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Associative memory in an analog iterated-map neural network
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The behavior of an analog neural network with parallel dynamics is studied analytically and nu-

merically for two associative-memory learning algorithms, the Hebb rule and the pseudoinverse
rule. Phase diagrams in the parameter space of analog gain P and storage ratio a are presented.
For both learning rules, the networks have large "recall" phases in which retrieval states exist and

convergence to a fixed point is guaranteed by a global stability criterion. We also demonstrate nu-

merically that using a reduced analog gain increases the probability of recall starting from a random

initial state. This phenomenon is comparable to thermal annealing used to escape local minima but
has the advantage of being deterministic, and therefore easily implemented in electronic hardware.
Similarities and differences between analog neural networks and networks with two-state neurons at
finite temperature are also discussed.

I. INTRODUCTION

The design of artificial neural networks is the inverse of
a standard problem in modern nonlinear dynamics. Usu-
ally, the goal is to describe the set of attractors of a given
nonlinear dynamical system such as a set of differential
equations or an iterated map. In neural networks, the
starting point is a set of desired attractors, and the prob-
lem is to find a dynamical system which possesses these
attractors, and if possible, no other "spurious" attractors.
Models of neural networks using two-state neurons are
outside the realm of standard nonlinear dynamics, where
analytical techniques frequently assume a continuous
state space. On the other hand, networks of two-state
neurons are well treated within spin-glass theory, and this
avenue has recently lead to many important analytical re-
sults, particularly on the problem of associative
memory. '

Using these new results to make fast computing de-
vices requires parallel algorithms and architectures;
sequential dynamics —where neuron states are updated
one at a time —implemented in software on a convention-
al computer is simply too slow for any large neural net-
work application. Unfortunately, parallel computation is
plagued with stability problems not found in serial dy-
namics. Stability is also a central problem in the design
of very large scale integrated (VLSI) electronics, especial-
ly when extensive feedback is present.

In this paper we show that stability problems associat-
ed with parallel dynamics in associative-memory net-
works can be eliminated by using analog neurons.
Specifically, we present phase diagrams for analog associ-
ative memories using the Hebb rule and the pseudoin-
verse rule which show that over a large range of neuron
gain —defined as the maximum slope of the neuron
transfer function —these networks can be updated in
parallel while maintaining good recall and guaranteed
convergence to a axed point This feature .distinguishes
analog networks from Ising-spin networks (with or
without temperature) which must be updated serially to

prevent oscillation. We will also discuss a second impor-
tant advantage of analog associative memories, which is
that lowering the neuron gain can greatly increase the
chances that an initial state far from all memories will

correctly flow to a recall state without getting trapped in

a spurious attractor.
In comparing the deterministic dynamics of analog

networks to the thermodynamics of Ising networks, there
is a strong, though imperfect, analogy between tempera-
ture and analog gain. This analogy is strengthened by the
frequent appearance of the hyperbolic tangent function
both in mean-field statistical mechanics of the Ising mod-
el and in the circuit equations describing electronic and
biological neural networks. The analogy between tem-
perature and gain is more than just formal: the power of
stochastic dynamics to "anneal" a neural network into a
good (low-energy) solution is also seen in analog neural
networks using smooth nonlinear neuron transfer func-
tions and completely deterministic dynamics. The useful-
ness of analog annealing is supported by analytical and
numerical results (to be reported elsewhere ) showing
that the number of spurious attractors for a symmetric
analog neural network can be greatly reduced by lower-

ing the neuron gain. The use of analog annealing and the
gain-temperature analogy has been discussed by Hopfield
and Tank in the context of the traveling-salesman prob-
lem, and similar ideas have been used in the field of
artificial vision.

The rest of the paper is organized as follows: In Sec. II
we define the iterated-map neural network and show that
for a broad range of transfer functions and symmetric
connections, the only attractors are period-two limit cy-
cles and fixed points. We also show that all limit cycles
can be eliminated by lowering the neuron gain (maximum
slope) below a critical value. Some of the results in this
section were presented in Ref. 10. In Sec. III we investi-
gate analog associative memories with the Hebb" and
pseudoinverse' ' learning rules and present phase dia-
grams in the plane of neuron gain /3 and memory storage
ratio o.. In Sec. IV numerical results for the associative-
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memory networks are presented. These results agree well
with the analytical results of Sec. III. The numerical re-
sults in Sec. IV also show that the probability of retrieval
is increased at low analog gain, suggesting the use of ana-
log annealing to enhance recall. Finally, some applica-
tions of these results and conclusions are presented in
Sec. V.

II. MODEL AND STABILITY CRITERION

A. The iterated-map network

The dynamical system we study is an iterated-map
neural network in which all neurons have continuous
input-output transfer functions and updating is done in
parallel. ' The network is defined by the set of coupled
nonlinear equations,

x;(t+1)=F; g T)x)(t)+I,

where the real variables x;(t), i =1, . . . , N describe the
state of the system at time t. The interconnection matrix
T; is assumed real and symmetric. The external biases I,
and the nonlinear neuron transfer functions F, are also
real valued and may be different for each i.

The continuous-time version of Eq. (1), given by

dx;(t) = —x;(t)+F, gT, x (t)+I,
dt

matrix T, . %hen T, has negative eigenvalues, A, ,„ is
the most negative eigenvalue. The requirements for the
functions F,- are rather liberal, as illustrated in Fig. 1.
Notice that the F, do not need to be bounded at large ar-
gument, can be concave-up or concave-down at any finite
argument, and can be a different function for each neu-
ron. Figure 1 also shows the maximum slope 13, for a
particular F, .

L(r)= ,' g—T„x,(r)x, (r) Q —I,x, (r)+ g G, (x, (r)), (Sa)
l, J

X

G, (x;)=J F; '(z)dz,
0

is a Liapunov function when the stability criterion is
obeyed. That is, L (t) decreases at each discrete time step
and is bounded below and so must ultimately reach a
minimum. The minima of L(t) are at the fixed points of
Eq. (1),

x (r)=x,'(r+1)=F, g T; x*(t), i =1, . . . , N .
J

The function L (t) is similar to the Liapunov functions
for continuous-time (differential-equation) analog systems
given by Hopfield' and, in more general form, by Cohen
and Grossberg. " An important distinction is that
continuous-time analog networks with symmetric con-

can be cast in the form of the electronic circuit equations
described by Hopfield' by the change of variables
u;(t)/R, = g,. T; x, (t)+I, , r'=R, C, t, f, (z):F, (z/R, )—
under the assumption that the time constants R, C, are
equal for all i. These substitutions give the following
equations for the neuron input voltages u;(t'):

du, (t')C;, = —u;(t')/R;+ g T, f (u (t'))+I; . (3)dt'

In these circuit equations, R; is interpreted as the total
fan-in resistance at the input of neuron i and C, is the
neuron input capacitance.

F(x)

B.Global stability criterion

In Ref. 10 we prove two properties of the iterated-map
neural network, Eq. (1), for symmetric T, and all F,
monotonic single-valued functions which change in mag-
nitude slower than linear at large argument. Under these
conditions, (i) all attractors of Eq. (1) are either fixed
points or period-two limit cycles, and (ii) all limit cycles
can be eliminated, leaving only fixed-point attractors, by
lowering all neuron gains 13, to satisfy the stability cri-
terion

1
for all i,

where P, ( )0) is the maximum slope of F, (the F, are tak-
en to be monotonically increasing without loss of general-
ity) and A, ;„is the minimum eigenvalue of the connection

FIG. 1. (a) An example of a nonlinear neuron transfer func-
tion which meets the conditions for the dynamic properties
given in Sec. II B. Those conditions are the following: Each
function must be single valued and monotonic and must grow in
magnitude slower than linear in the limit of large positive or
negative argument. The maximum slope P, which appears in
the stability criterion (4) is also indicated. (b) An example of a
nonlinear function F (identical for all i) which meets the less
general conditions assumed for the associative-memory phase
diagrams, Figs. 2 and 3. These conditions are given at the be-
ginning of Sec. III.
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nections will converge to a fixed point for any set of
single-valued, monotonic nonlinearities, whereas the
iterated-map network must also satisfy Eq. (4) to guaran-
tee convergence.

C. Analog gain versus temperature and the TAP equations

For the particular choice of nonlinear transfer function
F, (x) =tanh(px ), the fixed points of (1) correspond to the
solutions of the "naive" mean-field theory for the equilib-
rium magnetization of an Ising model with spin coupling
matrix TJ at temperature 1/p. Naive refers to the fact
that a proper thermodynamic treatment of the Ising
model must also take into account the so-called reaction
field due to the e8'ect of a spin's own field on itself. ' '
The mean-field theory for the Ising spin glass' (random
symmetric T; ) inclu—ding the reaction field —was ana-
lyzed by Thouless et al. ' (TAP), who showed that in
equilibrium, the average magnetization x; at site i is given

by the solution to the set of equations

x; = tanh P h;+ g T/x —Px, g T,/~(1 —xt )

J J

where the third term in the large parentheses is the reac-
tion field and h; is a local externally applied magnetic
field.

Attempts to solve the TAP equations by iteration have
shown that convergence is rare for either parallel or serial
updating, usually leading to a period-two limit cycle for
parallel dynamics and a periodic or chaotic attractor for
sequential dynamics. ' ' Using better techniques than
straightforward iteration to find TAP solutions is also
problematic, because of the many shallow saddle points
throughout the energy landscape. ' Thus, while the TAP
equations give the correct thermodynamic description of
the mean-field Ising model, they are ill suited as an ana-
log dynamical system on which to base a fast, stable ana-
log neural network.

In the limit p~ ~ (T=0) the reaction field vanishes
and the TAP equations agree with the naive mean-field
theory. ' However, in the phoo limit, TJ must be posi-
tive definite to insure stability by Eq. (4). Unfortunately,
this requirement is inconsistent with most currently used
learning algorithms. For example, the usual practice of
setting T;; =0 for all i yields matrices which cannot be
positive definitive.

Iteration of the naive mean-field equations for finding
the ground state and other properties of spin glasses has
been previously investigated by Soukoulis et al. These
authors found that the naive mean-field equations gave
surprisingly good quantitative results, comparable to
finite-temperature Monte Carlo techniques. A stability
criterion based on local stability analysis was also
presented for their iterative method. Later, Reger
et al. argued that for spin glasses, the results obtained
by iterating and annealing the naive mean-field equations
are inferior to those found by Monte Carlo methods and
are only useful for studying qualitative erat'ects. However,
the comparisons of Reger et al. were made specifically
for the finite-range spin-glass problem and do not neces-
sarily apply to neural networks. In general, using an ana-

log approach rather than a thermal approach for finding
good solutions in a complicated landscape is better suited
to neural networks than spin glasses. This is because
there are many fewer metastable (spurious) states in a
neural network than in a spin glass ' and also because
the basins of attraction for recall in a neural network are
very large —much larger than the basins of the spurious
states —and therefore should be robust to the distortions
of the landscape caused by annealing (see Sec. IV B).

III. ANALOG ASSOCIATIVE MEMORY

x;(t+1)=F g T;,x, (t), i =1, . . . , N .
J

We consider connection matrices T;, for two learning
rules, the Hebb rule" and the pseudoinverse rule, ' '" for
random unbiased memory patterns P'=+1. For the
Hebb rule,

aA

T)=—g PP, T;, =0
p=l

(9)

where O.N is the number of stored memory patterns. For
the pseudoinverse rule,

T„=O (10a)

where C is the inverse of the correlation matrix
,V

C„,=—g Pg,'.
i =-1

(10b)

Notice that we are considering the modified pseudoin-
verse rule with T;, =0 studied by Kanter and Sompolin-
sky. ' These authors showed that this modification in-
creases the basins of attraction for the memories without
sacrificing error-free recall. The analysis in the Secs.
III A and III B assumes p&0, 0&a & 1, and X)&1.

We now apply the iterated-map neural network to the
problem of associative memory. In this section we as-
sume a less general form for the iterated-map network,
where I, =0 for all i and the nonlinear functions F, are
odd, single-valued functions and identical for all i. We
also assutne the function F (dropping the index i) has its
maximum slope at zero input F'(0)=p, and that the
slope of F is a nonincreasing function of the magnitude of
the argument. The maximum slope p will be referred to
as the analog gain of the neurons. Possible forms for F
include, but are not limited to, tanh-like functions. As in
Sec. II B, we do not require that F saturate at large argu-
ment though it must increase in magnitude slower than
linear at large positive or negative argument. Without
loss of generality, we take F to be monotone increasing
and normalized such that the size scale of the accessable
state space is 0 (1), that is, a nonzero solution of
m* =F(m "

) is 0 (1). Figure 1(b) shows a function which
meets the conditions assumed in this section. Under
these assumptions, the associative-memory network is
given by the set of equations
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A. Hebb rule A, ;„=—a [N(1 —a)- fold degenerate] (1 la)

A phase diagram for the Hebb rule showing four dis-
tinct regions in the parameter space of analog gain p and
the storage ratio a is shown in Fig. 2. The four regions
are characterized as follows: In the region marked "ori-
gin' a fixed point at the origin, x;=0 for all i, is the
unique global attractor. In the region marked "spin
glass*' the origin is no longer an attractor, but neither are
the memory recall states. In this region the network con-
verges to a fixed point with small [O(N ' )] overlap
with all memories. In the region marked "recall" fixed
points having large overlaps with memory patterns exist
and have large basins of attraction. In the recall region
the iterated map works well as an associative memory.
The boundary separating recall from spin glass is shown
in Fig. 2 for the special choice F(z) =tanh(pz). For this
choice of nonlinearity, this boundary agrees with the fer-
romagnetic transition curve found by Amit et al. for
the Ising model at finite temperature. However, the
analysis leading to this curve, presented in Appendix A,
is not restricted to case F(z)=tanh(pz). In the region
marked "oscillation" the stability criterion (4) is no
longer obeyed and convergence to a fixed point is not
guaranteed. Numerically, we find that limit cycles are
quite prevalent in this region, especially for larger values
of P and a (see Sec. IV).

The stability of the origin can be determined by linear-
izing Eq. (8) about the point x; =0, which gives N decou-
pled linear iterated maps: p, (t +1)=pi,, ((), (t) for evolu-
tion along the ith eigenvector of the matrix T,", with as-
sociated eigenvalue A, For ~pA, ;~ ( I for all i, the origin
is stable, and because of the form of the function F, it is
also the unique attractor of Eq. (8). Notice that for
I,, =A, ;„, this condition is identical to the global stability
criterion (4).

The minimum and maximum eigenvalues for the Hebb
matrix (9) with a ( 1 in the large-N limit are

A, ,„=1+2&a (edge of continuous distribution) .

(1 lb)

m'= — y exp —y 2 F oy+m'1

&2ir

C= — y exp —y 2 F' cry+~'1&2n.
q= f dy exp( y /2)F (ay—+m'),1

21T

&aq
1 —C '

(12a)

(12b)

(12c)

(12d)

Thus for e & 1 the boundary where the origin loses stabil-
ity is defined by the condition p=1/(I+2&a). From
the value of A, ;„, we can also identify the border of the
oscillatory region as p= I/a. Crossing the origin —spin-
glass line corresponds to a forward pitchfork bifurcation
of the origin, analogous to a second-order transition in
thermodynamics. Note that this transition occurs along
a different curve from the corresponding
paramagnet-spin-glass transition in the Ising model asso-
ciative memory.

Crossing the border from the recall region into the
spin-glass region marks the disappearance of a fixed point
having a large overlap with a single memory. As in the
case of the Ising model network, this transition is due to
the random overlaps of the state of the network with pat-
terns other than the one being recalled. These overlaps
generate an effective noise source which destabilizes the
fixed point near the recalled pattern. Because our system
has no reaction field (by design), the analysis is somewhat
simpler than the replica' or cavity ' approaches used to
analyze the thermodynamic Ising-model network. In Ap-
pendix A we derive a set of four self-consistent equations
assuming random, unbiased memory patterns:

0.20

0.15

I ~

I~
~

where I"(z)=dF(z)/dz. The quantity m' in Eq. (12) is
the overlap of the network state vector with a single
memory pattern, arbitrarily chosen to be pattern 1. In
the recall state, these equations have a self-consistent
solution with m ' —1. For the particular choice
F(z) =tanh(pz), the quantities C and q obey the usual re-
lation C =p(1 —q).

0.10-
origin

B. Pseudoinverse rule

0.05-

0.00
10 100

FIG. 2. Phase diagram for the Hebb rule associative memory
with neuron transfer function F(z) =tanh(pz). The parameter p
is the neuron gain, and a is the number of stored patterns divid-
ed by the number of neurons ¹ A11 borders separating the re-
gions are based on analysis at large N, as described in the text.

The pseudoinverse learning rule, Eq. (10), offers several
advantages over the Hebb rule, chiefly a greater storage
capacity, error-free recall states, and the ability to store
correlated patterns. ' ' Its primary disadvantage is that
it is nonlocal, meaning that a given element of the con-
nection matrix, T;, cannot be determined from the ith
and jth elements of the memory patterns, but depends on
all components of all memories. However, iterative
learning algorithms have been described which are local
and converge to the pseudoinverse rule.

A phase diagram for the pseudoinverse rule showing
three distinct regions depending on analog gain p and
storage ratio a is shown in Fig. 3. The phase diagram
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FIG. S. Numerical data for the Hebb rule showing the frac-
tion of random initial states which lead to the four types of at-
tractors: the origin (circle), a memory pattern or its inverse

(square), a spurious fixed point (triangle), or a period-two limit

cycle (cross), as a function of neuron gain P. Each data point
represents a total of 1000 initial states from 20 matrices con-
structed from random, unbiased memory patterns with N =100.
The three panels are for aN=S, 10, and 20 patterns, and the
strip along the top indicates the regions of the phase diagram,

Fig. 2, for that value of a.

FIG. 6. Numerical data for the pseudoinverse rule showing
the fraction of random initial states which lead to the four types
of attractors: the origin (circle), a memory pattern or its inverse
(square), a spurious fixed point (triangle), or a period-two limit
cycle (cross), as a function of neuron gain P. Each data point
represents a total of 1000 initial states from 20 matrices con-
structed from random, unbiased memory patterns with N = 100.
The three panels are for aN=10, 2S, and 70 patterns, and the
strip along the top indicates the regions of the phase diagram,
Fig. 3, for that value of a.

the phase diagrams for the Hebb rule (Fig. 5) or the pseu-
doinverse rule (Fig. 6).

The data in each panel were generated as follows: For
each of 38 values of P, ranging from P-0.3 to P-90, 20
T; matrices were generated using random, unbiased pat-
terns @=+1. For each matrix, 50 initial states located
at random corners of the state space [x, (0)=+1,
i =1, . . . , 100] were chosen and the attractor for each
was found by iterating the map, Eq. (8). The condition
for convergence was ~~x(t) —x(t —

2)~~ (10, where dis-
tances are defined ()z()=—( —,'X) g, (z, (. Though the initial
states were located at the corners of the hypercubic state
space, all attractors were real-valued X vectors located
away from the corners of the state space. Plotted in each
panel are the fractions of the 20X 50=1000 runs at each
p which converged to each of the four attractor types. A

fixed point x* was counted as a recall state if, for any
p, (~sgn(x*)+P(~ (0.05; similar criteria were used to
recognize the other attractor types.

Along the top of each panel in Figs. 5 and 6 is a strip
marked "orig. ,

" "recall, " etc. These strips show the re-
gions of the theoretical phase diagram (from Figs. 2 and
3) for the particular value of a in that panel. The appear-
ance of the various attractor types corresponds very
closely to the theoretical regions in these slices, giving
strong numerical support to the phase diagrams. Furth-
ermore, the data indicate that the basins of attraction for
limit cycles in the oscillation region do occupy a
significant part of state space as soon as the stability cri-
terion is violated. That is, the oscillation region is more
that just the region where convergence to a fixed point is
not guaranteed by the stability criterion; it is in fact the
region where oscillatory modes are quite abundant.
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B. Analog annealing: Improved recall at low gain

Figures 5 and 6 show that the probability of recall is

greater at lower values of analog gain in the recall region.
This phenomenon suggests a potentially powerful tech-
nique for annealing a deterministic analog neural net-
work to a good (low-energy) solution. Annealing by
varying the analog gain is not only useful as a fast numer-
ical technique, but can be easily implemented in analog
electronics, eliminating the need for electronic noise gen-
erators to perform stochastic annealing.

As in the case of standard simulated annealing, con-
vergence times at reduced gain can be quite long. To
speed convergence, the gain should follow an annealing
schedule, starting at the low-gain border of the recall
phase and ending at the high-gain border. The phase dia-

grams, Figs. 2 and 3, can be used to find the range of
gains for the annealing schedule for a given storage ratio
a. Further numerical work, as well as analytical results
showing that the average number of spurious attractors is

dramatically reduced at low analog gain, is planned to be
presented in a subsequent paper.

states. Several techniques for storing and recalling limit
cycles have been explored in both continuous-time sys-
tems with delay and parallel-update networks. Be-
cause these models use asymmetric connections, very lit-
tle is known analytically about their stability or the types
of attractors they can produce. On the other hand, it is
possible to store two-cycle attractors in the iterated-map
network using a symmetric connection matrix. This can
be done most easily with a generalized Hebb rule in
which a weighted Hebb matrix of the desired oscillatory
modes g' is subtracted from a Hebb matrix for the fixed-
point patterns P:

fp osc

'r,, =— g PP Ag—
g,"g;

p=1 i=1
(14)

The weighting factor A can be used to cause Axed-point
patterns and two-cycle patterns to appear at different
values of analog gain. A detailed analysis of such an ana-
log network, yielding, for example, the combined storage
capacity of limit cycles as well as fixed points, remains an
open problem.
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APPENDIX A: STORAGE CAPACITY
FOR THE HEBB RULE

x;=F QTx, , i=1, . . . , X,
J

(A1)

and which has a large [O(1)] overlap with a single
memory pattern, where the overlaps m" are defined

In this appendix we find the border separating the
spin-glass region from the recall region in the phase dia-
gram for the Hebb rule, (Fig. 2). The derivation is a
slight generalization of a cavity method approach
presented in Ref. 29 but is somewhat simpler because of
the absence of the reaction field. The form assumed for
the nonlinear function F (taken to be identical for all i) is
described at the beginning of Sec. III. We also assume all
memory patterns, P=+I, to be unbiased, and we set

I, =0 for all i For the speci.al choice F(z) =tanh(Pz), the
border we obtain is the same as that obtained for the
Ising-model network at temperature I /P. '

Throughout this appendix and Appendix B, sums over
roman indices (i,j,k, . . . ) run from 1 to A; sums over
greek indices (p, v, p, . . . ) run from 1 to aN.

A recall state is characterized by the existence of a
fixed point of the iterated map, which satisfies
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m"= —
I,"x, .

1

I

(A2)

For the Hebb matrix, Eq. (9), the input h; to neuron i can
be written in terms of the m" as

order in m giving

m"= —gg," F g Pm~ +pm
"F' g @mr

1

i p&v p&v

(A12)
h, = gT; x = +Pm",

J P

(A3)

which gives a set of aN fixed-point equations for the
overlaps

where F' is the derivative of the function F. The missing

p =v term in the argument of F' only affects the value of
F' to order O(1/N) which we neglect by taking the argu-
ment to be the whole h;. We now define the quantity C,

m"= —QPF(h, ), @=1,. . . , aN .
1

I

(A4) C = (F'(h) ) =—g F'(h; ),
I

(A13)

For Fodd and P=+ I, these equations can be written and write (A12) as

m" =—g F(Ph; ) =—g F(Ht') = (F(H")),1 1

I I

(A5) m "(1—C)=—gg;F g @mr
1

i p&v
(A14)

where HI'=Ph; Borr. owing spin-glass terminology, Ht'
wi11 be referred to as a local field for memory p. The
brackets in (A5) denote an average over the index i:
(z ) —= (1/N) g, z;. In the large-N limit, this average can
be written as an integral over the distribution of local
fields P(H"):

With the p =v term removed from the argument of F, the
two factors in the sum over i on the right side of (A14)
are now uncorrelated and can be squared to yield an ex-
pected value of

[(I—C)m "] =—gF' g Pm~ =—gF (h, ),~ 2 1

N

m"= f dH"P(H")F(H") . (A6) (A15)

We now seek a self-consistent expression for the distri-
bution function P(H') when m ' —1 and m"-O(N '~2)

for p) 1. The local field for pattern 1,

where, again, the O(1/N) error in the value of F from
the p=v term is ignored. Next, we define the quantity q
in analogy with the Edwards-Anderson order parameter,

Hi gl y gvmv

can be split into two parts,

H, '=m'+gI y g", m
v)1

(A7)

(A8)

q:—(F (h)) =—gF (h;),
I

and write (A15) as

(m") =q/N(1 —C)

(A16)

(A17)

v+1
(m") (A9)

To evaluate the sum of squares in (A9), we first write the
overlaps m" with the uncondensed patterns using (A3)
and (A4):

For a-O(1), the second term on the right side of (A8)
acts as a noise term which we take to be Gaussian distri-
buted with zero mean and variance o. given by

From (A9) and (A17), the variance cr of the local-field
distribution is given in terms of the quantities C and q by

cr =aq/(1 —C) (A18)

Because F' and F are both even functions, we can multi-
ply their arguments by +1 without changing their values.
This allows us to write the averages in Eqs. (A13) and
(A16) in terms of H rather than h, , and finally as in-
tegrals over the distribution of local fields P(H'), given
by the normalized Gaussian distribution

m'= —g j;F g @mr
1

. P

(A 10)
P(H') = — exp

1

&2m.o.

(H' —m ')—
2' (A19)

m"= —g(, F g Pm~+pm1

I PWv

(A11)

and noting that the single term (p= v) is small compared
to the sum over all the rest (pXv), we expand F to first

Notice that the right side of (A10) is of the form g, A, B;.
A sum of this form with uneorrelated random variables
A, and B, has an expected square of g; A, B; . In (A10),
however, the two factors in the sum over i are correlated
through the p=v term in the argument of F, and this
term must be treated separately before squaring. Writing
the correlated terms separately,

(A20a)

(A20b)

(A20c)

After a change of variables, y =(H' —m ')/cr, Eqs.
(A18) —(A20) yield the self-consistent set of equations
(12a)—(12d) in Sec. III A.

where the variance o. is given by (A18). Together with
Eq. (A6), the self-consistent equations for quantities m ',
C, and q are given by the following integrals:

m'= fdH'P(H')F(H'),

C = fdH'P(H')F'(H'),

q
= f dH P(H )F (H ) .
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APPENDIX B: RECALL STATES
FOR THE PSEUDOINVKRSE RULE

In this appendix we show that for the pseudoinverse
learning rule, stable recall states exist whenever a & 1 and
p) 1/(1 —tz). This implies that there is no spin-glass

phase for the pseudoinverse rule in the iterated-map net-
work, in contrast to the thermodynamic Ising-spin net-
work with the same learning rule. ' The analysis below
follows Kanter and Sompolinsky. '

As described in Appendix A, a recall state is defined as
a fixed point which has a large overlap with a single pat-
tern (again, taken to be pattern 1). For large N, the single
large overlap m' can be written as an integral over the
distribution of local fields,

Writing the local field 8,' in terms of the a",

H, '=(1—a)a'+g, '(I —a) g g'at' —tzy, , (BS)

reveals a similar structure to the Hebb rule [compare (BS)
to (AS)], with a "signal" term proportional to a' and a
"noise" term due to the other patterns. The third term
on the right causes the state to relax towards the sub-

space spanned by the memories and does not add any
destabilizing noise. Comparing Eqs. (BS) and (AS) also
reveals why the pseudoinverse rule allows perfect recall
with an extensive number of patterns and the Hebb rule
does not: for the pseudoinverse rule, the variance of the
Gaussian noise due to the other patterns is given by

1
N~ oc

m'= —gF(H, ') = J dH'P(H')F(H'), (81)
I

where P(H') is a Gaussian distribution whose mean and
variance must be found self-consistently. The local field

for memory pattern 1,

opt=(1 —a) g (a")
p) 1

whereas for the Hebb rule, the variance is

crH= g (m")

(89)

(810)

H, '=g,' g T,,x, ,

with the pseudoinverse matrix

is given by

H, '=(,' g P[(C ')„,m' —ax;]

(82)

(83)

(84)

(85)

P(H')=5(H' —(1—a)m') . (811)

Inserting this distribution into (81) gives the self-
consistent solution for the overlap with pattern 1,

m'=F((1 —a)m') . (812)

When the state of the network is fully aligned with, say,
pattern 1, then all a", p) 1, vanish. On the other hand,
the overlaps m", p) 1, do not vanish, even when the
state is perfectly aligned with a pattern, unless all
memories are orthogonal. Therefore the noise term for
the Hebb rule is always nonzero.

In a recall state (for pattern 1), a ' =m ' and a"=0 for

p ) 1, giving a 5-function distribution for the local fields,

The —ax, term explicitly takes care of setting the diago-
nals to zero since the T;; as defined by (83) are narrowly

peaked around a at large N. The state vector x„
i = 1, . . . , N, can be written as a weighted sum of the pat-
tern vectors, with real-valued weights a", plus a vector

g„ i =1, . . . , N, which is perpendicular to the subspace
spanned by the patterns

x, =
hatt "P+y, .

P

(86)

From (A2), (84), and (86), the weights a" are related to
the overlaps m" through the inverse correlation matrix

a"= g (C ')„,m

When the function F is tanh-like with maximum slope p,
there is nonzero m ' given by (812) whenever a (1 and
P) 1/(1 —tz). The value of m' grows continuously from
zero at the transition. In analogy with thermodynamics,
the appearance of recall states is therefore a second-order
transition. As mentioned above, the behavior of the ana-
log network with the pseudoinverse rule for the particu-
lar choice F(z)=tanh(pz) is not the same as the corre-
sponding Ising-spin network at finite temperature 1/p: as
shown by Kanter and Sompolinsky, ' the recall states for
the Ising model appear at a value of p significantly above
1/(1 —a) and that the transition to the recall state is first
order. These differences can be attributed to the absence
of a reaction field in our system.

'Proceedings of the Heidelberg Colloquium on Glassy Dynamics,
Vol. 275 of Lecture Notes in Physics, edited by J. L. van Hem-
men and I ~ Morgenstern (Springer, Berlin, 1987).

2M. Mezard, G. Parisi, and M. A. Virasoro, Spin Glass Theory
and Beyond (World Scientific, Singapore, 1987).

A recent collection of papers on the spin-glass approach to
neural networks appears in J. Phys. A 22, 1953 (1989).

4C. A. Mead, Analog VLSI and Neural Systems (Addison-
Wesley, Reading, MA, 1989).

sJ. L. Wyatt Jr. and D. L. Stanley, in Neural Information pro
cessing Systems, Denver, Colorado, 1987, edited by D. Z. An-
derson (AIP, New York, 1988), p. 860.

C. M. Marcus and R. M. Westervelt, Phys. Rev. A 39, 347
(1989); in Aduances in Neural Information Processing, Denuer,
Colorado, 1988, edited by D. S. Touretzky (Morgan Kauf-
mann, San Mateo, 1989), p. 568.

7F. R. Waugh, C. M. Marcus, and R. M. Westervelt (unpub-
lished).



3364 C. M. MARCUS, F. R. WAUGH, AND R. M. WESTERVELT 41

8J. J. Hopfield and D. W. Tank, Biol. Cybern. 52, 141 (1985).
C. Koch, J. Marroquin, and A. Yuille, Proc. Nat. Acad. Sci.

U.S.A. 83, 4263 (1986); A. Blake and A. Zisserman, Visual
Reconstruction (MIT Press, Cambridge, MA, 1987).
C. M. Marcus and R. M. Westervelt, Phys. Rev. A 40, 501
(1989).

~tD. O. Hebb, The Organization of Behavior (Wiley, New York,
1949).

' L. Personnaz, I. Guyon, and G. Dreyfus, J. Phys. Lett. (Paris)
46, L359 (1985).

' I. Kanter and H. Sompolinsky, Phys. Rev. A 35, 380 (1987).
' J. J. Hopfield, Proc. Nat. Acad. Sci. U.S.A. 81, 3008 (1984).
'5M. A. Cohen and S. Grossberg, IEEE Trans. Syst. Man Cy-

bern. SMC-13, 815 (1983).
' R. Brout and H. Thomas, Physics (N.Y.) 3, 417 (1967).
' D. J. Thouless, P. W. Anderson, and R. G. Palmer, Philos.

Mag. 35, 593 {1977).
' D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35, 1792

(1975); S. Kirkpatrick and D. Sherrington, Phys. Rev. B 17,
4384 (1978).

' A. J. Bray and M. A. Moore, J. Phys. C 12, L441 (1979).
M. Y. Choi and B. A. Huberman, Phys. Rev. B 28, 2547
(1983).

'K. Nemoto and H. Takayama, J. Phys. C 18, L529 (1985).
C. M. Soukoulis, K. Levin, and G. S. Grest, Phys. Rev. Lett.
48, 1756 (1982); Phys. Rev. B 28, 1495 (1983).
D. D. Ling, D. R. Bowman, and K. Levin, Phys. Rev. B 28,
262 {1983).

24J. D. Reger, K. Binder, and W. Kinzel, Phys. Rev. B 30, 4028
(1984).

25E. J. Gardner, J. Phys. A 19, L1047 (1986).
D. J. Amit, H. Gutfreund, and H. Sompolinsky, Phys. Rev.

Lett. 55, 1530 (1985);Ann. Phys. (N. Y.) 173, 30 (1987)~

~7See, for example, theorem 12.1.2 in J. M. Ortega and W. C.
Rheinboldt, Iterative Solution of nonlinear Equations in
Seueral Variables (Academic, New York, 1970).
A. Crisanti and H. Sompolinsky, Phys. Rev. A 36, 4922
(1987).
E. Domany, %'. Kinzel, and R. Meir, J. Phys. A 22, 2081
(1989).
S. Diederich and M. Opper, Phys. Rev. Lett. 58, 949 (1987).

'J. Guckenheimer and P. Holmes, Nonlinear Oscillations,
Dynamical Systems and Bifurcations of Vector Fields
(Springer, New York, 1983).
W. Krauth, M. Mezard and J. P. Nadal, Complex Systems 2,
387 (1988). Note that their definition of y differs from ours:
By our definition, the diagonal element of the connection ma-
trix is y; by their definition, the diagonal element is

yg, , &„T„(",P, or, in the large-N limit, y( 1 —a).
S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, Science
220, 671 (1983);S. Kirkpatrick, J. Stat. Phys. 34, 975 (1984).
J. S. Yedidia, J. Phys. A 22, 2265 (1989);C. Meunier, D. Han-
sel, and A. Verga, J. Stat. Phys. 55, 859 (1989).
M. Blume, Phys. Rev. 141, 517 (1966); W. Capel, Physica 32,
966 (1966).
S. Grossberg, Stud. Appl. Math. 44, 135 (1970). D. Kleinfeld,
Proc. Nat. Acad. Sci. U.S.A. 83, 9469 (1986); H. Sompolinsky
and I. Kanter, Phys. Rev. Lett. 57, 2861 (1986); H. Gutfreund
and M. Mezard, ibid. 61, 235 (1988); U. Riedel, R. Kuhn,
and J. L. van Hemmen, Phys. Rev. A 38, 1105 (1988).
S. Dehaene, J. P. Changeux, and J. P. Nadal, Proc. Nat. Sci.
U.S.A. 84, 2727 (1987); I. Guyon, L. Personnaz, J. P. Nadal,
and G. Dreyfus, Phys. Rev. A 38, 6365 (1988); Y. Mori, P.
Davis, and S. Nara, J. Phys. A 22, L525 (1989).


