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We derive the equation of motion for the field density matrix of the degenerate two-photon laser
under conditions of two-photon resonance starting from the full microscopic Hamiltonian. Our re-

sults are compared with the corresponding quantities obtained from the standard effective Hamil-

tonian. As we have shown for the nondegenerate case, the full diagonal density-matrix equations
tend to the effective Hamiltonian density-matrix equations in an appropriate limit, but the equations
of motion for the op diagonal elements do not coincide. The equations obtained using a more accu-
rate form of the effective Hamiltonian, in which Stark shifts are included, do agree. In this paper
we concentrate on the photon-number distribution and the nature of the phase transition that takes

place in the neighborhood of the two-photon lasing transition threshold. We determine the steady-
state mean photon numbers and consider the stability of the solutions. A solution is found where

the mean photon number is zero, but this is found to be a stable solution only for sufficiently weak

pumping, whereas in the standard effective Hamiltonian approach it is always stable. As the pump-

ing strength is increased, a range of detunings is reached in which there are two stable solutions.
The amplitude of the zero-photon peak diminishes very rapidly as the pumping strength increases.
Finally, for sufficiently large detunings, a single, stable, steady-state solution is obtained. The nature
of the phase transition is illustrated by presenting plots of the photon-number distribution against
detuning and pumping rate. The photon-number fluctuations about the mean are also discussed.

I. INTRODUCTION

Although the experimental realization of the two-
photon laser as a conventional laser has proved difBcult, '

interest in this system has been rekindled in the last few
years by its experimental demonstration as a micromaser
and the theoretical prediction of strong correlation be-
tween the two modes with its potential for noise reduc-
tion. With coherent pumping, it has been shown to ex-
hibit strong squeezing. Most previous theoretical treat-
ments have assumed an effective Hamiltonian approach,
although the microlaser theory papers and Refs. 5 and 6
are exceptions. The latter treated both the nondegen-
erate and degenerate cases using the full microscopic
Hamiltonian and pointed out the differences in the
photon-number distribution for this model as compared
with the effective Hamiltonian approach. In a recent
publication, where a fuller list of publications on the
two-photon laser may be found, we have also considered
the difference between the predictions of the effective and
full microscopic Hamiltonians for the nondegenerate
laser with a three-leve1 atomic scheme. We showed that
the equations of motion for the diagonal elements of the
field density matrix obtained using both approaches coin-
cided in the region where the laser was operating we11
above threshold and the intermediate level was well off
resonance (although they did not coincide otherwise).
However, the equations for the o+diagonal elements
were always found to be distinct. The reason for the
failure of the standard effective Hamiltonian approach
was traced to the neglect of the Stark shifts induced in
the two extreme levels due to the presence of the inter-

mediate state. If the effective Hamiltonian is modified to
take account of these shifts, it is found to give an ade-
quate description of the two-photon laser under condi-
tions where the two-photon process dominates the step-
wise process. In Ref. 2, a dressed-atom approach has
been used which can be shown to be equivalent to a treat-
ment based on the Stark-shifted effective Hamiltonian
model. The importance of Stark shifts of the intermedi
ate state in the nondegenerate case has been stressed in
Ref. 6.

The off-diagonal elements determine such quantities as
the line widths and cross-correlation coefficient. We
pointed out that the standard effective Hamiltonian ap-
proach gives quite incorrect results for these quantities.

In this paper, we examine the degenerate case and find
similar results regarding the validity of the effective
Hamiltonian approach. We obtain new expressions for
the linewidth and operating frequency shift of the degen-
erate two-photon laser. However, our principal concern
here is with comparing the nature of the steady-state
solutions for the mean photon number and their stability.
Again, the two approaches give quite different results.
The nature of the phase transition is illustrated by plot-
ting the photon-number distributions, and also the mean
and variance of the photon number. The plots of the
mean photon number show that the two-photon laser
could act as a switching device: a small increase in the
pumping rate causing a switch from a low mean number
state to a high mean number state.

We calculate the density-matrix equation of motion for
the field starting from the full microscopic Hamiltonian
for a three-level system. This describes more general sit-
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uations than the effective Hamiltonian model because it
includes both stepmise or cascade processes and tmo-
photon processes. (For an explanation of these terms, see,
for example, Ref. 8.) The effective Hamiltonian approach
only describes two-photon processes. We calculate the
mean photon numbers and examine their stability. In
general, the effective Hamiltonian approach leads to
different results. Of course, one would not expect it to be
a good approximation in situations where the stepwise
process is important.

The paper is organized as follows. In Sec. II we obtain
the equations of motion for the field density matrix start-
ing from both the microscopic and effective Hamiltoni-
ans. Equations for the mean number of photons in each
mode are derived in Sec. III. These lead to multiple solu-
tions, and the stability of each solution is investigated:
the stability is found to depend upon whether the full or
effective Hamiltonian is used. In Sec. IV we compare the
expressions for the laser linewidth and frequency shift,
and in Sec. V we examine the nature of the phase transi-
tion in this system. We present a number of plots of the
photon-number distribution, and also show that the equa-
tions of motion for the diagonal elements obtained from
the full and effective Hamiltonians agree in an appropri-
ate limit. Section VI presents a brief conclusion and sum-
mary.

II. EQUATIONS OF MOTION

+H. c. ] (2)

The basic system for the two-photon laser is shown in
Fig. 1. We have a three-level atomic system, with levels
IO &, I 1 &, and I2 & and corresponding energies fiEo, A'E, ,
and fiE2. A photon of frequency to connects the
10&~11& and 11&~12& transitions. The frequency is de-
tuned from the atomic resonances by the detunings

5t —=Et, o to 5z=E2, i

For simplicity, we assume two-photon resonance
5, = —52= —5 throughout this paper.

We adopt the full microscopic Hamiltonian for the de-
generate two-photon laser:

2

H =Pi g Ii & & i I E; +~'tt ~+ [(g ~ I
1 & & 01+g212 & & 1 I )~

i=0

E)

Eo

FIG. 1. Atomic level configuration for the degenerate two-
photon laser.

where a is the creation operator for a photon in the las-
ing mode and g1 and g2 are the usual atom-field coupling
constants. The corresponding effective Hamiltonian is

H, =&[10&&0IEo+12&&2IE2+a aco

+(g, 12&&01a +H. c. )] .

We have discussed the relationship between these two
Hamiltonians in Ref. 7. Here we merely remind the
reader that the full Hamiltonian permits both stepwise
and direct two-photon transitions whereas in the effective
Hamiltonian approach, the atomic level

I
1 & no longer ap-

pears explicitly (it plays the role of an intermediate state
which is subsumed into the effective Hamiltonian cou-
pling constant g, =g, g2/5) and the basic process is now
a direct ttvo photon tra-nsition between levels IO& and I2&.

Since we have presented in Ref. 7 an outline derivation
of the equation of motion of the density matrix for the
field in the case of the nondegenerate two-photon laser,
and the procedure is the same for the degenerate case, we
present just the result here.

Introducing the notation m =n +k and p„(t)
p„(k, t), we —find the following equation of motion for

the field density matrix

Pn
A 2P„

8(n +1+k/2)+(n +1}[cr&(n+2+k)+o2(n +1+k)]
n+1

o.z( n + 1 }(n + 1+k)+(n + I+k)[0,(n +2)+a2(n +1)]+4i5A2k- F„+1D. +1

A2[n (n +k)]'
+

D„

A zcr, [n (n —1)(n +k)(n —1+k) ]'~

SD Fn —1Pn
n —1 n —1

+C&(n +1)(n +k + 1)p„+, C(n +k/2)p—„, (4)
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where A =2R~g
~ /y, o =4~g

~ /y —=8 /A, 5=5/y (y being the spontaneous decay rate of each level, which is as-

sumed the same for simplicity, and R the rate at which atoms in their excited state enter the cavity), C is the cavity de-

cay constant and

D„(k)=1+5 +S„+X/2+X /16,

d„(k)=(1+i5+S„/4)[1 i—5+(S„+X)/4],

F„(k)=25 +6+3S„/2+(3 i—5)X/4+X /16,

(6)

(7)

with S„=cr,(n +1)+cr2n and X(k)=(o ~+o2)k.
In Eq. (4) we have suppressed the dependence of the variables on k because it has the same value for each term, and

the time dependence has not been explicitly shown.
The field density matrix obtained using the egectiue Hamiltonian (3) can be found in a similar way. The result is

much simpler:

e

p'„(k) = [A'(n + 1)(n +2)+ A'X„+&(1 id)—/2+8'E„+& /8]
an+1

+ A' [n(n —1)(n+k)(n —1+k)]' ' +Cg( +1)( +k+1) ' —C( +k/2) '
Dn-i

(8)

where b, is the detuning of the two-photon transition
from exact resonance

P„+;„+,(k&, k2)~p„'+;+f(k) . (12)

In the next section we calculate and compare the mean
photon numbers for both models.

b, = (E2 Eo co, ——co2) /—y,
D„'=1+8, +o, [n(n +1)+E„/2]+(cr,E„/4), (10)

E„=(2n +1)k +k

and the quantities A', 8', and cr, are as defined below
Eq. (4) with g& and g2 both replaced by g, . In the deriva-
tion of Eq. (4) we assumed two-photon resonance, and so
to compare Eqs. (4) and (8) we should set b, =0. (Note
that the effective Hamiltonian strictly applies only for
two-photon resonance. )

We note that the above equations for the degenerate
case can be obtained from those for the nondegenerate
case [Eqs. (5)—(13) of Ref. 7] by the following replace-
ments:

N~ ~C02~N, C~ ~C2 ~C,
~, ~n+1, k, ~kz~k,

and

using Eqs. (4) and (8). For the microscopic model we find

3Azcr, (n +1)(n +2)(1+S/4+5 /3)
n = p„(0)

2(1+5 +S)(1+5 +S/2+S /16)

Az(n+1)
+ —Cn =0,

1+5 +S
where S=S„+,(0) and p„(0) denotes the diagonal ele-
ments in the steady state. Next we assume that p„(0) is a
sharply peaked function of n centered on n =n. (Later
we calculate the value of p„(0) numerically, so that the
validity of this assumption may be assessed. ) We may
then replace n inside the parentheses by n to obtain

3Az r,c(n +1)(n+2)(1 +S/4+5 /3) A2(n+ I)
2(1+5 +S)(1+5 +S/2+S /16) 1+5 +S

=Cn,
where S=S„+,(0).

Next we restrict the theory to the semiclassical case by
neglecting the spontaneous-emission contributions in Eq.
(15). This is valid when n »1, so that we can replace
n +1 and n+2 in the above equation by n. It is clear
that in the semiclassical theory, n =0 is always a steady
state. The remaining factors give a cubic equation for n
which may be written in the form

(4z+5 —3)(z +5 )

III. MEAN PHOTON NUMBER~-
SEMICLASSICAL THEORY

where

=p[z~+5 +—3o,n(z+5'/3)], (16)

n = g np„(0)=0, (13)

The microscopic and effective Hamiltonian models
lead to different estimates in general for the mean photon
number in the steady state. This quantity is calculated by
setting

p= Az/C, z =1+(cr,+cr2)n/4 . (17)

This is exactly equivalent to the equation obtained by
Zhu and Li [Ref. 5, Eq. (42)]. These authors, however,
used the condition p„(0)=p„+,(0) as the definition of n.
For a laser operating well above threshold, the approxi-
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mation n ))1 is excellent.
The cubic has a simple solution when

0'
i
= CT 2 =0' (18}

~=0 gag 'j2~=p —2+(p2 452)&r& (19)

Hence for a fixed value of 5 & 1, there is only one
stable solution for a given value of p: the solution
n "'=0 is stable for p, &1+5 and the solution n ' ' is
stable for p& I+5 . In particular, for 5=0, n "'=0 is
the stable solution for p, &1 and on ' '=2(p —1) is the
stable solution for p ) 1.

On the other hand, both solutions are stable for 5 & 1

and

2&215I —p &1+5' . (20)

Later we plot the photon-number distribution, showing
the presence of two peaks under these conditions.

For the effective Hamiltonian, we find the solutions

Then we find the unphysical root on = —(5 +1)/2 and
the pair of roots crn =p —2+(p —45 )' . The latter
solutions are physical only for p & 2

~
5~.

A linear stability analysis indicates that the n =0 solu-
tion is stable only if p (1+5 and that the solution with
the negative square root is always unstable. The solution
with the positive square root is found to be stable if
p & 1+5 for 5 & 1 and for p & 2~5~ for 5 & 1. The two
stable solutions are thus

dition that the power broadening (or, equivalently, the
Rabi splitting) of the intermediate state be much less than
the detuning. This is just the condition for the laser to be
operating as a two-photon, rather than a stepwise, sys-
tem.

The analysis leads to the correspondences

A 20 i 0 )0'2A'=, 0, =
45 45

(23)

The latter expression is consistent with the relation
~g, ~

= ~g|g2/5~, which is implied by the perturbative con-
struction of the effective Hamiltonian. Using Eqs. (23), it
is easy to show that Eq. (21) reduces to Eq. (19) under
conditions (22) (and with a, =cr2)

However, the 0+diag-onal equations of motion do not
coincide, even under the conditions (22). This is demon-
strated indirectly in the next section where we calculate
quantities that are determined by the off-diagonal ele-
ments. As we have shown in Ref. 7, the reason for this
failure of the effective Hamiltonian approach can be
traced to the neglect of Stark shifts. In the three-level
model, the interaction of the two extreme levels with the
intermediate state

~
1 ) via the electromagnetic field causes

a shift of their energies from the bare values Eo and E2 as
given in Eq. (3). If these shifts are correctly incorporated,
the resulting effective Hamiltonian provides a satisfactory
model for the two-photon laser operating under the con-
ditions (22).

n "=0 a n ' '=ju k[p —cr (I+6, }]' (21) IV. LINEWIDTHS AND CROSS-CORRELATION
COEFFICIENT

y/5[ «/g/'n «5', cr, =o, (22}

where p, = A '/C. We find that the n ',"=0 solution is al-

ways stable, that the negative branch of the n ', ' solution
is always unstable, and that the positive branch is stable
for p, & [o,(1+5 )]'~, which is the condition for the
solutions to be real.

Taking 5=0 for comparison with the microscopic re-
sults, we then have a single stable solution n, =0 for
pumping strengths such that p, &Qcr, and two stable
solutions, n ',"=0, and o, n ', '=p, +(p, cr, )'r for-
p, &+0,.

These results on the stability of solutions are quite
different from those for the microscopic Hamiltonian. In
particular, for the latter case, the solution at the origin is
unstable for 1+5 &p. The source of this behavior is
that, as the intermediate-state detuning approaches zero,
the system tends to the one-photon laser limit (cascade
process) where the gain is linear in n, thus rendering the
zero-photon solution unstable above threshold.

As in the case of the nondegenerate laser, the equations
of motion for the diagonal field density-matrix elements
obtained using the microscopic Hamiltonian coincide ap-
proximately with those obtained from the effective Harn-
iltonian provided that the conditions

These quantities are calculated as in Ref. 3 by evaluat-
ing the time derivative of the quantity

y(r):—g p„(k), (24)

using Eq. (4}. By manipulating the sums on the right-
hand side it may be written in the form

y = —v(k)y,

where

(25)

i Az5k (a &+o&)k
v(k) = 1—

A2(1+S)+
8n N

(26)

with

%=1+5 +S, S=(o,+o2)n . (27)

The imaginary part of v(1) represents a frequency
shift; that is, the operating frequency of the laser is shift-
ed from the cavity frequency co to the new operating fre-
quency 0

are satisfied. This is shown in Sec. V. We have used the
fact that o

&

——o 2 implies ~g, ~

= ~gz ~—:~g~. The first part of
the inequality is the condition for the laser to be operat-
ing far above threshold while the second part is the con-

0=co+ Im[v(1) ]

A&5 (cr, +crz}
2N 2N

(28)
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8n

A2(1+S)
N

+C (29)

The rea/ part Re[v(1)] is equal to the linewidth of the
laser mode. Thus the linewidth is

tion that results from setting p(0)=0 in Eq. (4). The
solution is facilitated by the observation of Zhu and Li
that the resulting five-term difference equation may be ex-
pressed as the difference of two three-term difference
equations of the form

C (n + 1)p (n + 1)= [a(n)+P(n)]p (n )

+P(n —1)p (n —1),
A2+Cb= (30) where

8n

When 5=0, N=1+S and thus the above expression
reduces to

(35)

The same result is a good approximation for 5%0 when
the laser is operating well above threshold so that
S»1+5 . Equation (30) is formally identical to the
single-mode laser result, but we must remember that the
definition of n is different. For example, for 5=0 or
p»2~5~ we have an ' '=2()u —1) from Eq. (19),or

and

Az(n +1)
a(n) =

1+5 +S„+,

3A2cr&(n +1)(n +2)(1+5 /3+S„+&/4)
P(n) =

4(1+52+S„+,)(1+5 +S„+i/2+S„+i/16)

(36)

n ' '=2(A —C)/o, (31)
(37)

where cr=B, /A, =B2/A2. This is just twice the
single-mode result nsM = A ( A —C)/BC.

For the effective Hamiltonian the same procedure
yields the results

(k + 3)(1+6 cr, n,—)
v, (k)= i — 2n, +

e e

A'
+k (I+a n )+

2X, " '
sn

(32)

where N, =1+b,2+o,n, (for n, » 1). The laser
linewidth is given by the real part of the coefficient of k .
The imaginary term yields the frequency shift.

From the effective Hamiltonian approach, we may
derive the three term recurrence relation

A'(n +1)(n +2)
D+o, (n + 1)(n +2) (39)

It is easy to see from Eqs. (35)—(39) in the case where
o

&

—-o 2 that p (n) —+p, (n) for n )& 1 when the conditions
(22) apply. The latter imply y~5~ &&S„&&5,and impos-
ing these conditions on Eqs. (36) and (37) we see that
a(n) «P(n) and that

C(n + 1)p, (n + 1)=P'„p,(n)+P'„y, (n —1), (38)

where

(33)
A2o &(n +1)(n +2)

(n)~
45 (1+S /165 )

(40)

which is the approximately the expression obtained by
Wang and Haken in their investigations using the
effective Hamiltonian approach. In the limit 6=0, or
o, n &) 1'+6, the imaginary term vanishes (no frequen-
cy shifts) and the laser linewidth is given by

b
A' C
2 8n,

(34)

Well above threshold, the first term on the right-hand
side dominates the second, and the result for the
linewidth in the effective Hamiltonian approximation is
clearly quite different from that for the linewidth ob-
tained from the microscopic Hamiltonian. Under condi-
tions (22), and for o, =o 2, Eq. (29) reduces to
b = A'+C/8n„using the correspondences (23). Hence,
well above resonance, the effective Hamiltonian approach
gives a value for the linewidth which is one-half that ob-
tained using the full theory.

V. PHOTON-NUMBER DISTRIBUTION

In this section we evaluate the probability p ( n ) that
the field contains n photons for the steady state:
p(n) =p„(0), by solving numerically the difFerence equa-

For o, =oz and n)&1, we have S„+,-4o,o2(n
+l)(n+2) and then using the equivalences (23) we see
that the right-hand sides of Eqs. (35) and (38) are equal
(for 6=0).

We have evaluated expressions (35) and (38) numerical-
ly. The graphs show quite sharp features, and to show
these up more clearly, we have chosen smaller values for
the parameters u, , o.2, and 5 than are likely to occur in
actual two-photon lasers. In Figs. 2—8 we have taken
a&=cr2=4X10 . For Fig. 2 we have 5=0. This distri-
bution shows no bistable behavior: the solution n '"=0
is stable for p & 1 and the solution n ' '= 50(p, —1) is
stable for p& l. [We are assuming that the positions of
the peaks of the distribution are given approximately by
Eqs. (19).] In Fig. 3 we have the same parameters except
that 5=1. This again shows no bistable behavior, with
n '"=0 being stable for 1M &2 and n ' '=50(p —2) being
stable for p 2. Figures 2 and 3 are qualitatively similar
with a smooth transition from the peak at n, to the peak
at n2 as p increases.

We note that the quoted values for n were derived on
the assumption that p(n) was a sharply peaked function
of n centered on n =n ' ')) 1. This assumption is clearly
not justified for the case of Figs. 2 and 3, where the peaks
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0.9—

P
n

M/ /'/'/ j/ j//'//r//
/rr jj/r

0 r

0

j/r jrr jrr jjr~
0.1

3Q

0-'
0

/ /~ j~r//j j/jr
/ j.r/. // j r/'r'/'r r /rr j

I t rr/rj j/r~
l l 1

300

FIG. 2. Photon-number distribution as a function of the
pumping rate p = A /C for cr

&

=o 2=0.04 and 5=0.
FIG. 4. As Fig. 1, but with 5=2.

are very fiat in the neighborhoods of the critical values of
p, but nevertheless Eq. (19) gives the approximate posi-
tion of the peaks of the distribution reasonably well. As
we have previously observed, Zhu and Li obtained the
same equation [Eq. (15)] by finding the values of n for
which p(n)=p(nial). This perhaps explains why the fit
is better than expected on the basis of our assumptions.

In Fig. 4, where the value of 5 has been increased to 2,
we begin to see a qualitative change. Now we have bi-
stable behavior over the range 4 &p & 5, although this is
not evident from the figure. The switch over from the
peak at n '"=0 to the peak at n ' '=25[@—2
+(p —16)'~ ] is becoming sharper. This feature be-
comes more apparent in Fig. 5, where we have taken
6=3. The bistable behavior extends over the range
6 &p (10, and the peak at n '"=0 tends to zero
very rapidly for p & 6.25. The peak at n ' '

=25[@,—2+(p —36)'~ ], and the general features in the
critical region p-6 are not prominent in this figure, so
we have displayed this region in more detail in the follow-
ing two figures. In Fig. 6, the emergence of the second
peak is shown around the critical value @=6. The high
peak at n "'=0 has been excluded so that the second
peak can be seen more clearly. In Fig. 7 we have plotted
out the region 6.5&p&6.75. Note Eq. (19) predicts
n ' '=17S for @=6.5, and one can see from the figure
that this is close to the exact value for which p(n) has a
maximum, even though p(n) is not very sharply peaked

about n =n '~'. The peak is, however, nearly symmetric
about n =n ' ' so that the criterion of Zhu and Li applies.

In Fig. 5, the persistence of the peak at n =0 beyond
@=7 is not apparent, although Eq. (20) predicts that it
should exist out to @=10. In Fig. 8, we have plotted on
an extended scale the region around p=l0 for small
values of n, and it can indeed be seen that a shallow
minimum does exist near n =3 for @=9.5, which has
disappeared for p & 10.

If we decrease the value of o, and uz (which means in-
creasing the mean value n 2 ) then the sharpness of the de-
cline of the peak at n "'=0 near the critical value
p, =2!5!is increased. This feature is illustrated in Fig. 9,
where we have taken o, =o2=10 . This should be
compared with Fig. 5. As we have previously observed,
increasing the value of 5 has a similar effect.

If we plot the density matrix p, ( n ) obtained from the
effective Hamiltonian by solving Eq. (38) for param-
eter values corresponding to those of Fig. 5 (i.e.,
o, =~4X10, —,

' X10 &p, & —,
' X10 ), we obtain

graphs which look quite different from those of Fig. 5.
This is because we are operating in a regime where the
condition (22) is not satisfied. We do not present this ~lot
because it is rather featureless: only the peak at n" =0
is apparent, and this has uniform height. In Fig. 10, we
do give a plot of the effective Hamiltonian results, where
we have chosen the parameters to ensure that bistable be-
havior is displayed. %e have taken cr, =4X10 and
0.025 &p,, & 0.60. From Eq. (21), two peaks should exist

P
n

~/jr j///rM/'jr jj rr ////

60

////r/rr/j r//rj/r//r7//»/jr r/ jj///gy
rr rr jjr//
jr'/r

jr/ jr/r jrjjr jrrr
0 --'-'

0 0.1
0 ~C

0

jjj/jjrr
rj/rj rrr jjj///// /r r

~r j/r j~
/j jj/r/r—jr jjj

300

FIG. 3. As Fig. 1, but with 5= 1. FIG. 5. As Fig. 1, but with 5=3.
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P
n

7.75

//r

~///////
////////'/'/// ////// +////// —g'/+/ r /j/ JP'///

0 r ///// //x r///
50

300

6.5

0—
0

//)'/
// / / //r//////y

////~
6.75

1200

FIG. 9. As Fig. 5, but with o&=o2=0.01 and 7~p~7. 025.

FIG. 6. As Fig. 5, but with 5.8 & p & 6.5.

0.6—

P
n

6.75

Pe
n

300

0 7

0

JLL

n 100

—:=-:= -- = — - —0.6

0.025

FIG. 7. As Fig. 5, but with 6.5 ~p ~ 6.75.
FIG. 10. Photon-number distribution from the effective

Hamiltonian approach with o
&
=0.04.

10.5

300—

0
10

FIG. 8. As Fig. 1, but with 9.5 ~p ~ 10.5.

0

FIG. 11. Mean photon number as a function of 5 and p.
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120—

p
I

1
I

7

FIG. 12. Variance in the photon-number distribution, as
measured by the Q parameter, as a function of 5 and p.

Q =—[Var(n) —n ]/n (41)

for the same range of parameters as in Fig. 11 (but note
the change in the sense of increasing ~5~ between Figs. 11
and 12). The latter indicates the increasing intensity and
sharpness of the photon-number fluctuations near the
critical values of p, as ~5~ increases. We note that the
fluctuations are always super-Poissonian.

As 5 is reduced, these two figures clearly show the
change from the "first-order phase-transition" picture,
typical of two-photon lasers, to the "second-order phase-
transition" regime, characteristic of one-photon oscilla-
tors.

for p, &0.2, but the peak at n '"=0 becomes very shal-
low for p, & 0.3 and is not apparent on the figure.

In order to operate where condition (22) applies, we
must have 5~ ~ 100. Taking 5=100, for example, we can
satisfy condition (22) by taking ~g~ n = 10 y and then the
condition gives 10 y « ~g~ n &&10 y, which is modest-
ly satisfied. Then, as we have shown analytically, the
density matrices obtained using the two approaches agree
approximately. We have verified this numerically.

Finally, we look at other properties of the system that
are strongly influenced by the phase transition. First we
plot the mean photon number [obtained from the numeri-
cal solution of Eq. (19)] as a function of 5 and p in Fig.
11. The increasing sharpness of the transition from a low
photon-number state to a high photon-number state as

~ 5~ increases is obvious. Again, we have chosen particu-
larly small values for ~5~ which diminish the abruptness
of the change so that the effects can be more clearly seen.
There is thus the possibility of using the two-photon laser
as a switching device, as the switch from low to high pho-
ton number is accomplished by only a very small increase
in the pumping rate. In Fig. 12, as a measure of the
spread of photon numbers about the mean, we plot the
"Q parameter"

VI. CONCLUSION

We have derived the equations of motion satisfied by
the field density matrix of the two-photon laser starting
from the full microscopic Hamiltonian. Possible solu-
tions for the mean photon numbers in the laser mode in
the steady state have been found and their stability inves-
tigated. We have also calculated the laser linewidth and
the shift in the lasing frequency. These results have been
compared with those obtained from the effective Hamil-
tonian. The effective Hamiltonian only includes two-
photon processes, whereas the microscopic Hamiltonian
also includes stepwise processes. We have found agree-
ment for the diagonal elements of the field density ma-
trices only under conditions (22), and for o, =oz. The
equations for the off-diagonal elements do not agree, even
under conditions (22). Under these conditions we find
that the effective Hamiltonian underestimates the laser
linewidth by a factor of 2. This is because the usual form
of the effective Hamiltonian models the atom as a two-
level system and neglects the Stark shifts induced in these
levels by their interaction with the intermediate state(s).
If these shifts are properly included, then the resulting
effective Hamiltonian model provides an adequate basis
for the two-photon laser operating under conditions (22).
The importance of the Stark shifts of the outer two levels,
obtained in the different approach of the dressed-atom
model, has already been pointed out in Ref. 2. These re-
sults imply that the linewidth and frequency shift depend
strongly on the detailed atomic structure.

The importance of Stark shifts has also been em-
phasized by Zhu and Scully in a different context. They
considered the nondegenerate two-photon laser, not
necessarily operating under conditions of two-photon res-
onance, and showed that the Stark shift of the intermedi-
ate state could affect the photon distribution by shifting
the transition frequencies of the system.

We have investigated the nature of the phase transition
in this system both analytically and by numerical solution
of the difference equations for the photon-number proba-
bilities. The transition has been shown to be very sharp
for small values of 0

&
and cr2 and large values of 5. A

switch from small mean photon number to large mean
photon number is accomplished by a very small change in
the pumping rate. We have presented plots of the mean
photon number and Mandel's Q factor that also indicate
the nature of the phase transition.
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