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A diagnostic method has been devised and used to measure local transport velocities of negative
hydrogen ions (H™) within a gas-discharge source chamber. The method is based on laser-pulse
photodetachment of negative ions, inducing local changes in the electron and ion densities, whose
space and time evolution are traced in detail by means of laser pulses and probes. The technique,
which has general applicability, can be used in plasmas where conventional probe or spectroscopic
methods are not practicable. A new plasma transport process—monopolar drift—in which parti-
cles with the same charge counterflow —is identified by means of this technique. This process can
be dominant in multispecies plasmas, i.e., those containing negative as well as positive ions. A ki-
netic analysis of the plasma evolution in space-time, following localized photodetachment of the
negative ions, is presented. The results are compared with the first experimental data obtained on
H ™, demonstrating the principal modes of the diagnostic technique. The consistency between
analysis and experiments indicates that the method is generally useful, and principles for its exten-

sion are laid out.

I. INTRODUCTION

Plasma ion diagnositics are of central importance in
several fields including basic plasma physics, fusion, and
particle beams. Current techniques—probes and
spectroscopy—have limited applicability in broad
categories of plasmas, such as multispecies plasmas con-
taining both positive and negative ions as well as elec-
trons, or plasmas with ions which possess no accessible
excited bound states. A notable example of this class is
negative hydrogen (H ), a plasma constituent that con-
trols radiation transport and opacity in the atmospheres
of the sun and similar stars. It is also technologically im-
portant in the production of energetic neutral beams for
heating and diagnostics in fusion plasmas.! We have
developed a class of basic and generally applicable diag-
nostic techniques suitable for such cases, and used them
to measure and characterize the H™ transport velocities
within a volume source. Using these techniques, we have
found and described theoretically as well as experimental-
ly a basic transport process that can occur in multispecies
plasmas: ‘“‘monopolar” drift, in which particles with the
same charge preserve local neutrality by counterflowing
(in contrast with the well-known ambipolar drift, which
involves oppositely charged species flowing in the same
direction). This process, for instance, governs the in-
teraction between adjacent plasmas which interact
without the application of an initial perturbation in the
electric field or net charge density, due only to differing
“composition,” i.e., charged-particle fractional densities.
In our example, monopolar drift causes a nearly two or-
der of magnitude decrease in the electron transport
speeds below thermal values expected in such media.

A simple way to measure transport is to render the
medium inhomogeneous in a controlled manner, and ana-
lyze the space-time details of its return to equilibrium.
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The problems involved are (i) to construct a model that
describes the plasma evolution in response to the pertur-
bation, in terms of the transport parameters; and (ii) to
devise methods for measuring the recovery in plasma
properties, with sufficient resolution. The fit of model to
measurement is then used to unfold actual values of the
transport parameters. Correspondingly, this communica-
tion describes (i) a formal kinetic analysis of the plasma
density evolution following strong localized changes in
the negative ion and electron densities caused by laser
photodetachment, including the self-consistent electric
field induced by the perturbation; and (ii) the measure-
ment method, a generalized version of optical tagging.?
These are applied to plasmas containing H™. Prelimi-
nary experimental data obtained using several variants of
the technique are analyzed in terms of the model, to
demonstrate feasibility and point out future directions.

The organization of the paper is the following. Section
I presents the physics underlying optical tagging in the
generalized sense. Sections III and IV detail the experi-
mental configuration and the data acquisition schemes
(“dark” and “bright” signal modes) used in the measure-
ments. The physical principles and procedure for deduc-
ing transport properties from tagging data are sketched
out in Sec. V, while Sec. VI presents a formal kinetic
analysis of the strongly nonuniform initial-value problem
in a three-species positive-negative ion plasma, carried
out to first order in the potential, in a collisionless plasma
subject to photodetachment of the negative ions. The
final sections compare analysis with data obtained in H™
plasmas, and summarize the results. The conclusions are
that nonresonant optical tagging can be an effective diag-
nostic in several modes, and that transport governed by
the negative ions, with a secondary role assumed by the
electrons and positive ions, may be dominant in strongly
nonuniform multispecies plasmas.
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I1. DIAGNOSTIC CONCEPTS

The following physical principles underlie our mea-
surement method, which is an application of optical tag-
ging,? a set of diagnostic techniques specifically
developed to characterize transport. In tagging, optical
pumping is used to alter the relative densities of two
long-lived, radiatively connected quantum states of a
given particle, by means of a “pump” laser beam
switched on at the position and instant of interest—the
“source” point. The particle migration away from the
source is then traced in space and time, to a ‘“field” point,
using a “search” beam-detector combination, which is
sensitive to changes in the density of either long-lived
quantum state (the bright and dark, or Kastler and
Dehmelt schemes). As with time-of-flight techniques,
tagging employs the space-time variation in particle den-
sity to determine transport velocities, through the con-
nection between density, temperature, and velocity im-
posed by conservation laws.

To date, tagging has been applied only to particles in
which the quantum states involved are both bound levels.
Since optical pumping cross sections are proportional to
the overlap product of absorption linewidth and laser
spectral width, the narrow resonant transitions involved
require pump, search, and detector functions to consist of
narrow-band, tunable optical radiation—a serious re-
striction. The novel feature of the present method is its
extension to particles which have no bound excited states;
i.e., one of the states lies in the continuum. In addition to
enlarging the range of plasmas to which the method can
be applied, this obviates the need for narrow-band tun-
able radiation, enabling a range of powerful, broadband
lasers or incoherent light sources to be brought to bear.

The technique was applied to an H™ volume source.?
These are hot-cathode gas discharges in which H™ is gen-
erated primarily by dissociative electron attachment to
excited vibrational states of H,.* Typically of negative-
ion plasmas, the presence of electrons as well as the
quantum-state structure of H™ preclude the direct use of
probe, laser,’ or classical spectroscopic techniques. We
choose instead to tag the negative ion by pumping it from
the ground state into the continuum using laser-induced
photodetachment.®’ A broad, continuous range of wave-
lengths from the near-ir to the uv can be used to this pur-
pose, with cross sections as large as 107!" cm?. In this
tagging scheme, the final state (after pumping), which is
long lived because of the low volume recombination and
attachment rates, now consists of two particles —an elec-
tron and an atom-—either of which may be traced in
space-time by the search function.

In our experiment, the choice of pump laser wave-
length results in final states with the free atom generated
in its ground level. Interrogating this atom would require
vacuum-uv as search radiation. To avoid the technical
complications associated with this, the search function in
the bright signal mode is performed directly on the free
electron using positively biased Langmuir probes,’ axial-
ly and radially movable across the source. For the dark
signal mode, the beam searching for the depleted H™
density is a second Nd:YAG pulse (where YAG is yttri-
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um aluminum garnet) delayed in time from the pump,
and the detection is carried out on the final-state photo-
electron using probes, as above. We note that alterna-
tives that may be considered would use (i) tunable dye-
laser radiation in the visible tripled or quadrupled to gen-
erate Lyman lines, or else (ii) a high-energy photon, or a
multiphoton scheme, for the pump beam, leaving the
final atom in an excited state directly accessible to inter-
rogation by conventional optical methods, e.g., laser-
induced fluorescence.’

III. EXPERIMENTAL CONFIGURATION

Figure 1 presents a diagram of the cylindrical hybrid
multipole source.® This is a cylindrical hot-filament gas
discharge operated in hydrogen, 25 cm in diameter and
26 cm high, with a permanent magnet array near the
chamber walls to limit plasma losses. Typical operating
conditions are 5 A discharge current at 50 V and 3
mTorr, unless otherwise indicated. The density range
was 10'9-10!' ¢cm ™3, with 0.5-eV thermal energy for the
electrons, Debye lengths A, ranging from 1072 to 1073
cm, and up to 12% of the negative charge present as H™.
The electron properties are determined from Langmuir
probe traces; the H™ density is obtained from the ratio of
the peak of the probe photodetachment signal to the
probe dc signal, a technique described in Ref. 7. It makes
use of the fact that the dc signal is proportional to the
electron density, while the peak is proportional to the H™
density. Under our conditions the mean free path of the
electrons is comparable to the chamber dimensions, so
that the pulse of photodetached electrons can be detected
by a remotely located, nonperturbing electrode. The
principal collision mechanism for H™ at these conditions
(low pressure, discharge current and electron tempera-
ture) is with H,, for which® the product ov =2.5X107°
cm’®sec”!. We have typically densities of H with values
N=9X10" cm™3, so that the collision time (Nov)~! is
about 5 pus. Adding corrections for collisions with H, ;"
decreases this to 4 us (longer than the times we will be
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FIG. 1. Diagram of the volume H™ hybrid multipole source.
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concerned with, ¢ <1 us), so that a collisionless approxi-
mation is appropriate in this regime. At typical ion tem-
peratures of 0.2 eV, the H™ mean free path is nearly 2
cm, an order of magnitude larger than the test volume ra-
dii (R =0.2 cm), where the best fit is obtained. No evi-
dence of plasma destabilization by the probe is ob-
served. !’

Figure 2 describes a typical diagnostic geometry.
Laser light, limited by a circular baffle to a beam of diam-
eter D =1.2 cm or less, is admitted into a source through
a window in the center of the chamber end flange. The
laser beam axis is aligned with the chamber axis. The
particle density is low enough to ensure the plasma is op-
tically thin. The pump and search lasers used are
Nd:YAG lasers at 1.06 mm, typically 15-ns duration and
a few hundred mJ in pulse energy, synchronized to pro-
duce pulses with <ns jitter and operated with controlled
delays At between pulses, ranging from 10 to 10000 ns.
Since the photodetachment cross section at this wave-
length is near its peak, a photon pulse flux of order 10"’
cm™? (tens of mJ/cm?) sufficies to depopulate the H™
ground state entirely. The technique is selective in H,
discharges, since only H™, of all species present, will be
photodetached with sufficient cross section at these pho-
ton energies.’ For Nd:YAG pulses, the free electrons are
generated with energies at most equal to 0.45 eV, i.e.,
very near the background electron temperature.

A Langmuir probe is positioned at the midplane of the
chamber, and can be moved across the plane. The probe,
typically a tungsten wire 0.5 mm in diameter, 1.5 cm long
parallel to the beam axis, is biased to 20 V, much above
the plasma potential (normally 2V), and collects dom-
inantly an electron current. The photoelectron burst
released in either mode by the laser pulse is discriminated
from the background (dc) electron current to the probe
through the use of capacitive coupling.
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FIG. 2. Schematic of diagnostic instrumentation and

geometry.
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IV. DATA ACQUISITION MODES

We present first experimental results obtained using
the dark-signal mode, which yields a direct observation of
H™ transport. In our scheme, the pump beam pulse ini-
tially depletes all the negative-ion population within the
test volume—the cylinder whose diameter equals the
beam diameter D. It is followed by a search laser pulse,
whose beam is aligned (coaxial) with the pump, and
switched on at a delayed time At. The search pulse will
photodetach those H™ ions which have flowed into the
test volume during the interval At, from the surrounding
region r >R (where r is the radial distance from the
center of the beam and R =D /2). Since one electron is
released from each H™ ion (with laser intensities above
saturation), an excess of electrons is produced, whose
density An, equals the H™ density n _ (r,At) at that time.
A Langmuir probe located at r and biased positively to
collect electrons will therefore register a rapid signal rise
in coincidence with the search pulse. The magnitude of
this peak is proportional to An, =n _(r,At). This quanti-
ty increases with Az, as more H™ ions have had time to
flow into the test volume, and eventually saturates.

A typical probe signal obtained from a single laser
pulse is shown in Fig. 3 (upper trace). It starts off with a
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FIG. 3. Upper trace: typical probe current pulse following a
single laser photodetachment pulse at r =0. Abscissa: time,
linear scale. Ordinate: probe electron current, linear scale
(more light=signal down). Lower traces: typical probe current
pulses used in “dark” signal mode: 1, pump pulse only; 2, pump
pulse followed by delayed search pulse; 3, computer-calculated
difference between 1 and 2, showing negative-ion density
recovery at time of search pulse. For convenience, the baselines
are displaced vertically. Abscissa: time, 200 ns/division. Ordi-
nate: probe electron current, linear scale (more light=signal
down). Arrows indicate pump (¢ =0) and search laser switch-on
times.
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sharp initial voltage drop, representing the immediate in-
crease in probe electron current, due to photodetach-
ment. It is followed by a slower rise to a peak, and there-
after the signal falls off gradually, eventually returning to
the baseline and crossing it, i.e., exhibiting an overshot
which corresponds to a decrease in the electron density
below the background value. These features will be dis-
cussed in more detail below.

In the dark mode, two probe signals are acquired
within a short delay, and therefore overlap in time to
varying extents. A typical sequence of such signals is il-
lustrated in the lower traces of Fig. 3. Trace 1 shows the
probe signal from a single pump pulse. Trace 2 shows the
probe signal from a sequence of probe plus search pulses,
delayed by At =250 ns. Using digital data acquisition
and computer processing, trace 1 is subtracted out from
trace 2, exhibiting the net search signal (trace 3) and its
initial drop, whose magnitude represents the photode-
tached excess electron density at Az =250 ns. Carrying
out measurements of this type over a range of At, one ob-
tains the typical data plotted in Fig. 4. Here the probe is
at the center of the beam r =0, so that the experiment
traces the density function n_ (r =0, t =At), the tem-
poral recovery in H™ due to transport from the sur-
rounding volume r > R.

Since the background probe signal (dc) is proportional
to the (measured) initial electron density, and the probe
response is linear, it follows that the absolute value of n _
can be obtained from the ratio of the initial peak to the
dc probe currents. This has long been a standard method
for measuring H™ densities, and was used to establish the
values of 12% for the ratio of H™ to total negative
charge density. Microsecond delays to reestablish steady
state were observed and attributed to the ambipolar po-
tential in an internal communication® as early as 1978,
but no study of the space-time evolution of the density
nor analysis of the process to extract transport informa-
tion ensued.
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FIG. 4. Recovery of H™ density at r =0 for R =0.2 cm, and
data fits using the ballistic approximation, Eq. (11). Parameter
values R /vy, are (a) 2X 107 7s, (b) 2.5X 1077 s, (c) 3X 107 7s.
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V. PHYSICAL PRINCIPLES

Physical principles for unfolding transport properties
from such measurements are described below. Note that,
since the background plasma was neutral, and the laser
photodetachment pulse perturbation produces no net
charge, the plasma is initially stationary and electric-field
free everywhere. This is a relatively unusual initial condi-
tion, unlike the common situations in which the plasma is
initially rendered non-neutral, or else where the form of
the distribution function is initially perturbed, as in
current- or drift-destabilized plasmas. Instead, we are
dealing with two concentric, equipotential (field-free) neu-
tral plasmas with the same total charge density, station-
ary (i.e., with no relative fluid speed), and differing only
through the relative fractions of negative charge which
they contain. Here, therefore, the field is initially zero
and grows (weakly) as a result of the strong initial density
differences. This is the inverse for instance of plasma
echoes—a classical configuration which is generated by
applying strong initial potential gradients, which cause a
(weak) density perturbation to grow. Thus our treatment
will differ in essential aspects from previous analyses.

The “perturbation” that starts the process in our case
are the gradients in electron and H™ densities at the in-
terface between the two regions r > R and r <R; and the
initial driving mechanisms are the thermal, field-free par-
ticle velocities of the two negative species. That is, the
differences in the densities of negative particles between
the two regions begin to smear out due to their kinetic
motion across  =R. Since the densities and particle ve-
locities differ, their fluxes can be unequal, eventually
causing net charge accumulation and thereby the buildup
of a self-consistent electric field. This field will tend to
reduce the fluxes, may oscillate, and eventually leads to a
stationary state. In principle, a complete description of
the density evolution for all species can be generated, val-
id at all points and times, including the late period when
the diagnostic-induced self-consistent field has grown to
finite size. It is useful from an experimental viewpoint,
however, to evaluate the growth of this field and isolate
regimes in space-time where its effect is weak or negligi-
ble, so that the simplest possible model can be developed
to interpret the measured data. This is our procedure
here; and the general but elaborate late-time solution will
be left for a future article.

VI. ANALYSIS OF PLASMA DYNAMICS

A. General solution

The problem is treated kinetically by the coupled
Boltzmann and Poisson equations. We limit ourselves to
early times in the evolution, i.e., a period short in com-
parison with collisional times. The kinetic (Vlasov) equa-
tions then have the form

af af | e af
._.._+ -t —_ o
at M 8r+mE av

where E is the electric field vector, derivable from a sca-
lar potential ¢. Here f, _ ,(v,rt) are the Boltzmann ve-

=0, (1)
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locity distribution functions for the electrons, negative
and positive ions, respectively, and e /m is the charge-to-
mass ratio for each species. The self-consistent field
satisfies the Poisson equation

VE=-Vi¢=4r 3

i=+,—,e

en; , (2)

where each density n, _ | is an integral of the corre-
sponding distribution function n(r,t)= f dv f(v,r,1).
The initial value of the field is zero. Due to the tendency
of the plasma to neutralize charge inhomogeneities, the
growth of the field will be weak. Therefore, during the
early time period, the field-dependent components of f
can be neglected in the nonlinear term E-df /dv. A for-
mal solution of Eq. (1) is then

fv,nt)=Ff(v,r',t"), -,
afolv,1')
e [t oy Ofov.1)
+= B, =
where
r'=r+v(t'—1t) @)

is the zeroth-order (field-independent) particle orbit, and

— _a = (Vx2+ i+ vz vl
folv)=m"3% 3 th (5)

is the field-independent background velocity distribution
function, chosen to be a Maxwellian in this case. The
spatial variation in the initial density (piecewise con-
stant), caused by the pump photodetachment pulse, is
specified for each species in Sec. VIC below, and in the
Appendix.

The lowest-order, approximate solution of the system

J

(r'/t)e

nB(r,t):nB("’e,Zat)=n077'_3/20t;3 fde,fgtL—

Here n, is the magnitude of the initial (+ =0) density
for each species. Since we consider a uniform back-
ground for ¢t <0, in our geometry the initial density will
be piecewise constant. For instance, for the negative ions
ng is nonzero only for R ;. <r'<R_..,z, <z'<z,, where
R, and R, are the inner and outer radii of the cylin-
drical source region (R;,=R, laser radius; R ,,=
source radius). Similarily, z, and z; are the z coordinates
of the top and bottom of the source. The integration lim-
its in Eq. (7) are then 6'=0 and 27, r'=R,, and R ;,,
and z'=z, and z;,. For the other components the corre-
sponding limits are given below in Sec. VIC.

Expanding the exponent in Eq. (7), the angular integral
can be carried out (see the Appendix). It vyields
27I(2rr' /(v t)?), where I, is the Bessel function of the
first kind of imaginary argument. Note that the 6 depen-
dence of n vanishes, as it should in the cylindrical sym-
metry of this configuration.

The dz’ integral is proportional to the difference be-

—[(r cos@— r'cos® )2 +(r sin6— r'sin@" )2} /( Ven 1? f dz’
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of Egs. (1)-(5) for our case is obtained as follows. As
shown by the right-hand side (rhs) of Eq. (3), the system
contains both ballistic and collective (field-dependent)
terms. Because of (i) the particular initial conditions of
this experiment, which starts out with strong spatial den-
sity gradients and null fields, and (ii) the very large mass
ratio between ions and electrons, the first (ballistic) term
on the rhs will be dominant for the massive ions at early
times, whereas the second (collective) term will govern
the density of the low-mass electrons (due to the evolving
self-consistent field). Our approach is therefore to evalu-
ate the ballistic and collective density terms neglecting
their coupling at the start (early times), insert them into
the Poisson equation, and derive an approximate expres-
sion for the evolution of the self-consistent potential [Eq.
(16) below].

B. Ballistic terms

We first carry out the integrations that yield the ballis-
tic density components for the species. These are defined
from Eq. (3) as

ng= [dv[f(v,r',t)]l,— - ©

The approximate densities ny will be reduced to a tabu-
lated function of the arguments for an isotropic plasma
with a Maxwellian background distribution function, Eq.
(5). Because r’ is a function of v, Eq. (4), the integral can
be transformed into an integral over dr’, subject to use of
the appropriate Jacobian. It is most convenient to use
polar coordinates r',0',z" and r,0,z. This yields, after
some algebra [see the Appendix, Egs. (A1)-(A10)]

—(z—2") /v,y 1)?
; e (7)

f

tween two error functions with arguments z, /vt and
—z;/vyt, respectively. It turns out that in our experi-
ment the magnitudes of both arguments are >>1. The
functions therefore tend to +7'/%v,;, /2, so that the dz’ in-
tegral reduces to the constant factor 7'/%v,,. The reasons
are the following. The measurements are conducted near
the middle of the chamber, whose midplane is defined as
z=0. The limits z, and z; are typically +12 and —12
cm. For the ions, typical v, <10° cms™! and charac-
teristic times are of order 0.5 us, hence the ratios
z/vut=20. For the electrons, v,, is typically 3X10’
cms !, but characteristic times for ballistic decay turn
out to be only of order 20 ns, so that the ratio is approxi-
mately the same. The physical significance is that the
end boundaries are so remote from the point of measure-
ment, that their influence is negligible in the early phases
of the process.

Making use of these intermediate results, Eq. (7)
reduces to
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ng(r,z=0,1)=2nge th
dr' r' —r 0t ,
= B Lo (2rr /(0 t)?)
v!ht vtht

(8)

where the integration limits are R;; /vt and R, /v t.
Finally, we associate the radial integral in Eq. (8) with the
well-known operational function J(x,y). This function is
defined’

Jxp)=1-2¢ 7 [Pre =1 2pnat

x=B%y =p*. 9

In our notation, B will take the two values R ;, /vt or
R .. /vpt, while p=r /vt only. The function J lies be-
tween 0 and 1. Some elementary properties of J include
J(0,y)=1;J(e0,y)=0; and J (x,0)=e ~*. Expressing the
integral in Eq. (8) in terms of J finally yields the general
solution for the ballistic density component

ng(r,z=0,1)/nq=J((R in /0 ut)% (r /04 1)?)
—J((R pax /0 )% (F /03, )?) . (10)

Here the coefficient n, represents the background densi-
ty.

C. Application to the individual species

We can now apply the preceding, fairly general results
to our specific configuration. The negative ions are ini-
tially (after the laser pulse) present only within the outer
cylindrical region between R ;. =R, the laser radius, and
R, .« =12 cm, the chamber wall. Let their thermal veloc-
ity be characterized by v,,_. For early times, R,/
vy, t will be 20 or larger, so that the second J in Eq. (10)
tends to zero. This leaves for the ballistic limit of the
negative-ion density the expression

n_g(r,z=0,0)/n_g=J((R /vg_t)}(r/vg_1?)
=J_ . (11)

It should be observed that this function is independent of
the geometric dimensions R, and z;, of the chamber
only because of the large values of the arguments, i.e., the
fact that the inner region (laser beam radius) is small, and
the measurements are carried out near the midplane of
the chamber. For an exact, general solution, the error
functions incorporating the z limits, as well as the addi-
tional term in J from the R ,, limit, must be included, as
described quantitatively above. Note in Eq. (11) the
physically correct results that (i) when R =0, n_z will
attain its final value instantaneously; (ii) if R =, n_g
will retain its initial, null value; and (iii) at the center
r =0, the ballistic negative-ion density has a simple
dependence

—R? /vy, _n?

n_g(r=0,t)=n_ge (12)

This function starts at zero for ¢t =0, increases monotoni-
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cally, tends to n _ as t approaches infinity, and therefore
fits the initial and final conditions for the density within
the test region.

For the positive ions, which are not affected by the
laser pulse initially, the values of R ,, and R, are ap-
proximately infinity and zero, respectively. Introducing
this into Eq. (10) yields the physically expected result for
the ballistic density

n,glr,z=0,0)/n,=1. (13)

For the excess electrons in the ballistic limit, on the other
hand, the initial condition corresponds to R_,, =R and
R i» =0, since the excess is confined to the laser beam ra-
dius. Introducing these conditions into Eq. (10) yields

An,g(r,z=0,t)/An,
=1=J(R /vget)}(r/vget)N=1—J, , (14)

where vy, designates the electron thermal velocity, and
An, is the initial excess density of electrons (created at
time ¢t =0), equal to n _,.

The background values are connected as follows. Let
the negative ion density be a fraction € of n.,. Then
n_o=e€n o=An,, so that neutrality requires the back-
ground electron density n,,=(1—¢€)n,,. Combining
these results with Egs. (12)-(14) we find that the net
ballistic charge density buildup within » <R reduces to
the sum

e(ny,—n_—n,)g=een o(J,—J_). (15)

This is physically intuitive, since it indicates that the
ballistic charge accumulation is linear in the excess densi-
ty ratio €, and would also vanish if the thermal speeds of
electrons and negative ions were identical so that J,=J _.
On the ionic time scale, however, J, =1 and the electron
velocity distribution function must be assumed to be in
equilibrium with the self-consistent field. That is, we use
the quasistatic approximation!® for the electrons in the
Poisson equation. The field-dependent component of n,
is

e
ne¢§n0 kT ¢ ’
e

where n, is the background density of the electrons,

which must equal n,,. The total electron density is
therefore

n,=n,o(l1+ed/kT,) .

Introducing this field-dependent limit for n,, together
with the ballistic charge density components of the two
ion species, and using the appropriate relations between
the background values, into the Poisson equation then
yields

Ap=—4me[n g—n_p—n o(1+ed/kT,)]
=d4men ,o(eJ_ +ed/kT,) . (16)

This equation contains both ballistic and field-dependent
(collective) terms. In the limit €e=0, e.g., if there were no
negative ions present to be detached, Eq. (16) reduces to
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the expected equation for the static potential in a *“nor-
mal” positive ion-electron plasma A%¢=¢ /A%, where A,
is the Debye length. Consequently, the potential here de-
pends dominantly on the density and thermal speed of
the negative ions only, justifying the description of the
process as ‘“‘monopolar.” The static screening term,
which represents the linear reaction of the plasma back-
ground tending to shield out the growing potential per-
turbation, should also contain a field-dependent contribu-
tion from ions in principle. If we limit the application of
this approximation to early times on the ionic scale, when
the ions inertia dominates, such corrections can be ex-
pected to be negligible in comparison with the other
terms in the Poisson equation.

D. Field evaluation

Formally, Eq. (16), an inhomogeneous Helmholtz equa-
tion, can be solved for ¢ in terms of the given forcing
function €J_. We evaluate instead the magnitude of ¢,
and therefore the size of the field-dependent correction to
the negative ion ballistic density, by means of the ‘“plas-
ma approximation.” It assumes the static screening is
sufficiently effective that, in Eq. (16), the term A’$ be
negligible in comparison with ¢/A%; i.e., the plasma will
screen out potential variations over spatial scales larger
than the Debye length. The remaining two terms then
yield the value of the normalized potential

e

kT,

=~—eJ . (17)

For our experimental conditions, € <0.12. At the center
r =0, for instance, e¢ /kT, has the typical value 0.044 at
the e ~! folding time ¢ =(R /v,,_) of the ballistic evolu-
tion. During this period of time therefore, since
e¢p/kT, <<1, the plasma may be considered to be neutral.
Consequently, the positive-ion density may be expected
to equal the total negative (electron plus H ™) density.

Because of this low value of the potential, an iteration
into the full Vlasov equation may not be necessary at this
stage. One can estimate instead the effect which the po-
tential has on the ionic speeds. Consider, for instance,
charged particles moving at their characteristic speed,
the thermal velocity v,,. The effect of the potential is to
change this velocity to a value v, (#), where the kinetic
energy balance requires

[va($)2—v2,1/02, = —ed /KT ,
hence
V(@) /vy, =1—ed/2kT .

To apply this formula to negative ions, an estimate of T _
is needed. We use for this purpose the experimentally
determined value of v, , e.g., from Fig. 4. This corre-
sponds to a temperature ratio 7,/7_=1, so that
ed/2kT_=0.022 at the e ! folding time. It indicates
that the potential introduces a correction in the effective
v;— of the negative ions which is typically 2%. Since
this is less than the experimental precision, a higher-
order calculation would yield no significant corrections.
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We conclude therefore that the ballistic term n_j is a
sufficiently close approximation to describe the evolution
of the negative ion density n _, in this regime.

Consistent with the preceding, the excess electron den-
sity within r <R following a single laser photodetach-
ment pulse should decay approximately in accordance
with

e
Meg=MNo+ ﬁ‘bz_ﬁ]—"w .
e

The excess electron density therefore turns out to vary as
An,=[n,—(1—€)n 4]
=en ,o[1=J_((R /vyt (r/vg_ 0] . (18)

The ““‘smeared electron” model which we used, neglect-
ing electron ballistics, is commonly valid in low-
frequency phenomena, for ordinary as well as negative-
ion plasmas. 19 1h our conditions, of course, the ballistic
electron term still should play a significant role. The two
processes, ballistic and collective, compete against each
other, since the field tends to slow down the ballistic
outflow of electrons, and the converse. The actual excess
electron density An, will decay therefore at a rate inter-
mediate between these two extremes, i.e., slower than the
very fast ballistic decay en 4(1—J,), but faster than the
ion-limited collective decay en ,o(1—J _).

VII. DATA INTERPRETATION

We first consider the dominant features of the process
and the ordering of time scales. The data (Figs. 3-6)
show that the rise time of the density is short in compar-
ison with interspecies collisional times (inverse frequen-
cies) and local creation rates prevailing at the low pres-
sures and densities used here."*® Under these condi-
tions, the collision-free Boltzmann (Vlasov) description is
indeed appropriate. On the other hand, this time is long
(several hundred ns) in comparison with the 7-20-ns
transit of electrons at their thermal speed ~3X10’
cms~ ! across the test volume radius R, indicating that
the rate-controlling process is the ion inertia, while there
is sufficient time for the electrons to come to equilibrium
with the self-consistent potential, consistent with our
analysis.

A. Dark mode

In this variant, the evolution of n_ is deduced by
measuring dif ferentially the changes in n, caused by two
laser pulses. This technique has the advantage that it
does not involve a fit of the analytic prediction of the n,
decay to the data; as shown above, due to its light mass,
both the ballistic and the field-dependent components are
important, so that a higher-order analysis would be re-
quired. Instead, we use as a measure of n_(At) only the
instantaneous change in n, at the start of the search
pulse, before a significant evolution of the newly per-
turbed n, can take place. The fit of the differential data is
therefore directly proportional to n _, for which we have
a good model at early times.
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Data fits to the ballistic approximation are illustrated
in Figs. 4 and 5, with R =0.2 and 0.4 cm, respectively.
Both measurements were performed at » =0, so that the
simplest expression, Eq. (12), can be used to fit the mea-
surements. In Fig. 4 the three values of the parameter
R /v _ used in the equation are 2, 2.5, and 3X 107 s,
corresponding to v, =10, 8, and 7X10° cms™'. The
data appear to fit best the range v, =8+1X10°cms ™.

From Eq (12) it can be expected that when R is in-
creased, the time evolutions will be slowed down, so that
the suitable parameters will be linearly increased. Corre-
spondingly in Fig. 5, with R doubled from 0.2 to 0.4 cm,
we increase R /vy to 4.5, 5.5, and 6.5X1077 5. As
seen, this velocity range v,,_ =9, 7, and 6X10° cms™!
brackets the data points up to 700 ns, the same early time
interval as in Fig. 4. The best fit at early times appears
to be v,_=7X10° cms~!, overlapping the velocity
range in Fig. 4, as expected.

With the larger radius, a longer time interval is re-
quired before the process reaches completion. In Fig. 5,
the density data now spans a longer time period of 1400
ns, and the rate is seen to decrease after 0.6 us, indicating
that the negative-ion influx slows down at later times.
This is consistent with processes neglected in the analysis:
collisions and higher-order potential effects. For in-
stance, the inverse of the momentum transfer collision
frequency!! for 0.5-eV electrons in H, at 3 mTorr, is
about 0.2 us and the distance between collisions is about
6 cm. These collisions thermalize the excess electrons
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FIG. 5. Recovery of H™ density at » =0 for R =0.4 cm, and
data fits using the ballistic approximation, Eq. (11). Parameter
values R /vy, are (a) 45X 1077 s, (b) 5.5X 1077 s, (c) 6.5%X 1077
s.
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and thereby affect the evolution of the self-consistent po-
tential, which is no longer simply “driven” by the ion
flux, as idealized in Eq. (16). In addition, as will be
shown below, the effect of the potential on the ionic den-
sities makes itself felt at just this range of times, so that
the lowest-order ballistic ion approximation in the Pois-
son equation is no longer realisitc. Thus departures from
the collisionless (Vlasov) picture are expected, and a more
complete solution must be invoked at longer times.

It appears therefore that the ballistic approximation is
a reasonable model for the early-time evolution of
negative-ion density, and that the rate-determining pro-
cess is the slow inflow of the relatively heavy negative
ions. To maintain charge quasineutrality, that is bal-
anced by an outflow of electrons. The electric field that
evolves, though too weak to affect appreciably the ionic
motion at early times, is nevertheless effective in coupling
the electron motion to the ions because of the much
lighter electron mass. Consequently, the electron excess
outflow from r <R is retarded and occurs at a speed
much reduced below the electron thermal velocity. Be-
cause of the physical analogy with ambipolar plasma pro-
cesses, an appropriate description for such coupled
counterflow of oppositely charged species is monopolar
transport.

An independent check is provided by comparing probe
signal shapes. Figure 6 is a typical plot of electron densi-
ty decay following a single laser pump pulse (bright
mode), together with the negative-ion density increase ob-
tained from two-laser data. A separate trace shows the
sum of the two densities. As seen, the time constants of
the electron decay and positive-ion increase are compara-
ble, so that there is at first no change in their sum, which
approximately equals the positive-ion density, since as
shown above the plasma is nearly neutral at early times.
Due to the faster electron decay, however, the sum begins
to decrease at around 0.6 us, reaching a minimum at 1.2
us. This corresponds to a drop of roughly 5% of the neg-
ative charge, and an equal increase in the positive charge
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FIG. 6. H™ and electron density recovery, using the bright
(@) and dark (O) signal modes at » =0. Dashed line: sum of
densities.
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density. Using simple continuity considerations, one can
estimate the density decrease in positive ions due to the
field-induced velocity change Av, (¢) to be An,/
n,o=~Av, /(R /t). For our conditions, using an average
mass of 2 for the positive ions, we find An . /ny3=4%. In
conclusion, both the electron and the positive-ion density
behavior are consistent with the limitations due to the ap-
proximations used in our analysis.

B. Bright-signal-mode

The bright-signal mode provides a direct method for
measuring the reduced, monopolar electron outflow ve-
locity, as well an indirect but independent method for
measuring the H™ transport rate. In this mode, one mea-
sures the space-time evolution of the photoelectrons
created by a single pump pulse, and uses a model of the
density evolution to unfold transport properties. The
search probe position is scanned from r =0 to r > >R,
and the signal shape is analyzed for nonlocal electron
pulses occurring in delayed coincidence with the laser
pulse. As pointed out above, this approach requires a fit
to the analytical expression for n,, which is much more
field-dependent than n _. Data obtained in this mode are
detailed elsewhere;'? we discuss here its physical inter-
pretation in terms of our collisionless model.

1. Signal duration at r=0

The analysis indicates that at » =0, the purely field-
dependent component of the excess electron density evo-
lution scales as (R /vy, t). If one adds a correction cp for
the intial fast ballistic decay to Eq. (18), the actual elec-
tron density should have a form

An,~en  o(1—J_)—cyp,

where the slow-scale time dependence resides entirely in
J_. The term cg, due to its fast decay (large v,;.), is rela-
tively insensitive to R. Consider the point in time at
which the normalized excess electron density An, has de-
creased to zero; i.e., the instant when the probe signal fol-
lowing a single pulse is about to pass through the base-
line. It is obtained by solving the preceding equation for
the value ¢t =7 at which An,=0. For simplicity, choos-
ing the point r =0, this time defined as the ‘“duration”
is

e—RZ/(u,h—zF:c1 ’
with solution

T=¢C R

=c, ,
Viph—

where ¢, and c, are constants related to cp /en . That
is, 7 should be dominantly linear in R.

This can be verified experimentally. In contrast with
the top trace in Fig. 3, which described a typical search
signal at » =0 for a fixed value of the beam diameter, Fig.
7 presents the effect on signal shape of varying D =2R
from 0.1 to 1.2 cm. The major change is the increase in
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FIG. 7. Single-pulse signal at » =0 for various values of laser
diameter D. Ordinate: probe electron current, inverted (more
light=signal up). (a) Abscissa, 0.1 us/division; ordinate 0.8
mA/division; D =0.1 cm. (b) Abscissa, 0.1 us/division; ordi-
nate 2 mA/division; D =0.4 cm. (c) Abscissa, 0.2 us/division;
ordinate 2 mA /division; D =1.2 cm.

the signal duration 7, the time required for the excess
electron density to become depleted. Figure 8 plots 7 as a
function of D =2R for several gas pressures p. Note that
the 7—R relations are linear, in accordance with the re-
sult of our analysis. Further, the duration increases
monotonically with p. Since 7 is inversely proportional to
Uyn—, this implies that v, decreases with p. Indepen-
dent estimates of H™ drift velocity obtained from H™
current and densities in the extraction region, indicate
that the H™ drift velocity decreases with increasing pres-
sure in a similar way. '3

2. Signal delay at r> R

When the probe is outside the laser beam, r > R, a sig-
nal shape different from that shown in Fig. 3 is obtained.
The signal should correspond to the expected evolution
of n,, Eq. (18); a data fit could be carried out, but it turns
out that for » > R the functions J_ are dominated by the
factor (r /v, 1), so that the excess electron density values
will propagate approximately as invariants along (r/1).
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FIG. 8. Dependence of photodetachment pulse duration 7 on
laser diameter D and pressure p.

Therefore certain overall properties characteristic of
self-similar problems are expected, and can be tested for
directly.

A simple way to check this is by comparing the depen-
dence of J on (r /t) at values of the ratio (r /R) which are
either (i) close to 1, or else (i) greter than 1, i.e., » sizably
beyond R. Note that, for constant (r/t), the ratio (R /1)
decreases as r increases. Consider, for instance, a change
in t by a factor of 8. In case (i) with (r/R)=1, J de-
creases by nearly 19%; and with (r /R)=2, J increases by
nearly 18%, over this range of . That is, when (»/R) is
close to unity, J varies appreciably with (r/¢). In con-
trast, for case (ii) with (r /R)=35, J increases by only 2.4%
over this large range in ¢ (and therefore in R /1), so long
as (r/t) remains constant. The physical reason is that,
the further r departs from the center, the less effect the
size R of the laser beam will have on the propagation of
the perturbation, which eventually becomes entirely self-
similar in (r /1), with the normalizing coefficient v, _ .

This is illustrated below. As shown in Fig. 9, the signal
observed when the probe is at some r > R starts off with a
small, steep front reaching a plateau, followed by a
slower rise to a peak, and a drop-off to its initial level
after a total duration 7. We denote by A7 the delay be-
tween the start of the steep front and the peak of the slow
rise. The small plateau turns out to be due to prompt
photodetachment outside the laser beam, due to
reflection of the powerful laser pulse off the bottom of the
chamber. This is checked by measuring the dependence
of the signal features on decreasing laser intensity. It is
found that the prompt plateau at ¢ <A7 decreases in
height as the reflected fraction of laser power dips below
saturation, while the major signal features remain invari-
ant, being due to the above-saturation intensity within
the laser beam. The delayed peak represents a nonlocal
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FIG. 9. Typical oscillograms of single-pulse probe current,
probe located outside the laser beam r > R. Abscissa: time, 0.2
us/division. Ordinate: probe electron current, 2 mA/division,
inverted (more light =signal up).

effect detected at the probe position but originating
within the laser beam. It should follow that the delay A7
will exhibit radial symmetry with respect to the beam
center.

This is verified by scanning the probe position along
chords traversing the laser beam. Two cases are shown.
(i) Figure 10 corresponds to a diametral chord (passing
through r =0). The delay time is symmetric in the radial
coordinate r, and becomes constant as the probe transits
from r >R to r <R. The width of the saturated zone
closely corresponds to the laser beam diameter D, as it
should. The slope of the D — At curve for large values of
r corresponds to v, _ =7X 10° cms ™!, in close agreement
with previous values. (ii) In the second case, the probe is
scanned along a chord tangent to the laser beam, defining
the photodetached volume. As expected, a sharp
minimum in the delay is found to occur at the point of
closest approach (chordal coordinate x) shown in Fig. 11.
The slope starts off with a larger value v,,_ =12X10°
cms !, at small values of the chordal coordinate x, as
can be expected on geometric grounds, and decreases
with increasing x (i.e., as x approaches r) to the same
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FIG. 10. Variation of delay At with probe position r along
diametral chord. Inset shows radial location of laser beam (test
volume); D is laser beam diameter.



41 NONRESONANT OPTICAL TAGGING AND “MONOPOLAR” ...

X
L ?_A____
w
5
~
a4 L _
>
<<
|
W [ )
o L |
I |
-2 -1 ) I 2

X (cm)

FIG. 11. Variation of delay A7 with probe position x along
chord tangent to r =R. Inset shows plan view of laser beam
(circular cross section); dashed line illustrates a typical probe
chordal (nontangent) trajectory, chordal coordinate axis x, and
its relation to radial coordinate r.

values v,,_ =7X10°cms~!. The fact that data obtained
with the probe located inside and outside the laser beam
yields similar values indicates that no significant pertur-
bation of the local H™ temperature is caused by the
probe. This could be expected since the probe zone of
influence (a few Debye lengths) is negligible in compar-
ison with the test volume dimensions, in these cases.

C. Factors in data reduction

To verify the independence of our model from
geometric factors, tests were also conducted in an inverse
configuration which still retains cylindrical symmetry. In
this geometry, the probe is positioned at the center of the
laser beam, r =0, but disks of various radii R and cen-
tered on r =0 are interposed between probe tip and
beam, casting a shadow of radius R around the probe.
Hence photodetachment occurs only within an annular
region surrounding the probe. The signal now is similar
to Fig. 9, i.e., exhibits the delay typical of signals ob-
tained with the probe far from the beam axis r > D /2,
even though the probe is at r =0. For instance, with a
disk radius of 0.4 cm, the observed delay of 0.6 ms corre-
sponds to a velocity of 7X10° cms™! at p =3 mTorr,
close to the other tests.
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Several sources for departures between model and ob-
servations can be identified. As mentioned above, the
analysis is exact but has been carried out in the collision-
free limit and the approximate solution stopped at a low
order in the field, without taking into account field effects
on the ionic densities, as exhibited in Fig. 6. In addition,
the approximation only takes into account the static
screening, and therefore does not predict the dynamic
overshoot in the electron density. Our preliminary exper-
iments also reveal several technical factors which should
be guarded against. They include (i) finite size and collec-
tion radius of the probe (requiring radial integration of
the functions J); (ii) angular and radial misalignment be-
tween probe tip and laser axis; (iii) inhomogeneity of laser
intensity, and (iv) laser reflection from the chamber walls.

VIII. CONCLUSIONS

The preceding analysis and data interpretation indicate
the method to be used under other conditions. As shown,
a short-time regime can be isolated in which collisional
and self-consistent-field effects, including oscillations,
have not yet reached sizeable proportions, so that a sim-
ple model can be used to fit the data. To describe later
times Eq. (16) can be solved, so long as the plasma
remains collisionless. For higher densities, when col-
lisions are important, solutions of the diffusion equation
for a great variety of conditions are available. The
creation rate can also be unfolded from the data in the
dark mode, by scanning the search laser beam in space as
well as time'* and varying the beam size D. The expan-
sion of the Boltzmann velocity distribution function in
general also has well-known approaches, !> which may be
followed to describe the overshoot'? and possible oscilla-
tions. Note also that these techniques can be used also
for measuring H™ properties within the extracted parti-
cle beam.

In summary, a kinetic analysis of the dynamic evolu-
tion of plasmas subject to a localized central density
nonuniformity has been carried out, and the results com-
pared to experimental measurements of density changes
following photodetachment laser pulses in plasmas con-
taining H™. Under our conditions (collisionless, low
fraction of H™), a low-order approximation, linear in the
self-consistent potential, fits the observations. Three
types of diagnostics: two-pulse (“dark”) and one-pulse
(“bright”) techniques, at » =0 and r >0, yield compara-
ble data, which are also in rough agreement with drift ve-
locities inferred from extraction experiments. The tech-
nique has yielded the first estimates of H™ transport ve-
locities within a volume source, and also demonstrated an
unusual type of charged-particle transport in plasmas: a
single-charge analog to ambipolar transport.

Based on these results, we conclude that optical tag-
ging, generalized to include nonresonant laser-induced
transitions from bound to continuum states, provides a
new diagnostic approach applicable to important situa-
tions where conventional probe or spectroscopic methods
are limited. To start with, systematic measurements of
the temperature of H™ in volume sources can now be ini-
tiated. In view of the high space and time resolution, the
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diagnostic also applies to the local measurement of
negative-ion speeds near extraction electrodes, and to
beams, in order to achieve better understanding of the
balance between extraction speed, density, and beam
brightness. More generally, the beam properties of
species such as H™ which do not possess accessible
bound states can be studied, within complicated
geometries, by the method described here and its vari-
ants.
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APPENDIX

1. Intermediate steps between Egs. (6) and (7)

The steps intermediate between Egs. (6) and (7) in the
text are Egs. (A1)-(A10) below.

Equation (6) in the text defines the ballistic density
components

np= [ avlf (v',r'st) o - (A1)

—[(r=8)/(wy, O]

g(s)

— p— o —
ng=m 3/Zv,h3f dst e
—

w ds d
— - x
= 3/2vth3 f

— 00

t

in Cartesian coordinates.

s, =r'sin@’, and s,=z’.
ds,ds,ds,=dr'r'd0'dz’.

foo S, fw dsze—[(x—s,)2+<y—sy)2]/(u,hr)2—<z—sz)2/(um+)2
t —w —®

Transform to polar coordinates defined as follows:
Similarly, x =rcosf, y =rsinf, and z =z.
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Here r’ is the zeroth-order particle orbit, given by

v=v', r'=r+v(t'—t). (A2)
Define the variable

s=r'|,_o=r—vt . (A3)
Solving for v, Eq. (A3) yields

V]p—o=v=(r—s)/t . (A4)

Using the definition of s, Eq. (A3), as well as Eq. (A4),
f(v',r’,t’)l,l=0 the integrand in Eq. (A1) can now be ex-
pressed as a function of s,

FW, ) mo=f(V=(r—s)/t,r'=s,t'=0) .  (A5)
Transform the integral f dv in Eq. (A1) into an integral
f ds, using the connection between v and s given by Eq.

(A4). The Jacobian calculated from this equation is
(—t73). The new limits of integration corresponding to
v=to0 ares/t = F «. Using Eq. (AS5), Eq. (A1) now be-
comes

np=— fw_wdst‘3f(V’=(r—s)/t,S,t'=0)

=fw dst 3 f(v'=(r—s)/t,s,t'=0) . (A6)
In our instance, f at t' =0 has the (separable) form
__vl 2
folvig(s)=7"3% 3 /U“‘g(s) , (A7)

where f, is Maxwellian [Eq. (5)] and g (s) defines the ini-
tial density distribution in space, piecewise constant in s.

Use Eq. (A4) to express v as a function of s in Eq. (A7),
and substitute into Eq. (A6):

g(s) (A8)

sradialzrl’ saxial=zl; szr'COSG',
The Jacobian of the transformation is

In our case, the initia] density distribution in space g (8) has the general form (cylindrically symmetric) for all species:

ngy, aconstant, for s in the region R, <Spadiat <Rmaxs  Ziower < Saxial <Zupper

(s)=
g 0, everywhere else .

(A9)

The parameters ng, R iy max»> €tc., are different for the various species, and described in Sec. VI C in the text.

Substituting Eq. (A9), the integral in Eq. (A8) now yields

ng(r6,z,0=nor %> [deo [ dTr(r’/t)e—

[(rc050~r’c059’)2+(rsinG—r’sinB’)z]/(vmt)zf dz’ —(z—z')z/(umt)2

, (A10)
t

where the integration limits [from Eq. (A9)] are now restricted to the range over which g (s) is nonzero,

0<0' <27, Rpjn<r' <R .. 2,<z'<z .

This is Eq. (7) in the text.
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2. Intermediate steps between Egs. (7) and (11)

The steps intermediate between Egs. (7) and (11) in the text are listed below. Expand the exponent in the integrand of

the radial integral in Eq. (7) [Eq. (A10)],

(r cos@—r'cosf’ )2+ (r sin@—r'sind’ )2 =r2+r'2—2rr'(cos cosd’ +sinf sin@’ )=r2+r'2—2rr'cos(6—0') .

Introducing this result into Eq. (A10) and inverting the order of integration, one obtains

_ —a3 —(rv, 02 o dr’ —(r' /v,y 1) 2rr'cos(8—6) /v, 102 dz'  —(z—2')2 /v, 2
ng(r,0,z,t)=nom "% ;e th fT(r'/t)e th fdG’e th f—~e e

(A11)
t

Changing variables from 6’ to £=(6'—0), with a corresponding change of limits to —6 and (27— 6), the angular in-

tegral takes the form

— ' 2
fZ‘n- Bdge[er /(v ) Jcosé )
-6

Because the exponent in the integrand is periodic (27), and the integration spans a complete period, it follows that the
integral is independent of the parameter 6, which appears in both limits. The integral is then seen to be

f:ﬂdgez[rr'/(vtht)z]cost;:27r10(2rr’/(vtht)2) ,

where I is the Bessel function of the first kind of imaginary argument. Introducing this into Eq. (A11) reduces it to

Rmax/v(ht dr’ r’

— —(r/v, 1?2
np(r,z=0,t)=2nym % th f
Rmin/uthl Utht U(ht

) 2
(r'/vgt)

z, /ot dz'

z, /vt Uit

(y— 2 2
(z=2")" /vy 0

Io(2rr' /(v t)?) (A12)

As specified in the text, the dz’ integration in our case (large ratios of |z; | to v, reduces to the factor 772, Now Eq.

(A12) becomes

’ 2
—(r' /oD

—(r/vy 0 Rmax /P! dr’
ng(r,z =0,t)=2nge th f
Rmm /UlhI U(ht

Io(2rr" /(v 1)?) .

(A13)

This is Eq. (8) in the text. The function of J (x,y) is defined’® by

1—J(x,y)=2e "’ZfOBte_’zlo(Zpt)dt, x=p% y=p*.

Expressing the integral in Eq. (A13) in terms of J yields

ng(r,z=0,1)/no=J((R in V- )* (F /03 )*) =T (R oy /O — )%, (F /0 1)?) .

(A14)

This is Eq. (10) in the text. For the negative ions, for instance, the range within which the initial density is nonzero is
R...=R (laser radius) <r' <R_,,, the chamber radius. If R ,, = o, then the second term on the rhs above becomes

zero, leading to Eq. (11) in the text,

ng_(rz=0,0)/ny=J((R /vy_t)%(r/vg,_t)?) .
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