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We have considered the problem of random multiplication of particles or fields in a diffusive

medium. Both the short-time and asymptotic behavior is evaluated. We have used already
known results on the density of states in disordered systems and on transverse spin depolarization
in a medium with random magnetic fields. We have treated both bounded and unbounded ran-

dom potentials. We reaSrm certain recent results and also point out some differences.

In recent years the subject of random multiplication of
diffusing particles has attracted much attention. More re-
cently several contradictory results have been reported in

the literature. ' The basic equation governing this pro-
cess in d dimensions can be written as'

8P(x, t)
DVsP(x, t)+ V(x)P(x, t),

where P(x, t) is the particle (or field) density, Vs the d-
dimensional Laplacian, D the diffusion constant, and
V(x) the random potential (or field) with given statistics.
The above Eq. (1) appears in diverse fields such as phys-
ics, chemistry, and biology. For V(x) being a strictly neg-
ative random variable (bounded from above by zero) the
problem reduces to that of a random walk in a random
trapping medium. These models have been used success-
fully in studying several physical situations ' such as
trapping of excitons, diffusion controlled reactions, dielec-
tric relaxation, self-attracting polymer chains, and chemi-
cal binding of interstitial hydrogen in metals by impuri-
ties, etc. When the random potential V(x) is replaced by
an imaginary random potential [iV(x)l, the problem
reduces to that of transverse spin depolarization of a
diffusing particle in an environment with random magnet-
ic fields. '

The problem we address in this paper is when the ran-
dom potential V(x) takes both positive and negative
values, and for this case contradictory results have been
reported in recent literature. ' This model is related to
the evolution of biological species ' which move in a space
via diffusion and V(x) taking positive and negative values
at different spatial points representing the distribution of
nutrients and inhibitors, respectively. Another physical
realization is the chain reaction with random fissile distri-
butions. Such a model has been studied for a given sin-
gle realization of the random potential and the asymptotic

behavior has been shown to be equivalent to that of a
quantum localization problem, in particular to the hop-
ping process from one localized center to another. In such
a case for a given single realization of random potential
the growth of P(x, t) is characterized by strong intermit-
tency in that the asymptotic behavior is concentrated in
several peaks which grow exponentially. The peak posi-
tions are situated at the space points where V(x) takes on
large positive values. Such a sensitive functional depen-
dence of P(x, t) on the realizations of the random poten-
tial lead to non-self-averaging behavior (namely fluctua-
tions dominating the mean values 3).

In this work we calculate the ensemble- and spatial-
averaged behavior of P(x, t) for both short- and long-
time (asymptotic) domains. Our treatment is simple and
we make use of already known rigorous asymptotic results
on electronic density of states in disordered systems and
on spin-polarization decay. We have considered both
Gaussian and bounded random potentials. First, we
reaffirm the asymptotic results due to Rosenbluth for
Gaussian potentials and give an expression for short-time
evolution. We then consider the case of bounded poten-
tials where certain differences with the known results are
pointed out.

One can readily notice that Eq. (1) is similar to the
quantum problem of electrons moving in a random poten-
tial. In particular, if we replace the time t by imaginary
time ( —it), (1/2rtt) by D, and V(x) by —V(x) in the
Schrodinger equation (by setting 5 equal to unity) we get
Eq. (1). The attractive potential in Eq. (1) corresponds to
a repulsive potential for the corresponding Schroding-
er equation. If we assume the initial condition for
P(x, t 0) no to be space independent, then the asymp-
totic expression ((P(x,t))) (two angular brackets denote
the ensemble average over all realizations of the random
potential and spatial average over entire volume) is given
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by, apart from preexponential factors

«P(xr))) np dEe 'p(E),

where p(E ) is the averaged density of states for the corre-
sponding Schrodinger equation. A similar expression can
be found for the probability that the particle is found at
the origin at time t given that it starts at the same space
point at r 0. ' It can be clearly seen from Eq. (2) that
the long-time behavior is dominated by the negative-
energy tail in the density of states.

The nature of the density of states in disordered con-
densed-matter systems has been studied over several de-
cades. '32' The analytical treatments are based on
different techniques such as node-counting methods,
semiclassical methods, wave mechanical calculations,
Feynman's path-integral formulations, field-theoretic
instanton approach, ' functional space, and by
replica-functional integral representation of one-particle
Green's function. " For the case of Gaussian white-
noise random potentials, i.e., &V(x)) 0 and &V(x)V(x'))

cr b(x —x'), the density of states in the tail region is
given by 28, 32,33

p(E) - ( E )'" ""exp(—cd ( E (' "')
where d is the dimensionality of the medium and

c~ 8JD/(3a ). Now keeping the leading exponential
term in the density of states, using Eq. (2) and carrying
out the integral by the saddle-point approximation we get
immediately for one dimension «P(x, t))) exp[(r t /
(48D)]. The coefficient in the exponent is exactly the
same as that obtained by Rosenbluth. For two and three
dimensions the long-time behavior of «P(x, t))) is diver-

gent. For the case of Gaussian-correlated potentials
&V(x)V(x')) g((x —x'() [where g(x) is an arbitrary
decaying function of x, provided it can be expanded in the
form of a Taylor series at x 0], the asymptotic result for
the density of states in the negative-energy tail is given

by 32 34 35

p(E) I E I exp[ —
) E l~/2g(0)],

which in turn implies «P(x, t))) exp[g(0)t /2]. These
results confirm the recent results due to Rosenbluth.
Usually, for correlated Gaussian disorder, the density of
states in the negative-energy spectrum cross over to
asymptotic Gaussian form (as mentioned above) from the
Urbach regime (namely the pure exponential dependence
on the energy). This Urbach regime spans several orders
of magnitude in the energy spectrum depending on short-
range correlations of random potentials and provided that
the correlation function g(x) is integrable, i.e., fg(x)d x
exists. 3 This is suggestive of the fact that the asymptotic
behavior exp(at ) is reached through a crossover from the
exp(ct) dependence [even though strictly speaking Eq. (2)
is valid for the asymptotic regime).

Now we will turn to the short-time behavior of
«P(x, t))). To this end we use the approach due to Zeldo-
vich et al. and due to Czech and Kehr' ' for the spin-
depolarization problem. We first discretize Eq. (1). In
this case the particle hops randomly with hopping rate
y( D/a ) on a lattice with spacing a (taken to be unity).

The discretization procedure itself amounts to introduce a
correlation in the random potential of the order of a and
random potentials at different points are assumed to be
uncorrelated Gaussian variables with variance cr. For
simplicity we assume that the particle starts at the origin,
then the solution for «P(x, t))) is given by3'

((P(xt)B , &&exp QV, t, (t) )tvl)xw,
I'

(3)

where t, (r) is the total time that the particle has spent on
the particular site r in time t and & )aw and & )ly, l

represent the average over different realizations of the
random walk and different configurations of V„respec-
tively. First, we can readily perform the average over [V,]
and at once we get

p

2

((P(x, t)))-&exp Zt,'(t) )xw.
P

(4)

Now the problem has reduced to that of a spin-depo-
larization problem with the replacement of cr by —cr

[see Eq. (2.5) in Ref. 16]. Having established the one-to-
one correspondence with spin-depolarization problem we
state the final results (for details see Ref. 16). Using
Jensen's inequality for convex functions one easily obtains
a lower bound for «P(x, t))) given by

2

((P(xt&'t'taexp , Xt, (t))xw
2 I

(5)

where X, is given by A,
—ln(1 —p). Substituting this ex-

pression into Eq. (2) and defining the new variable
x E+V and further carrying out the integral by saddle-

The expression (5) is nothing but the first cumulant ex-
pansion of (4) and the equality is valid in the short-time
domain (until the terms in the exponent become of the or-
der of unity' ). The right-hand side of Eq. (5) can be
written as

fO g

exp o'„dr(r —r)P(O, r)

where P(O, t) is the probability of finding the particle at
the origin at time t, being started at the same point at time
t 0. For pure random walks' for time t & (1/y), P(O, t)
is of the order of unity and for time r & (1/y), P(O, t)-t ~ . Hence in the region 0 & t & (1/y), we have for
all dimensions d that «P(x, t))) grows as exp(a t /2)
and in the region t & 1/y it grows as exp(ccr t ~ ),
exp(ccrc tint), and exp(aors t) in one, two, and three di-
mensions, respectively. '

Finally, we turn to the problem of when the random po-
tential V, is bounded. For simplicity we consider the case
where the potentials are binary in nature; i.e., it takes only
two values + V and —V randomly with probability p and
(1 —p), respectively. In the corresponding quantum prob-
lem the energy spectrum is bounded from below at energy
( —V). At this boundary the density of states shows an
essential singular behavior (namely Lifshitz singularity)
and isgivenby' ' '

p(E) exp( —con—st%, )E+V) ~ ),
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point approximation, we get

«P(x, r) »-exp(Vr)exp[ —ag(k t)

In particular, we note that the correction to the leading
exponential exp(Vt) is dimensionality dependent and is

quite different from that suggested by Zeldovich et al.
for bounded potentials [which is independent of dimen-
sionality and is given by exp(Vt —bt/1nr)]. We would
also like to point out that if the potential V(x) in Eq. (1)
is bounded from above by a positive value of, for instance,
V,„, then by defining P(x, t) f(x, t)exp(V, „t) it is
clear from Eq. (1) that f(x, t) is nothing but the survival

probability for the pure trapping model with effective po-
tential V,s(x) [V(x) —Vm, „], which is negative and
bounded by zero from above. Hence it is clear that the
leading correction to our original problem [exp(V,„t)] is
nothing but the leading term for the total survival proba-
bility in the corresponding trapping problem which is
known for various forms of continuous random potentials
(see Refs. 14 and 37).

We have calculated the asymptotic behavior based on
our existing knowledge about the density of states. Alter-
natively, in one dimension one can solve this problem by
knowing the span distribution of a random walk. In this
procedure one first performs the average over the random
potential realizations in Eq. (3). The remaining average
&f(4,})&aw, with respect to all the realizations of the ran-
dom walks, is performed as follows. For a given time t
which corresponds to n random steps we consider those
realizations where the particle visits s distinct sites.
W„(s) is the probability that the random walk visits s dis-
tinct sites (s is bounded from above by n) If site r. is visit-
ed among s then t„(n) in Eq. (3) is taken to be n/s; i.e,
one assumes all the s sites are visited with equal probabili-
ty and then one performs the average with respect to
W„(s) (for details see Ref. 16). Consider, for example,
when the random potentials at different sites are uncorre-
lated and take on the values + V and —V randomly with
equal probability. Then one can easily perform the aver-

where the expression for W„(s) in one dimension is given

b 39

f

~ ( ) gn ~ (2J+1)'x'n
s j 1, S

xexp
x (2j+1)zn

2$
(7)

Now it is sufficient to keep the first term in Eq. (7) (for
the asymptotic regime) and, substituting back into Eq.
(6), replace the summation by an integral, and with the
saddle-point approximation we obtain

«P(x, t)» -exp(Vn An 'i—') .

This has exactly the same time dependence as mentioned
above. This procedure can be easily carried out for other
forms of random potentials. For the case of rectangularly
distributed (uniformly distributed) continuous potentials
between + V and —V, we obtain the asymptotic result

«P(x, t) » -exp(Vr)exp[ —ct 'i'(inr ) 'i'] .

Our results for rectangular distributions should be com-
pared with the known ' ' singular behavior of density of
states near the band edge, namely p(E)-exp(cln iE
+ V i / i E+ V i

'i ). Alternatively, this method of span dis-
tribution of random walks can be used to calculate the
asymptotic behavior of density of states for various forms
of random potentials. '
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