
PHYSICAL REVIE% A VOLUME 41, NUMBER 6 15 MARCH 1990

Numerical solution of a continuum equation for interface growth in 2+ 1 dimensions
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We present the results of extensive large-scale numerical integrations of the Kardar-Parisi-

Zhang equation for stochastic interface growth in 1+1 and 2+1 dimensions as a function of the

nonlinearity parameter e. We find results for the growth exponents a and P close to those ob-

tained for discrete models. In particular, we find that for large values of e, the values of the ex-

ponents are close to the conjecture of Kim and Kosterlitz, indicating that the smaller values ob-

tained previously are due to crossover effects. In contrast to recent studies of discrete models, our

results do not show evidence of a phase transition in 2+1 dimensions for e 1.

Recently, there has been considerable interest in the
study of rough surfaces' and stochastically ~rowing inter-
faces in the context of ballistic deposition, the Eden
model, ~ 7 and the continuum stochastic equation of Kar-
dar, Parisi, and Zhang ' (KPZ). Much of this interest
stems from the fact that in addition to their connection to
processes of fundamental practical importance such as
thin-film growth and interface dynamics in random
media, these models exhibit nontrivial scaling behavior.
In particular, the scaling of the interface width is expected
to be of the form~

8't. (t) -L'f(t/L's),
where Wq(t) is the interface width on length scale L at
time t, and the scaling function f(x)-x~ for x((l and
f(x) const for x » 1. The dynamics of the interface in

these models has also been showns'0 to be intimately re-
lated to a variety of other problems, including directed po-
lymers in random media, the large-time behavior of ran-
domly stirred fluids, and the evolution of Sivashinski flame
fronts. In particular, Kardar, Parisi, and Zhang have pro-
posed that all these problems lie in the same universality
class as the KPZ equation.

For spatial dimension d 2 (substrate dimension d—1), the results for ballistic deposition, 2 the Eden
model, s 7 and the KPZ equation " agree giving a
and P 3 . However, for d & 2, there is still controversy
over the values of the exponents as well as the universality
of the various surface-growth models. '2 In particular, the
perturbative renormalization-group approach ' to the
KPZ equation has not been successful in predicting pre-
cise numerical exponents for d )2. In addition, previous
attempts to solve the KPZ equation numerically' ' in
2+1 dimensions yielded exponent values (a=0.18, P=0.09-0.15), which were much smaller than those ob-
tained for the discrete microscopic models (a=0.33-
0.40, P =0.20-0.25). Therefore, a more extensive study
of the continuum KPZ equation in 2+ l dimensions is
needed to clarify the apparent disagreement between the
results for microscopic models and the continuum equa-
tion. This study may also help to resolve the question of
whether the existence of a phase transition in 2+ 1 dimen-
sions, recently observed in discrete models, ' ' implies a
similar transition in the KPZ equation.

where h(r, t) is the height of the interface at r at time t,
and the noise term rl(r, t) is assumed to be Gaussian with
delta-function correlation,

& r(ir, t) t(1r', t')) -2Db(r-r')b(t -t'). (3)

The parameter v corresponds to the effects of surface
diffusion, X to sideways growth, and tl(r, t) to the effects
of randomness. In the limit e 0 (weak-cou ling limit)
we recover the Edwards-Wilkinson equation, ' which has
been shown to exhibit logarithmic growth in 2+1 dimen-
sions.

If we now perform a simple change of scale, h
y42D/v and t r/v, Eq. (2) may be rewritten as

8y(r, r)/8r V y(r, r)+is) Vy ) +&(r,r),

where e ), D/2v' and (g(r, r)g(r', r')) b(r —r')b(r
—r'). We note that this transformation reduces the KPZ
equation to a function of a single parameter e, with Je
multiplying the nonlinear term. In Ref. 13, a similar
change of scale [h y(2v/X) and t r/v] was used and
the parameter Je was placed in front of the noise term. A
comparison of the two transformations indicates that they
are the same except for a factor of Ke in the height.

In this Rapid Communication we present the results of
extensive numerical simulations of the KPZ equation as a
function of the nonlinearity parameter e A, D/2v [see
Eqs. (2) and (4) below). First, as a test of our integration
technique, we consider simulations in d 1+1. We find

that we recover the known exponents a 2, P T. In
d 2+1 dimensions, we find exponents which are in the
range of those found for discrete models, in contrast to
previous studies of the KPZ equation. '3'4 In particular,
for large enough e, the asymptotic exponents appear to be
close to those conjectured by Kim and Kosterlitz'2 (KK)
in 2+1 dimensions. Finally, we discuss the evidence for a
phase transition from the strong-coupling limit to the
weak-coupling limit in 2+1 dimensions.

The KPZ equation for interface growth may be writ-
ten as

8h(r, t)/8t vV h(r, t)+)/2)Vh) +tl(r, t), (2)
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In our simulations, Eq. (4) was integrated on a discrete grid in one and two dimensions using a simple finite-difference
scheme. '9 In one dimension our largest grid size was L 16384, while the largest grid size in two dimensions was
L 1024. In discrete form, Eq. (4) can be rewritten in 2+1 dimensions as

y, +~(t j ) y, (i j)+br([y (i,j +1)+y,(i+1,j)—y, (i —1,j) y—,(i,j 1—) -4y, (i,j)]
+(Je/4)[[y, (i,j +1) y—,(i,j 1—)] + [y,(i+1,j) y,-(i —1,j)] ])+v'Arg(i, j;r), (5)

where g(i,j;r) corresponds to independent Gaussian
noise, generated using the Box-Muller transformation, '

and d r was varied to get good convergence.
For e 1 and 2, a time step hr 0.005 was used, while

for s 5, 10, and 25, the time steps used were, respective-
ly, hr 0.005, 0.001, and 0.00025. We checked for con-
vergence by verifying that smaller time steps did not
change our results. In addition to runs with Gaussian
noise, runs were also performed in which the Gaussian
noise g(r, t ) was replaced by "white" noise gn (r, r), where
gtr(r, r) is an independent random variable between —J3
and +K3 such that &gu (r, r)gn (r', r')) iI(r -r')
xb(r-r'). This change in the noise distribution is not
expected to change the exponents, and in fact, the results
for the surface width for the cases of Gaussian noise, and
white noise were essentially identical.

For each run, the width of the interface WL, (r) at time
r was measured as

(6)

where y(r, r) is the height of the surface at position r and
time r. The initial configuration was always y(r, 0) 0
and averages were taken over several runs to get the
growth exponents. Saturation data were obtained from
averages over very long runs. We note that, for early
times, the width is a self-averaging quantity, since, for ex-
ample, if the correlation length at time r has grown to a
size k, then there are (L/X) ' independent samples.
Thus, one run on a system of size L 1024, for early
times, is statistically equivalent to 64 runs on a 128 x 128
system. Furthermore, the simulation of a large system
with L 1024 for the early-time data enabled us to sam-
ple the correct early-time behavior and avoid the effects of
saturation.

Figure 1 shows results for the early-time growth behav-
ior (averaged over several runs) for five different values of
s (e 1, 2, 5, 10, and 25) for systems of size L 1024.
For large s', we find from fits to the late-time data (see
Fig. 1): P 0.24 (e 25), 0.23 (e 25 white noise), 0.24
(e 10), and 0.25 (e 10 white noise). We note that
these values appear to be close to the Kim-Kosterlitz value

P 0.25. It is not clear whether the slight decrease in P
from e 10 to 25 is due to numerical problems for large e
requiring the use of multigrid techniques or is a sign of a
crossover to slightly lower exponents. However, the data
for the exponent a (see below) seem to indicate the form-
er.

For smaller values of e (e 1, 2, 5), the effective ex-
ponents are smaller than the KK value. However, for

5 the slope is still increasing at r 1000, indicating the
existence of strong crossover effects. We note that our
data for WL(r) for e 10 is identical to that of Chakra-

GL(r) ([y(r) -y(0)] )-r ' for r&&L. (7)
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FIG. 1. Log-log plots of width WL(r) for L 1024 for e 1,
2, 5, 10, and 25. Curves are from top to bottom (on the right-
hand side): e 25, e 25 (white noise), e 10, e 10 (white
noise), e 5, e 2, e l. [The white-noise data have been shift-
ed by a constant ln(2) in order to distinguish from the Gaussian
noise data. ] Dashed lines are linear fits to late-time data with

slopes (from top to bottom): 0.24 (e 25), 0.23 (e 25 white
noise), 0.24 (e 10), 0.25 (e 10 white noise). Fit to late-time
data for e 5 has slope 0.18.

I

barti and Toral' over the time range studied by them
(0& r &10), except for a trivial rescaling factor of Jq.
Clearly this range falls in the crossover region for z 10
(see Fig. 1) and this is the reason that they did not obtain
the asymptotic values of the exponents.

Figure 2 shows data for the surface-roughness exponent
a for different values of the nonlinearity parameter e. In
particular, the saturation width WL, (~) as a function of
system size L, for L 8, 16, 32, 64, and 128, is plotted for

5, 10, and 25. For s 25, the slope (0.39+0.01) is
close to the Kim-Kosterlitz value a 0.4. For e 10, the
slope (0.37+0.02) is somewhat below this value but ap-
pears to be increasing with L. This can also be seen in the
data for s' 5. Thus, it appears that the Kim-Kosterlitz
exponents in d 2+1 are in fact the correct asymptotic
exponents for the universality class of the KPZ equation
in the strong~upling limit.

Some additional support for these results is provided by
the correlation function GL(r) which at late times is ex-
pected to scale as,
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FIG. 2. Log-log plots of saturation width Wt, (oo) for systems
of size L 8, 16, 32, 64, and 128 for e 25 (&), 10 (&), and 5
(&). Slopes of dashed-line fits are (e 25) 0.39+0.01 and

a 0.37 ~ 0.02 (e 10, fit to last three points).

For e 25 and for systems of size L 128 and 256, we

find a=0.38. For smaller values of e, the exponent a is
found to be smaller. However, this is due to crossover
effects and for larger L and much longer times, the ex-
ponents are expected to crossover to the KK values.

Finally, we discuss the possibility of a phase transition
from the strong-coupling to the weak-coupling limit. Fig-
ure 3 shows plots of Wq (r) vs in(r) for small values of the
parameter e (e 1, 2, 5), both with Gaussian noise and
with white noise. At early times, all the curves appear to
be straight and consistent with Edwards-Wilkinson's or
"weak-coupling" behavior (e 0) corresponding to loga-
rithmic growth of WL (r) with time. However, for much
later times, even for e 1, the curves appear to bend up-
wards indicating a departure from weak-coupling behav-
ior. Thus, we find no evidence for a phase transition, at
least down to e 1, in the KPZ equation in 2+1 dimen-
sions.

We note that this interpretation of our data is in con-
trast with the observations of a phase transition in discrete
models in 2+1 dimensions reported by Guo, Grossmann,
and Grant, '4 Amar and Family, 's Derrida and Golinel-
li, ' and Yan, Kessler, and Sander. ' As pointed out in
Ref. 15, there may not be a phase transition in the KPZ
equation in 2+1 dimensions, due to the fact that this
equation is continuous. The situation is perhaps analo-
gous to that of the roughening transition: while the con-
tinuous Gaussian model has no transition in two dimen-
sions, the discrete Gaussian model does. Given the obvi-
ous existence of strong crossover effects (especially for
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FIG. 3. Semi-log plots of Wg(r) for e 1, 2, and 5. Curves
are (from top to bottom): e 5, e 2, e 1 (Gaussian noise),
and e ~2 and 1 (white noise). The white-noise curves have been
shifted down by 0.1 and to the right by ln(2) in order not to in-

terfere with the Gaussian-noise data. Dashed lines show fits to
early-time data.

small e), it would be most valuable to formulate general
arguments which predict the existence or absence of a
phase transition in 2+ 1 dimensions.

Our other main result, i.e., the striking agreement at
large values of e with the exponents found in the Kim-
Kosterlitz model, indicates that the KK conjecture may be
correct for models in the KPZ universality class in 2+1
dimensions. Thus, the intuitive suggestion by Kim and
Kosterlitz that their model (because of the emphasis on
sideways growth) corresponds to the large-e limit of the
KPZ equation, and thus exhibits asymptotic behavior at
early times and small system sizes, appears to be in agree-
ment with our numerical results. In this connection, re-
cent simulations of the Eden models 2o and the ballistic-
deposition model2' show an increase in the exponents with
increasing system size towards the KK values. The deter-
mination of the correct universality classes for these mod-
els, as well as analytic predictions of the strong-coupling
exponents for the KPZ equation as a function of dimen-
sion, remain challenging open questions.
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