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Long-time tail of the velocity-autocorrelation function in the Lorentz lattice gas
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We present numerical results for the first and second moments of the distribution of collision

times of the d 2 Lorentz lattice gas ~ith density q in the range 0.2-0.8. They are used to calcu-
late the mean-square displacement (Xi(T&)) as a function of the number of collisions k. Using
an asymptotic relation the mean-square displacement &X2(t)) as function of time is obtained from

the latter quantity. As a result we are able to predict in an accurate numerical way the long-time

tail of the velocity-autocorrelation function.

I. INTRODUCI'ION II. MODEL AND METHOD

The discovery of the algebraic decay of the velocity-
autocorrelation function (VACF) in hard-sphere models'
encouraged many scientists to construct even simpler fluid
models. The study of these models is motivated by the
importance of the long time tail-of the VACF in transport
theory. By means of the Green-Kubo formula it contrib-
utes to the diffusion constant and, in particular, when
the deca~ is slower than t, the diffusion coefficient
diverges.

Analytical and numerical results for the VACF are
hard to obtain. One class of very simple models that has
been studied intensively is the class of Lorentz gas mod-
els. In these models a particle follows a straight path
through a static environment of randomly distributed
scatterers. After a collision with one of the scatterers the
particle changes its direction according to some proba-
bilistic or deterministic collision rule. It is known that the
VACF in these models decays as t et2 '. Even in this
simple model, analytical and numerical results are rare
and disagree often. s

When the movement of the particle and the positions of
the scatterers are constrained to lattice sites, then the
model is called the Lorentz lattice gas. It is of recent in-
terest ' and is studied in the present paper in dimension
d 2.

We numerically calculate the mean collision time (zk)
and the mean-square collision time (r)), i.e., the first and
second moment of the expected time that a particle spends
in between the kth and the (k+1)st collision (the brack-
ets () denote the configurational average). Both quanti-
ties depend on the number of collisions k and exhibit a
long-time tail -A+8k '+O(k ). Next we show how
the mean-square displacement (X (t)) is related to both
quantities. It is used to calculate the long-time tail of the
VACF.

In Sec. II we introduce the model and the numerical al-
gorithm which we developed to calculate collision times.
Section III summarizes the numerical results. In Sec. IV
we discuss the relation between the distribution of col-
lision times and the mean-square displacement. In Sec. V
the VACF is discussed.

We study the Lorentz lattice gas on a square lattice
with N lattice sites and with a Bernoulli distribution of
scatterers with density q (i.e., every lattice site is with
probability q a scatterer, independent of the other lattice
sites). A mobile particle starts at a randomly selected lat-
tice site (this choice corresponds to the equilibrium distri-
bution of the Lorentz lattice gas). It follows a straight
trajectory in an arbitrary direction, at a speed of one step
per time unit, until it meets one of the scatterers. Then it
selects one of the 2d possible directions, with equal proba-
bility, and continues its linear motion up to the next
scatterer. A somewhat more general model with different
probabilities a for transmission, P for reflection, and y for
deflection in an orthogonal direction is studied in the
literature. '4 For simplicity we restrict ourselves to the
case of a P y

The position of the mobile particle at time t (relative to
its starting point which for simplicity is assumed to be the
origin of the lattice) is denoted X(t). The time a particle
spends in between the kth and the (k+ 1)st scatterer is
denoted rk. Averaging rk and r) over all possible trajec-
tories, all starting positions of one given configuration, and
all possible configurations of scatterers leads to the first
and second moment of the collision time. The averages
(rk) and (r$) can be calculated very accurately.

In our numerical calculations we use the same algo-
rithm as before in our study of what is called the black
and white model. 's Between two collisions the particle of
the latter model moves as a random walker. In the
Lorentz lattice gas the particle moves straight on in a
deterministic way.

The algorithm to calculate (rg, ) is based on the follow-
ing observation:

N 2(p (i )p (k))

where p;( ) is the probability that scatterer i is the kth
scatterer visited by the particle (the average is over all
scatterers). We prove (I) by means of the identity

(k) (2)
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TABLE I. Mean collision time (rk); St with formula (Sa) and (5b) for densities q 0.2-0.8. o is the
rms error of the fit.

0.8
0.7
0.6
0.5
0.4
0.3
0.2

Number of
configurations

100
100
50
33
50
50
33

Size

200
200
300
350
400
460
560

0.0568
0.0816
0.105
0.127
0.148
0.172
0.187

1.6x10 '
6x1Q '
Sx10 '

1.9x 10
1.4x10 '
2.5 x 10

4x1Q

a'

0.0567
0.0816
0.103
0.122
0.144
0.166
0.176

0.002
0.000
0.150
0.339
0.260
0.399
0.700

14x10 '
6x1Q

1.5x10 '
1.6x10 '

5x10 '
3x1Q
3x10

where s; is the average time the particle, when started at
scatterer i, uses to reach the next scatterer. Since in the
Lorentz lattice gas s; and Np;l'l are both identical to the
distance between scatterer i and the next one (averaged
over the 2d possible scatterers), (1) follows immediately.

We calculate the p;(k)'s by iteration of the master equa-
tion

p (k) ~gp (k —I)p, . (3)
j

where P;, is the probability that scatterer j is the first
scatterer visited by the particle, when started at scatterer
i The. initial densities p;('l and the matrix P can be cal-
culated iteratively in a way comparable to the exact
enumeration method of Havlin et al. 's

The mean-square collision times (r)) are calculated in a
similar way. The basic formula is

.2 .(k) (4)
2d;, , '

Here, s;, is the distance between scatterer i and its neigh-
bor in the direction a.

For details of the algorithm we refer to a forthcoming
publication. The advantage of the algorithm compared to
direct simulation is the automatic average over all trajec-
tories and all starting positions of the given configuration.
Because of the linear motion of the particle between the
scatterers, the algorithm is highly vectorizable. As a
consequence the present results are even more accurate
than those for the black and white model.

III. RESULTS

We investigated configurations of the square lattice for
densities q in the range 0.2-0.8, and for times up to be-

tween 100 and 200 mean collision times. We use config-
urations with + 65000 scatterers which is convenient for
the vectorized algorithm on a CYBER 205. With this size
system the average trajectory does not cross the periodic
boundaries. The results are averaged over as many
configurations as needed to get the statistical error below
1%.

The results have been fitted in the asymptotic range
k 50-100 with

(rk) q '+A'k (5a)
as well as

(rk) -q '+ a'k '+P'k (5b)

At low densities the two-parameter fit is significantly
better than the one-parameter fit: the rms error a of the
former is about ten times smaller. See Table I. Similar
remarks hold for (r)). See Table II. The fitting formulas
are

(r)) ~(2 q)q
—2yA k

(rj)-(2 q)q —2+a "k '+P "k
(6a)

IV. MEAN~UARE DISPLACEMENT

We start by deriving relations between collision times
and total time and between collision times and mean-
square displacement, respectively, First, observe that the
total time Tk that a particle spends between the start and
the kth visit to a scatterer satisfies

Ic —1

(Tk)
I 0

Indeed, one has rI TI+~ —TI. The mean-square dis-

TABLE II. Mean-square collision time (r$&; fit with formula (6a) and (6b).

0.8
0.7
0.6
0.5
0.4
0.3
0.2

Number of
configurations

100
100
50
33
50
50
33

Size

200
200
300
350
400
460
560

0.225
0.368
0.592
0.869
1.31
2.02
3.27

1.3 x 10
6.3x 10
5.8x 10
3.3x 10
7.1x10 '
1.4x10
6.6x 10

0.228
0.367
0.592
0.876
1.29
1.98
3.10

—0.2
0.05
0.0

—0.5
1.2
2.5

12

4.0x10 '
4.7x 10
5.8x 10
6.8x10 '
1.7x 10
1.2x 10
5 6x1Q '
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placement at the time of the kth collision equals

(x'(Ts &) -(z n 'p„(Ta )),
where p, (r) is the probability that the particle is at site n

at time t. A standard calculation leads to the result

&X'(Tk)&-&X'(Tk-))&+&rj (&+2+n&p„(Tk-&)q, &,

(8)
where q„ is the local anisotropy of the distribution of
scatterers

q„(1/2d) P(m —n),
m

with the latter summation restricted to the 2d scatterers m
which can be reached by the particle from site n

At intermediate densities the anisotropic contribution
to &X (TI, )& is very small, e.g., at q —,

' and k ~ 4 a nu-

merical estimate gives absolute values smaller than 0.01
with an error of 0.02. It could possibly become important
at low densities, but we did not investigate this point. We
negiect it in what follows, and use the relation

k —1

&X'(Tp)& - g &r/&. (9)
I ~Q

In the Boltzmann approximation the trajectory of the
particle is described as a sequence of uncorrelated paths
between successive collisions. In this approximation we
replace &rk& and &r)& by. the values q

' and (2 —q)q
respectively. Hence one has k q&Tk&. One concludes
that &X (Tk)&=k(2 —q)q . A first estimate of the
diffusion constant D is then

&X (i)& ——-—&X'(Tk)&-t 1

2
+o(r),

q

where the number of collisions k has to be taken so that
the relation &Tk& t holds. Apparently, the correlation
effect (due to the fluctuations in the distribution of col-
lision times, making &r$&W&rk& ) is twice as large for
&Xz(Tk )& as it is for &X~(t)&. We did not succeed in quan-
tifying the leading-order corrections to Eq. (11). They
are important in the calculation of the VACF and hence
the results derived below should be considered with care
since a potentially important correction term is not taken
into account.

From (9) and (11)one obtains

1 (8/ak)&X'(Tg)&-q
ar q 2 (a/ek)&T, &

1 &~j& —q'
q 2 &ik&

where again the number of collisions k has to be taken
such that &Tk& t.

(i2)

The correct value of the diffusion constant at intermedi-
ate densities is'~

3 (io)
4dq

[the result is not exact, the low-density result is D
(3 —2q)/4dq]. Hence the following asymptotic relation

holds

2d &rp& 2dq

(here d is the dimension of the lattice). The latter expres-
sion has been called the Boltzmann value Da of the
diffusion constant. '

V. THE VACF

Using the expressions (Sb), (6b), and (7), and the
asymptotic relation t =q 'k+ a'ink +0(1) there follows
from (12) that

r

tl p 3 —
q 1,1&X'(r) &
q + [qa" —(1 —q) a'l —1+qa' —1nt+ 0—1

8t 2q 2q t t t

From transport theory one has

&v(0) v(r)& -— &X'(r)&.1 |1
2 8r

Hence we obtain

t

the results were available). We suspect that the even-odd
effect is due to the anisotropic contribution which we dis-
cussed in the previous section. Indeed, consider the aver-
age anisotropy g„&p„(t)q„&,where now p„(t) is the prob-
ability that the particle is at site n, and q„ is zero if no

(i3)

where y [qa" —(1 —q)a']/4q and b 2qa'y. See Table
III for numerical values of y and 8. Note that at t —100
the correction in 1nt/t is about 0.5% of the leading-order
term. We can calculate the contribution in t as well.
But these corrections are meaningless in view of our ig-
norance about the leading-order corrections to (11).

Direct numerical calculations' of the VACF show a
pronounced even-odd effect: the absolute value of the
correlation &u(0)u(t)& is much lower when t is even. At
odd times the results of Ref. 17 for the coeScient y coin-
cide with ours (at densities q 0.6 and q 0.8 for which

0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.0535
0.0830
0.131
0.189
0.269
0.398
0.599

0.0049
0.0095
0.0162
0.0230
0.0309
0.0397
0.0422

TABLE III. The VACF as a function of density; numerical
results for the coefficients y and b of formula (13&.
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scatterer is present at site rr .We find again (by extensive
numerical computation) that the average anisotropy is
small, e.g., at q 0.5 and t 50 it is in absolute value of
the order of 0.0015, with a large error bar. However, the
sign is alternating, positive for even and negative for odd
times. As a consequence, the contribution survives the
double time derivative relating the VACF to the mean-
square displacement. We do not know why the oscillating
contribution affects only the VACF at even times. It is
large compared with the value of the VACF itself, which
for the given values of q and t is less than 0.0001 (as com-
puted using the data from Table III).
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