
PHYSICAL REVIEW A VOLUME 41, NUMBER 6 15 MARCH 1990

Damping in Schrodinger's equation for macroscopic variables
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A simple damping term is proposed, to be added to the Hamiltonian in Schrodinger s equation.
It is shown that this term removes energy without altering the wave-function normalization. It is
also demonstrated that the dynamics of the damped wave function are in reasonable agreement
with (in one dimension): classical motion in a harmonic potential; tunneling in a cubic potential
in a Caldeira-Leggett oscillator bath; and spreading in a flat potential, also in the oscillator-bath
model. The use of this new damping term should allow direct simulation in the time domain of
several problems, including the dynamic behavior of nanometer scale Josephson junctions.

Over the past decade or so, two fields in mechanics have
been revolutionized by progress in two different directions.
The orderly behavior of Newtonian mechanics has unfold-
ed into fractals and chaos, using new mathematical con-
cepts and intense numerical simulation and the conser-
vative structure of microscopic quantum mechanics has
moved into the dissipative macroscopic domain, ~ using
ingenious analysis, and virtually no simulation.

The study of chaotic Newtonian mechanics requires
simulation. Although the motion is typically governed by
a handful of ordinary differential equations, there are few
general analytical results, and progress has come from ei-
ther analog or digital simulation. Dissipative quantum
mechanics, on the other hand, defies simulation. The
rigorous treatment of dissipation in the quantum domain
requires consideration of a large number of degrees of
freedom, each of which is governed by a partial differ-
ential equation. Hence the largest and fastest computers
would be required to compute even the simplest problem.
Yet we want to know what happens to a chaotic, lossy,
Newtonian system as it approaches the quantum limit.
Hence there is a need to find some practical way to simu-
late a lossy quantum system.

Let us be clear about the type of lossy quantum system
that we wish to simulate. We are not dealing with the
quantum mechanics of a microscopic particle in a macro-
scopic potential, like the solid-state Aharonov-Bohm
problem. Rather, we are dealing with the quantum be-
havior of a macroscopic variable, like that for the phase
difference across a Josephson tunnel junction. For the
present purposes, we will ignore fluctuations, and take
only the zero-temperature case. We suppose that in the
absence of dissipation, the variable would be described by
the time-dependent Schrodinger equation. To the Hamil-
tonian of this Schrodinger equation we seek to add a term
that will remove energy.

Some years ago, Kostin showed that such terms exist.
He showed that it is possible to remove energy from the
system, consistent with the classical limit, without chang-
ing the wave-function normalization, provided that the
term is Hermitian, that it commutes with the position
operator, and that it satisfies the following equation:

JS„dx ~ 0,

(Hp+S) V -ih, V,
(2)

where Ho is the usual Hamiltonian, involving terms for
the kinetic and potential energies, and S is the new term
that provides damping. rl' is a damping coefficient with
the units of viscosity, which we will relate to the classical
viscosity. g ((x ) —(x) )'~ is the width of the wave
packet, and x is the position coordinate. The physical
condition for the validity of this damping term is that the
wave function should have a single well-defined packet.
DifFiculties occur for pure momentum eigenstates, or for
problems with multiple bumps in the wave function. In
the first case there would be no damping since (y*y)
would have no time dependence. In the second case,
damping would still occur provided the singularity in the
logarithm is eliminated, but the normalization in Eq. (I)
would make no sense because the width g is poorly defined
for multiple bumps. It is interesting to note that Kostin's
damping term depends only on the phase of the wave
function, while S in Eq. (2) depends only on the wave

(E) is the expectation value of the energy, J is the proba-
bility current density, and S is the new term in the Hamil-
tonian. S, is the partial derivative of S with respect to the
position coordinate x. If there is an S such that the in-

tegral in Eq. (I) is always positive for any wave function,
and this S is Hermitian and commutes with x, then that S
is a candidate damping term.

Kostin proposed a term consistent with these condi-
tions, s and subsequently showed that there is a broad
class of consistent terms. Kostin's term is S~(1/ih)
xln(y/i' ). Unfortunately, he had no quantum results to
compare to the effects of his term.

We propose a new term consistent with Kostin's condi-
tions, and we compare it to two quantum results.

(I) The new term should exponentially inhibit tunnel-

ing, as Caldeira and Leggett have shown.
(2) The new term should cause the wave function to

spread approximately as the logarithm of time, as derived

by Hakim and Ambegaokar for a flat potential.
Schrodinger's equation, with the new damping term,

would be written
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function's amplitude and width.
S in Eq. (2) meets all of Kostin's requirements. It is

Hermitian and commutes with the position operator x. S
from Eq. (2) will have no effect on the ground state, since
the condition (8/8t)(y*tir) 0 is necessary for all station-
ary states, including the ground state. S will remove ener-

gy from any nonstationary state, however, since it shifts
the potential energy up or down so as to oppose any
change in the wave packet. This may be shown by
evaluating Kostin's integral in Eq. (1). If we integrate
Eq. (1) by parts, and take y( ~ ~) 0, we get

ie oo J„S
(E) J„st

t 4 P
(3)

Recall that J„—p, where p y y, and note that S in
Eqs. (2) and (3) may be written as S-$2p/p. These may
be substituted in Eq. (3), yielding d/dt(E)cc —((gp/
p) & ~ 0, and the removal of energy is proven.

The g2 factor is in S to cancel the width dependence
due to the time derivative. That is, the time derivative of
a moving wave packet will have a ( factor in its ampli-
tude. Since we do not want a width dependence in the
effective viscosity, we must write the damping as in Eq.
(2). Similarly, the logarithm serves to renormalize the
derivative, removing all dependence on the local ampli-
tude of the wave function.

The effects of the proposed damping were tested by the
direct numerical simulation of Eq. (2) in the time domain,
using standard techniques and three different potentials:
quadratic, cubic, and flat. The time integration was by a
fourth-order Runge-Kutta algorithm, and the spatial
derivative was computed by simple finite differences. Fig-
ure 1 shows the results for a one-dimensional quadratic
potential (simple harmonic oscillator), where the mini-
mum wave packet was displaced from zero and released.
The Schrodinger equation was normalized as follows in
the simulation: Time was put in units of the reciprocal of
the natural angular frequency too and length was normal-
ized to A, (h/mroo) 'i . The resulting partial differential
equation was

2 8x2 8ti'+ —, x iver+
a'g' In(yr iver) iver i iver,

1 8' . . . „8 . . 8
8r

(4)

and we seek a relationship between a in Eq. (5), and a' in

Eq. (4).
The damped harmonic motion is evident as the wave

passes back and forth in Fig. 1. The time dependence of
the energy of the oscillator is shown in Fig. 2, with the
zero-point energy subtracted. This plot demonstrates the
classical behavior of the damping term, and also fixes the
eff'ective Q such that a-a'. The ratio of unity was found
to be constant for a' between 0 and at least 1.25. This re-
sult is expected, since it can be shown that for a Gaussian
wave packet moving with velocity v, —8S/8x ri'v, the
classical damping force.

To test the effect of S on tunneling, a Gaussian wave

packet was placed in the metastable minimum of a cubic
potential, according to the prescription of Caldeira and

Leggett, and the rate at which the probability increased
in the classically forbidden area was measured from simu-
lations. The potential used was

V 2 x —0.0833x +0.00024e". (6)

The coefficients on the right-hand side were chosen to get
as close as possible to the semiclassical regime, where the
analysis of Caldeira and Leggett should be most accurate,
without using excessive computer time. This potential has
a nearly stationary wave function approximately equal to
the ground-state wave function for the harmonic oscillator
of Eq. (4), but the x 3 term creates a falloff for large posi-
tive x, making this state metastable. The exponential
term in Eq. (6) was put in to prevent the falloff from
becoming too rapid, which would require a finer spatial
grid in the simulation. The spatial variable x was bound-

where a' ri'/mroo is a dimensionless damping parameter,
related to the reciprocal of the Q of a classical oscillator,
and g' g/A. . The variables x and t in Eq. (2) are under-
stood to have been normalized. We note that the classical
equation with equivalent normalization is

x+ax+x 0
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FIG. 1. Perspective view of an oscillating wave packet in a
harmonic potential with damping. Position x is plotted horizon-

tally, and y y is vertical. The plot is displaced upward and to
the right for equal time intervals, showing that the wave packet
behaves like a classical damped harmonic oscillator.

FIG. 2. Normalized energy vs time for the motion of Fig. l.
The ground-state energy of 0.5 has been subtracted, and the ex-
ponentially decaying energy is plotted on a logarithmic scale.
This confirms the classical nature of the motion, and fixes an
effective damping coeScient.
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ed between —3.5 and 11.5. The gradient of the wave
function was set equal to zero at the boundaries.

A region at the exit point of the barrier, in the classical-
ly forbidden area, was chosen in which to measure the
tunneling rate, since it would allow the longest time before
reflections from the edge of the potential would begin to
contaminate the rate. The rate was observed to build up
over time, reach a broad maximum, and then decline. We
have used the rate at the maximum as a measure of the
steady-state tunneling rate. The results are shown in Fig.
3, which plots the rate of probability increase against the
damping factor a, as determined from the behavior of the
harmonic oscillator.

According to Caldeira and Leggett, the tunneling rate
for a cubic potential in the presence of damping should be

460b/2tte

b LLV —A(Lix) a.
All units have been normalized as in Eq. (2). Note that
energy is normalized to hrou. hV is the barrier height,
taken from the top of the barrier down to the ground-state
energy of the initial wave packet. ceo corresponds to the
classical frequency of the metastable well. bx is the dis-
tance under the barrier that the trapped particle must tun-
nel. a is the damping constant of the classical oscillator as
in Eq. (5) and A is a constant. For this problem, with the
assumption of many levels in the well and no backscatter-
ing, Caldeira and Leggett have shown A to be 0.464. The
lower line in Fig. 3 is the result of Caldeira and Leggett,
with no adjustments. The slope of the line could be ad-
justed to match that found by simulation if A is changed
to 0.255, as shown by the upper solid line in Fig. 3.

Hence, the S term in the Hamiltonian suppresses tun-
neling with the expected exponential form, and comes
within a factor of 2 of the predicted coefficient in the ex-
ponent. It should be emphasized that this was accom-

plished with the exact same term that provided classical
damping for the displaced harmonic oscillator, with the
same effective viscosity.

Figure 4 shows the result of setting the potential energy
in He to zero everywhere and starting the simulation with
a narrow wave packet. Hakim and Ambegaokar3 have
shown that with enough damping, the square of the wave-

packet width should grow more or less logarithmically in

time

g2-g$+ —a ' In(at ),4 (s)

where ga is the initial width. This is in marked contrast to
the frictionless case, where the square of the width is
known to grow as the square of the time. Figure 4 plots
the square of the width g against time, along with Hakim
and Ambegaokar's prediction. Note that to fit the data
we changed Hakim and Ambegaokar's prefactor of 4/tr to
—l. It is seen that damping from S is in approximate
agreement with the predictions. We have found that
damping from S agrees with Eq. (S) (with the reduced
prefactor) within =20% over a decade in time. Again,
we point out that this behavior was obtained only by
changing the potential in Ho. The damping term S was
kept the same as for the simple harmonic oscillator and
for the cubic tunneling problem.

We have shown that S in Eq. (2) reasonably satisfies a
stringent set of constraints, and so should be useful in
simulations of damped macroscopic quantum variables.
We note here that we have also simulated Kostin's term
Sceln(y/y ). This damping term produced similar re-
sults in the case of the harmonic oscillator and tunneling
in a cubic potential, but showed too strong a time depen-
dence for the spreading wave function in a flat potential. 9

We also note that Kostin's term is essentially the phase of
the wave function, and as such it has difficulties with

gauge invariance. Even so, our choice of S is probably not
unique. The time derivative of any monotonic function of
y y would remove energy without changing the normali-

10

10

10-'
0.2 0.4 0.6 0.8 1.0

FIG. 3. Normalized tunneling rate vs damping for a wave
packet in the metastable minimum of a cubic potential. The cir-
cles are the result of simulations. The line marked a is the unad-
justed result of Caldeira and Leggett, A 0.464 (see Ref. 2).
Line b would be the Caldeira and Leggett result if their parame-
ter A were adjusted to 0.255.
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FIG. 4. Square of the width of a wave packet as a function of

time for a flat potential. The solid lines are from simulation.
The dotted lines are from Ref. 3, scaled down by 25%.



3398 A. DAVIDSON

zation. The claim for Eq. (2) is that its results satisfy
Kostin's requirements, and are in reasonable agreement
with the available microscopic analysis. It should there-
fore allow meaningful simulation on modest computers of
Schrodinger's equations for a macroscopic variable in a
lossy environment.

In summary, a term has been proposed and tested for
putting damping directly into Schrodinger's equation. We
find that for the case of a single wave packet it is possible
to reasonably reproduce the known results for tunneling
from a oneMimensional cubic potential, for the spreading
of a wave packet in a flat potential, and for classical

damping of a packet in a harmonic well, all with the iden-
tical term S in Eq. (2). It is to be understood that the use
of this term to describe losses in macroscopic quantum
systems is phenomenological, nonunique, and apparently
limited to quasiclassical wave-packet solutions. Nonethe-
less, it seems to be well suited for the study of small area
Josephson tunnel junctions, 'o 's and dissipative chaotic
systems in the quantum limit.

It is a pleasure to acknowledge many discussions with
P. Santhanam, C. C. Chi, and M. P. A. Fisher.
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