two interfering waves is the interaction
of an interfering electron with the electromagnetic Auc-
tuations in vacuum. In this case, if the two waves follow
parallel paths with equal velocities, their dipole radiation,
despite the energy it transfers to the field, does not de-
phase the interference. This radiation makes each of the
partial waves' phases uncertain, but does not alter the rel-
ative phase. This example demonstrates that an ex-
change of energy is also not a sufticient condition for de-
phasing.

&y&= f '«&y, lV, (x„(t),t)~y, &

0
1/2

0 m cp
J

and the average of P~ is

(6.3)

&4 &= f dt f dt, etc* c e " " &( +1n)( +-2n) """e+''
m co

n —2 Q ( 1)
—re@(r+t)'i&@ —

y

n —2 n

+[c ('[ne'"'-"+(n+1)e-"'-"]( (6.4)
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We now focus on two specific sets of c„and y„. The
first set describes a coherent Glauber state

~

Ce'r &,

C ll

Il

( ))i/2 ~ tt (6.5)

Substituting these values into the expressions (6.3) and
(6.4), we obtain

x ( ( &
re@(t —t')

+(+1& fQJ())))

(6.10)

(6.11)

(~&
2e 27T

1/2

C f dtp (t)cos(cot +y )
0

(6.6)

and

(6.7)

One interesting aspect of Eq. (6.7) is that it is independent
of C, the coherent-state amplitude. The phase uncertain-
ty results from the uncertainty in the "position" of the
oscillator (i.e., the uncertainty in )2 +a ), and this uncer-
tainty is the same for all coherent states. This result can
also be explained in terms of an exchange of photons, i.e.,
a change in the state of the photon mode. In order to be
shifted to a state orthogonal to its initial one, the number
of photons in the mode has to change by n, where n has
to be larger than the uncertainty in the number of pho-
tons in the original state. For a state

~

Ce'~ &, this condi-
tion is

n)C, (6.8)

so that as C gets larger, the number of photons needed
gets higher. Since the emission and absorption of pho-
tons is a random process, it takes n emissions and ab-
sorptions until the number of photons changes by n. On
the other hand, as C gets larger, the time needed for an
emission or absorption of one photon gets shorter by a
factor of C . Hence the time needed for a shift of the
mode to an orthogonal state does not depend on C.

The situation is different for a photon mode in a
thermal state. For the state in Eq. (6.2) to be a thermal
state, the c„'s have to be distributed thermally, i.e.,

where ( &,h means a thermal averaging. The phase un-
certainty ( 5$ & is then just the sum of probabilities of an
emission and an absorption of a photon. Therefore, when
the photon mode is in a thermal state, any emission or
absorption of a photon turns the phase to be completely
uncertain, and destroys the interference. Clearly, cou-
pling of a partial wave to a thermal state destroys the in-
terference faster than a coupling to a coherent state. One
photon is enough in order to shift any thermal state into
an orthogonal state, while it is usually not enough for
such a shift in a coherent state. The two expressions for
the phase uncertainty coincide only when the tempera-
ture of the thermal state is zero. For any finite tempera-
ture, the thermal state dephases more effectively than the
coherent state. Therefore, if the interfering particle is
driven by, e.g. , a "classical" ac electric field exerted by
photon modes in coherent states, the dephasing due to
these modes will be weaker than that of the thermal radi-
ation present in the experiment. This result is valid for
an arbitrary strength of the driving electric field.

Looking at the dephasing due to a coupling to a
thermal state from the point of view of the changes in the
photon mode's state one might be concerned with the fol-
lowing dilemma: As the temperature gets higher, the un-
certainty in the number of photons in the state gets
higher, but still, the time it takes the state to be shifted
into an orthogonal state gets shorter. This dilemma is
settled by a closer inspection of the thermal state. Since
the phases y„'s are randomly distributed, an emission or
absorption of one photon, even though much less than
the uncertainty in the number of photons, is enough for
the state to be shifted into an orthogonal one. This argu-
ment is true for a11 strongly nonminimal wave packets. A

—Peon /2( 1
—Pcs )1/2 (6.9)

Ref(p) Ref( p)

The y„'s have to be distributed in such a way that makes
the photon mode exert a zero average potential, with
finite fiuctuations. Looking at Eq. (6.3), we find that this
condition is satisfied when the average value of(r„—r„+le " " ' is zero. It happens at thermal equilibrium
when the y„'s are completely uncertain. This can be un-
derstood in terms of the coupling of the mode to a still
larger heat bath. The phases y„are uncertain when the
bath's states coupled to different energy states of the pho-
ton mode are orthogonal. Hence we describe the photon
mode as a subsystem in a mixed state, where the whole
system (the photon mode and the whole heat bath to
which it is coupled) is in a pure state. Then, the first mo-
ments of the phase distribution are

(b)

FIG. 4. Minimal vs nonminimal wave packet. {a) The real
part of a minimal wave packet's wave function. In order to shift
this function to an orthogonal state, it has to be shifted by more
than its width. {b) The real part of a strongly nonminimal wave
packet. Due to the rapidly changing signs, a small shift of the
wave packet creates a state orthogonal to the original one.
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nonminimal state has the property Apex &&1 and conse-

quently, its wave function has rapidly varying phases.
The shift in phase space needed in order to shift such a
wave function to an orthogonal state is much smaller
than its width [see Figs. 4(a) and 4(b)].

The results of this section can be easily generalized to
dephasing by phonon modes by replacing the electron-
photon potential [Eq. (6.1)] with the appropriate
electron-phonon potential. The difference between de-

phasing by a thermal state and dephasing by a coherent
state is then found to be valid for phonon modes too.

VII. DEPHASING BY ELECTROMAGNETIC
FLUCTUATIONS IN METALS

As the second application of our general principle we
examine dephasing of interference phenomena in metals.
This problem was previously discussed in the pioneering
work of Alt'shuler, Aronov, and Khmlenitskii (AAK),
and later by Chakravarty and Schmid. ' In Ref. 4 the
problem was treated by deriving and solving an equation
of motion for the cooperon. Some of the predictions of
that work were convincingly confirmed in experiments by
Wind et al. and later by Pooke et al."

In this section of our work, we rederive the results of
AAK by our phase uncertainty approach. Our deriva-
tion further clarifies the physical interpretation of these
results. We also use our derivation to analyze the de-

phasing of conductance oscillations in an A -B ring, and
conclude that the decay of these oscillations in a one-
dimensional ring is not a simple exponential function of
the ring's circumference.

We start by considering the interference of two elec-
tron paths x, (t) and x2(t) in a metal. These two paths
start together at t =0 at x =x;, and end together at t = ro
at x =xf. Out of all the environment degrees of freedom
in the metal, we focus here on the interaction of the in-

terfering electron with photons and other electrons. We
investigate the dephasing of the interference due to these
degrees of freedom by investigation the phase uncertainty

it yields. Choosing an electromagnetic gauge where the
scalar potential is identically zero, the first-order interac-
tion of the interfering electron with the electromagnetic
potentials is of the form

—x(t). A(x(t), t } .e.
C

(7.1)

coth(co /2k' T )c

k kp k kp

k ' k
+ 5

X
1

(7.3)
1+[k5(co)]

where 5(co) =—c i&4mcr~ is th. e skin depth.
This expression will now be the basic ingredient for the

calculation of (P }. As seen in Eq. (7.2), (P } includes
four terms. For brevity, we calculate one of them, and
then sum all the four. The first term is

Thus the relative phase accumulated by the two interfer-
ing waves is

P =—f dt [x,(t) A(x, (t), t ) —x,(t) A(x, (t), t )] .
C 0

(7 2)

We have calculated the first two moments of P for an
electron in vacuum in our previous work. Those mo-
ments involve two averages of the electromagnetic poten-
tial, i e., ( A (x, t) ), and ( A (x, t) A (x', t')). For a vacu-
um, as well as for an insulator, these averages can be easi-

ly calculated since they involve only photon modes. For
a metal the calculation is more complicated. Following
previous authors, ' we find the average electromagnetic
potential to be zero, so that ($}=0,and we calculate
( A (x, t)A (x', t') } by an application of the fluctuation-
dissipation theorem. The details of the calculation are
given in the Appendix. It is found there that

2 T 7

, f dt f dt'x, (t)xt('(t')(A (x,(t), t}A&(x,(t'), t')}
c o o

(7.4)

Following AAK, we discuss the case in which most of the contribution to the k and co integrals comes from values for
which k5(co}))1. For this case, most of the contribution to the phase uncertainty comes from longitudinal fluctuations
of the electromagnetic potential. Then, Eq. (7.4) becomes

0 0 [z
(

( ( ) &
( ( ( ( ] & Q)( ( ( ) coth ( co I2k~ T ) k ~ ke' dt dt' dk deox, (t)x ~((t')e

0 0 0 CO k
(7.5)

Most of the contribution to the integral over cu comes from co ((ke T. Approximating co coth(co/2k& T) by 2k& T, with

a cutoff of the integral at co- kz T, and evaluating the t and t' integrals by parts, we get

0 0, B ik-[X l( f)—xl( t')] —&co( t —t') B

Q Q kgT ok
(7.6)
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and ~&, the phase breaking time, is the value of ip for
which the phase uncertainty is of order unity.

There are two important points that should be em-
phasized regarding this expression. The first is that
(5$ ) is not necessarily a linear function of time. Since
the intensity of the interference term is reduced by the
factor e '/ ( ~ ), this means that the interference term
reduction does not have to be a simple exponential func-
tion of time. This result is important in the analysis of
the conductance of a mesoscopic ring as a function of the
magnetic flux inside the ring. It was shown in previous
works ' that if the interference term is reduced by a fac-—t /~~tor e ~, then the flux sensitivity of the conductance de-
cays exponentially as a function of the ring's circumfer-—L /L4
ence, i.e., it is proportional to e . This assertion is
no longer valid when (5$ ) -(t/r&) and a%1. We will

shortly see that for typical paths in one dimension, a@1.
The second point is the strong dimensionality depen-

dence of the phase uncertainty. As seen in Eq. (7.7), for
d =1,2 (where d is the dimensionality of the sample),

e kBT2

(5/2) — f dt x, (t) —x2(t)~2 d . (7.&)

Most of the contribution to the k integral of Eq. (7.7)
comes from k —~x)(t) —x2(t) ', and large values of k do
not contribute. Since for typical paths in a diffusive
medium ~x ((t)—x2(t) ~

-&Dt, we obtain for these paths

( 5y2 )
s D (2 —d)/2t (4—d)/2

e kBT
(7.9)

and for the phase breaking time
' 2/(4 —d)

2k TD (2—d)/2
(7.10)

For d =3, the k integral of Eq. (7.7) diverges at the upper
limit. It is cut off by the condition Dk & co & kB T, i.e, . by
~k~ =(k2) T/D)' (see the Appendix). Then

1/2
e kBT kBT

(7.11)
o. D

where we assume that (k2) T/D)'/ ~x)(t) —x2(t)~ &&1 for
most values of t. Therefore, for d =3,

D 1/2

e2(k T) /
B

(7.12)

Thus, in metals, interference is dephased mainly by longi-
tudinal fluctuations of the electromagnetic potential. Un-
like the transverse fluctuations that originate in the pho-
ton modes and exist also for o.~O, the longitudinal

Assuming that the duration of the experiment is much
longer than (kt) T) ', the a) integral can be approximated
by 5(t t—'). This assumption is, in fact, the assumption
that kB T~& &&1. Summing together all the four terms of
the phase uncertainty, we obtain

TQ e kBT2

(5p ) = I dt J dk sin Ik [x)(t)—x2(t)]I,
0 o.k

(7.7)

modes originate from electron-electron interactions, and
are diminished when the metal becomes an insulator.
The most effective fluctuations in metals of one and two
dimensions are those of wavelengths comparable to the
distance between the two interfering paths, i.e., those
where k -1& '. Longer wavelengths contribute to the un-

certainty in each wave's phase, but keep the relative
phase well defined. Shorter wavelengths make the rela-
tive phase uncertain, but their magnitude is relatively
small.

In two and three dimensions, the phase uncertainty in-
creases linearly with time, and therefore the flux sensitive
correction to the conductance of a ring decreases as a
simple exponential function of the ring's circumference.
In a one-dimensional ring,

' 3/2

(7.13)

The decrease of the above-mentioned correction with the
increase of L is then different.

CONCLUSIONS

In this paper we considered the loss of quantum in-
terference of two paths, due to an interaction with the en-
vironment. We used two approaches and established
their equivalence. We believe that besides their concep-
tual importance, the descriptions of phase accumulation
as a statistical process and the loss of interference as re-
sulting from an uncertainty in the phase are powerful
tools in the analysis of quantum phenomena in the pres-
ence of an environment. As demonstrated in Secs. VI
and VII, these descriptions allow us to analyze the effect
of the environment on the interference via the statistical
properties of the potential the environment exerts on the
interfering particle, with no need to analyze the detailed
internal structure of the environment. The dephasing is
described in terms of equilibrium properties of the envi-
ronment. On the other hand, the description of dephas-
ing in terms of the changes induced by the interfering
particle in its environment is a description of dephasing
in terms of nonequilibriurn processes. In this sense, the
equivalence of the two approaches to dephasing relates

equilibrium properties to nonequilibrium phenomena.
Dissipation and/or exchange of energy, are not essential
for this relation. As discussed in Sec. IV, the interference
can only be retrieved by further interactions with the in-
terfering particle.

Our analysis in this paper considered the interference
of two given paths x„(t) and x((t), and we have not yet
commented on the way these two paths are chosen. In
principle, the time evolution of the interfering particle is
determined by a sum over all paths, so that its probability
distribution ~g~ involves a double sum over paths, i.e., a
sum over many two-wave interference terms. Each one
of these two-wave terms is dephased according to the
principles discussed in this paper. In practice, however,
one usually sums only the classical paths. In the presence
of an environment, the classical paths should be calculat-
ed with the effect of the environment taken into account.
We will elaborate on this point elsewhere.



PHASE UNCERTAINTY AND LOSS OF INTERFERENCE: A. . . 3447

Our last comment regards the experimental relevance
of our work. The relation between equilibrium fluctua-
tions and dephasing, the different features of dephasing
by thermal and coherent states, the possibility of different
dephasing times for h/e and h/2e flux periodic interfer-
ences, and the dependence of the flux sensitive correction
of a ring's conductance on the ring's circumference can
all be tested experimentally.
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APPENDIX: ELECTROMAGNETIC
CORRELATOR IN METALS

A (k, co)= —X p(k, co)jp'(k, co) .1

e
(Al)

In the presence of such a driving current j'"', the total
current in the metal J is

In this appendix we calculate the correlation function
( A (x, t)A (x', t')) in metals, needed for the calculation
of the dephasing time (Sec. VII). The calculation is
based on an application of the fluctuation-dissipation
(FD) theorem. ' Assuming that the metal is uniform,
( A (x, t) Ap(x', t') (where a and P are Cartesian
components) depends only on x —x' and t t'. Thus-
its Fourier transform is ( A, A p ) k= ( A (k, co) Ap( —k, —gati)), and it is convenient to
proceed with the calculation in k, co space. We use an
electromagnetic gauge where the scalar potential is iden-
tically zero.

As a first step towards the application of the FD
theorem, we calculate the linear response of a metal to an
external driving current density (1/c)j'"'(k, co), i.e., we
calculate the linear response function X p(k, co) satisfying
the relation

where L is the sample length in the a direction, a is the
interatomic distance, and ~d is the Drude relaxation time.
Due to the diffusive nature of the conductance, the above
expression for 0.

13
is valid as long as Dk (co. Equation

(A2) can be written in terms of components parallel (
~~

)

and perpendicular ( j.) to k,

0~ I+iDkp+ j
J~=o.E~+j~"' .

Maxwell's equations in k, ~ space are

N—keA =4mp,
c

2

c
2

(A4)

(A5)

(A6)

(A7)

(A8)

where e is the real dielectric constant (defined by D =eE),
and J is the total current in the metal.

Substituting Eqs. (A4) and (A5) into Maxwell's equa-
tions (A6) —(A8), we relate the electromagnetic potential
A to the external current perturbation j'"',

4~ejcxt

( kc) —et' —i 4rrcoo'
4 ej cxt

i co(i et@ eDk —4~o )—

(A9)

(A10)

A =(Xlj'„"') +(Xij'" )

k .CXt

(k. ext)X + ext 3

k k13 k kp
P

~k~g
t ~P (Al 1)

so that

k kp k kp
X p= X(, + 5,p — Xi . (A12)

Finally, with the expression for X &, we are in a posi-
tion to apply the FD theorem. According to the
theorem, '

Equations (A9) and (A10) define the two response func-
and X, satisfying A

~i
i /c)X~i iji i. Thes«wo

functions are related to the Cartesian response function
X

& by noting the following relations:

J=~E+;Dkp+ j-» (A2)

We assume that the conductivity tensor o is diagonal,
and is given by

( A Ap)„,,=1m[X p(k, co)]coth
2k~ T

(A13)

a6 p for a '»k »L ', tii«~d '

o (k, co) = 0 otherwise (A3)

Substituting Eqs. (A9), (A10), and (A12) into Eq. (A13),
we obtain the electromagnetic potential correlation func-
tion (in k, co space),
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( A Ap)g =coth
B

(4rrc ) crco+4rrc coeDk k~kp (4~c)'~~
2 2 2 2 2

5
co [e co +(eDk +4ncr) ] k [(kc) —ego ] +(4mcocr) ' k

(A14)

This is a general expression. Limiting ourselves to the case of metals, we can simplify it by a few approximations.
First, the thermal factor coth(co/2k~ T) makes the correlator significant only for co ( k~ T. For metals, such frequencies
are much smaller than the conductivity. Moreover, Dk «4~cd unless k is of the order of the screening wavelength.
As we shall later see, the contribution of such wavelengths to the phase uncertainty is negligible. Therefore Eq. (A14)
can be approximated by

( A Ap)z =crcocoth
2

c2 k kp (4~c)2 k kp

c0 cr k [(kc) +(4ncocr). ]
' k

coth(a) l2kp T)c k kp + 5
0 CO k'

k kp

k

1

1+[k5(co ) ]
(A15)

where 5(co) —=c/&4m 0 ' is the skin depth.
It might be instructive to summarize at this point the assumptions made while calculating this expression,

co&k&T «o,
Dk «4mo-,

Dk &co «vD

(A16)

(A17)

(A18)
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