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An impurity placed in a plasma modifies the particle-particle correlations in the plasma. This
impurity-plasma-plasma correction is relevant to ion-microfield calculations in hot dense plasmas as
well as to models of the fractional quantum Hall excitations in terms of impurity-plasma systems.
We show how to calculate such impurity-plasma-plasma corrections and apply them to a calcula-
tion of the Baranger-Mozer {BM) second-order microfield at He, Li, Be, and B impurities in a hy-

drogen plasma. Such a calculation for a dense plasma requires a definition of the electric field at the

impurity due to an individual plasma ion in the plasma. We show how the traditional uniform jelli-
um background assumption can be transcended via a deconvolution of the electron density obtained
from a density-functional calculation for the plasma that incorporates the fully self-consistent non-

linear screening effects. Finally we carry out all-order resummations of the BM series beyond
second order using the weighted-chain-sum method and also two models of the adjustable parame-
ter exponential approximation.

I. INTRODUCTION

The electronic energy levels of an ion placed in a plas-
ma become broadened and shifted due to the constantly
varying potential arising from the changing ion
configuration of the plasma medium. The concept of the
ion microfield, ' that is, the electric field produced at the
site of the radiator by the perturber ions, has been intro-
duced to model this problem in a relatively simple
fashion and has been of great value in the theory of spec-
tral line broadening. Ion microfields can be useful in a
number of other related problems if the ion microfield
refers to the actual electric field at the "radiator ion" (im-
purity ion) rather that to a "field" defined in a less physi-
cal manner.

Usually the term "strong coupling" is taken to mean
strong ion-ion coupling, but the electron-ion coupling is
assumed to be weak. However, in this paper "strong cou-
pling" applies to the electron-ion interaction as well and
hence the possibility of the formation of bound states
(iona with structure) has to be considered from the outset.
In this paper we specifically treat cases where there is
strong electron-ion coupling between the electrons of the
plasma and the radiator ion, while the ion-ion coupling in
the plasma is relatively weak (I & 1).

Working within the Baranger-Mozer (BM) cluster ex-
pansion for the ion microfield we showed in previous pa-
pers ' that density-functional theory (DFT) can be used
to avoid the weak electron-ion coupling assumption in-
herent in many previous calculations of ion microfields.
This enabled us to treat situations involving bound states
and arbitrary electron degeneracies. In effect, instead of
the "weak-coupling" approach where it is assumed that
the determination of the microfields is essentially a prob-
lem in statistical mechanics divorced from the problem of

defining the single-particle states and correlation func-
tions of the radiator and perturber system, we emphasize
the need for a unified approach, especially for regimes
outside weakly coupled plasmas, since the statistical
mechanics of the ion correlations and the evaluation of
the various traces cannot be separated from each other.
The density-functional theory of plasmas provides such a
unified approach when associated with the Baranger-
Mozer expansions which can be partially resummed to
all orders using a weighted-chain-sum (WCS) approxima-
tion or an adjustable parameter exponential approxima-
tion (APEX) model.

Our use of the BM expansion and the WCS approxima-
tion depends on a Kirkwood-type decomposition of the
impurity-plasma-plasma triplet distribution function

g; (0,1,2) for an impurity ion at the origin ro, and two
perturber ions (plasma ions) at ri and rz. That is, it is as-
sumed that the triplet distribution can be replaced by a
product of pair distributions:

gpss(0, 1,2) =g p(0, 1)g; (0,2)gpss(1, 2) .

Further, g (1,2) was taken to be g (~r, —rz~), i.e., the
pair distribution function (PDF) of the homogeneous
plasma (no impurity ion at the origin). The PDF's need-
ed in (1.1) were then calculated using DFT. This type of
approximation is rather common in various plasma prob-
lems and is generally thought to be valid for moderate to
weak ion-ion coupling regimes. The objective of this pa-
per is to investigate the effect of strong electron-radiator
coupling rather than to improve the Kirkwood decompo-
sition which is expected to be good for the ion-ion cou-
pling regimes (1 & 1) studied here.

A principal objective of the present paper is to improve
on (1.1) by including the effect of the impurity ion on g~~.
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That is, we retain the product form but replace (1.1) by

g,&z(0, 1,2) =g,z(0, 1)g, (0,2)g (1,2~ro ), (1.2)

where g~~(1, 2~ro) is a plasma-plasma pair distribution
function which takes account of the presence of the im-

purity ion at the origin ro and defined by (1.2). The corre-
lations contained in g &

are probably similar to what
Iglesias and Hooper have called "noncentral" correla-
tions. The difference

bh (1,2~ro) =gr (1,2 ro) —g (1,2), (1.3)

where g (1,2)=g (~r, —ri~) is the homogeneous pair
distribution function, will be called the impurity-plasma-
plasma correlation correction (ipp correction). Although
these types of corrections have usually been neglected,
they are frequently as important as the corrections ob-
tained by all-order summations of the BM series and need
to be considered, especially for charged impurities. The
idea of retaining the product form (1.1) with modified
pair functions has also been examined in the context of
the triplet correlations of the pure homogeneous plasma.
The present problem of calculating the ipp correction has
been central to the evaluation of the excitation energies in
fractional quantum Hall (FQH) systems. ' " The present
paper will clarify some obscure aspects and possible in-
consistencies in the plasma mapping of the FQH-
impurity problem. We have carried out explicit calcula-
tions of the ipp correction to the ion microfields at He, Li,
B, and Be impurities in a hydrogen plasma, to expose the
effects of modifications in the "noncentral" correlations
(ipp correction).

A second objective of this study is to discuss how the
effective electric field at the radiator should be calculated
when linear response is no longer applicable, and when
there is a significant difficulty in assigning a specific
effective ionic charge Z to the ions in the plasma. Iglesias
and Dufty, ' (also Dufty') have emphasized that the elec-
tric field to be used in a given microfield calculation de-
pends on the "microfield formalism" used. For example,
it depends on whether electron fields as well as ion fields
are included, and on how ion screening and electron
screening are treated. In a strongly coupled system even
the definitions of the quasi-independent "perturber
atoms, " ions, etc. , require careful consideration. These
determine the mean charge Z, the screening charges, the
Debye fields or the more accurately calculated (i.e.,
beyond the linear-response approximation inherent in
Debye theory) physical electric fields. These in turn
should in principle modify the level structure and induce
Auctuations in Z, requiring a self-consistent determina-
tion of the atomic physics, continuous spectrum, pair-
correlation functions, and the microfields of the coupled
system, i.e., impurity and plasma. Hence we believe that,
in a practical sense, the clearest physical picture is ob-
tained if microfields are calculated using the best possible
approximation to the physical electric fields generated
from the electron-screened ions. As such we shall discuss
carefully how the screened fields are to be calculated,
without making the approximation of uniform jellium
backgrounds. Such electric fields would be useful in the

calculation of other physical properties as well.
The plan of the paper is as follows. In Sec. II we re-

view the Baranger-Mozer cluster expansion and the WCS
all-order approximation pointing out how the ipp correc-
tions enter into the theory. Then we consider the evalua-
tion of the ipp corrections via (i) a two-component plasma
(TCP) model made up of impurity ions and plasma ions,
and (ii) an inhomogeneous plasma (IHP) model where the
effect of the impurity ion is treated as an external poten-
tial. In Sec. III we consider the calculation of the electric
field at the impurity due to the plasma ions, their screen-
ing, and their effective charge Z. These are determined
jointly by the physics of the plasma environment and by
the basic atomic physics of the bare nuclear charge Z of
the plasma ions. In Sec. IV we present numerical results
of He, B, Be, and Li impurities in hydrogen plasmas and
compare the effect of ipp corrections in the context of the
Baranger-Mozer expansion taken to second order, and
then in the WCS and APEX with all-order resumma-
tions. Section V contains a summary and conclusions.

II. FORMULATION OF THE MICROFIELD

X5 E—gE, (2.1)

where E; is the electric field at the impurity particle ("ra-
diator") at the origin, arising from the ith perturber ion
of the plasma, located at r;. Note that this assumption of
additivity of the total field is a weak electron-ion coupling
assumption which can still be used for strong coupling if
a pseudopotential formulation is justifiable. For a homo-
geneous plasina W(E) is spherically symmetric about the
origin. The Fourier transform of W(E) is given by

W(k)=W(k)= f exp ik gE; P(r„r2, . . . , r„)
0

with

X dr)dr2 ' ' ' d I'„

W(E)=W(E)= f W(k) k dk .
2m kE

(2.2)

In the BM formalism the term exp(ik g, E, ) is treated
using the Urse11-Mayer cluster expansion. This leads to
the result

W( )k=e px[S( )k]=exp g w (k)(p (2.3)

Here p is the mean ion density (we use n =Z p for the

The ion-microfield distribution W(E) specifies the
probability of occurrence of the static field E due to the
field ions, at the site of the radiator. If P(r„r2, . . . , r„)
is the probability of the ionic configuration
(r„r2, . . . , r„), the microfield distribution is introduced
by the definition

W(E)= fdr, dry dr„P(r„r2, . . . , r„)
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Ci(r, ) =g (0, 1},
c2(r„r~)=g (0, 1,2)—g (0, 1)g (0,2),

C3(r„r2, r3) =g (0, 1,2, 3)—g (0, 1,2)g (0, 3 }

(2.5)

(2.6)

mean free electron density, with Z the effective global
ionic charge in the plasma. Details of the definition of Z
will be discussed in Sec. III). The p-body microfield func-
tions w~(k) are defined by

w~(k)= f iI},$2 P„C~(r„rz, . . . , r~)dr, dr& dr~,
(2.4)

P, =P(k, r, ) =exp( ik.E, }—1,
with the cluster functions

when integrated over the (n +1)th particle coordinates,
reduces correctly to the nth cluster function. Details of
this weighted-chain-sum approximation are given in Ref.
5, where efficient numerical methods as well as compar-
ison with Monte Carlo and APEX (Ref. 6) calculations
are presented.

Let us consider the form of the second-order BM con-
tribution and the supplementary term arising from the
ipp correction. Using Eq. (1.2) to express the cluster
function C2(ri, rz) we can write the second-order contri-
bution wz(k) by

w2(k)= — p(r, —ro)p(r2 —ro)g, (0, 1)g, (0,2)
1

—g (0, 1,3)g (0,2) —g (0,2, 3)g (0, 1}

+2g (0, 1)g (0,2)g (0, 3) . (2.7)
where

&& h~z(1, 2~ro)drodr, dr&, (2.8)

Here g(0, 1) refers to the pair distribution function

g,z(rc, r, ) with the impurity ion at ro. Similarly g(0, 1,2) is
a triplet distribution function g,. (ro, r„r~), while

g(0, 1,2,3) denotes the four-particle f'unction g, Note
that we differ from the common notation of BM theory in
retaining g (1,2) for the PDF's, and similarly h(1,2) for
the total correlation function g(1,2)—1, as is customary
in the theory of liquids.

In this approach no classical assumptions are made.
The correct treatment of the electrons comes into the cal-
culation of the ion distribution function g(0, 1), etc. , and
DFT theory is an appropriate method. Such calculations
are necessary even in the lowest order [Eq. (2.5)] unless
the impurity does not interact with the plasma (and
hence does not undergo level broadening, etc.). However,
in the usual case g(0, 1) is different from unity and a
DFT-type calculation is needed even in the lowest ap-
proximation of the BM expansion. While the PDF's are
easily available from DFT models of the plasma, or from
simulation data if the system were classical, the particle
correlations of the form g(0, 1,2) which appear already in
the second-order BM theory are not available, or, even if
available, impractical to use. However, a simplified form
of the BM series could be constructed by systematically
using the Kirkwood approximation to reduce the higher-
order correlation functions to those with two-particle
correlation functions. It was shown in Ref. 6 how this
simplified form of the BM series could be evaluated to all
orders in what was called the weighted-chain-sum ap-
proximation. This simplified form of BM expansion is
adequate for the low I (( I) case treated here if the ipp
corrections could be included. In the WCS approxima-
tion all the higher-order terms in the BM series, contain-
ing higher-order correlation functions, e.g., h(1,2,3), are
reduced to terms containing only pair correlation func-
tions [e.g., h (1,2, 3)~h (1,2)h (2, 3)h (3, 1)]. The nth-
order cluster function is then found to contain chainlike
terms, viz. , h (1,2)h (2, 3)h (3,4) . Ii (n —I,n) +permu-
tations, and other non-chainlike terms. We retain only
the chainlike terms in each cluster function. The errors
introduced via the Kirkwood-type approximation and the
chain approximation are compensated by weighting the
chain contribution so that the (n +1}th cluster function,

p(ri —ro)=exp[ik E(1,0)]—1

and

hpp(1, 2~ro) =g~p(1, 2~ro) —1 .

where

Xdr, drzdro, (2.9)

hh(1, 2~ro)=h (1,2~ro) —h (~ri —r2~) .

A. Evaluation of particle correlations
in the presence of the radiator

If we denote the impurity (radiator) by i located at ro,
and the plasma particles (perturbers) by p, located at ri
and rz, then we with to evaluate

bh (r„rz~ro)=h (r„rz~ro) —h (~r, —r2~) .

Such an evaluation enables us to replace the usual
Kirkwood form, Eq. (1.1), by the product form inclusive
of ipp corrections, viz. ,

g, (0, 1,2)=g, (0, 1)g, (0,2)g (1,2~ro) . (2.10)

The study of this type of ipp corrections had recently be-
come important in a different context, namely, in the
study of the excitation spectrum of the correlated elec-
tron fluid associated with the fractional quantum Hall
effect. The problem has been looked at using a two-
component plasma model' and also using an inhomo-
geneous plasma model. " We also invoke these two ap-
proaches, clarify their relationship, and obtain results
similar to those of Refs. 10 and 11,but differing in certain
important aspects.

The electric field E(1,0) is the field at ro due to the per-
turber ion at r, . Explicit expressions for this field will be
given in Sec. III. The ipp-correction term now yields, in
an abbreviated notation,

5wz(k) =—IP(0, 1)P(0,2)g (0, 1)g (0,2)b h (1,2~ ro)
=1
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B. The two-component plasma model

Here we attempt to treat the impurity and plasma sys-
tem as a two-component plasma made up of impurities
(density p; ) and plasma ions of density p~. The electrons
do not appear, as their coordinates have been integrated
out via the Kohn-Sham equations of DFT. The impuri-
ties and plasma ions interact via effective ion-ion poten-
tials. The case where p; ~0 is the limit relevant to the
problem of an impurity in a plasma

Let the homogeneous plasma density p be explicitly
denoted by po, with N particles in the volume 0,. The
Ornstein-Zernike relation is

h (r„rz)=C (r„rz)+p fC (r„r3)h (r„rz)dr, ,

(2.1 1)

where h ~(r„rz)=h~ (~r, —
rz~ ), etc. , since the plasma is

homogeneous.
We remove one of the plasma particles and introduce

an impurity ion. Then the new densities are

p =(X—1)/II, p, =1/Il,

therefore (2.12)

Pp Pp Pi

The new OZ relations are

h~ (r&, rz)=C (r, , rz)+p f C»(r„r3)h (r3, rz)dr3

+p; fC;(r, , r3)h'~(I3 lz)dr3,

h, (r„rz)=C, (r„rz)+p f C; (r„rz)h (rz, rz)dr3 .

(2.13)

(2.14)

The TCP is translationally invariant and here we have
h»(r„rz)=h»(~r&, rz~}, etc. There is no term in

C;;(r~, r&) in the last equation since there are no
impurity-impurity correlations in the limit of a single im-

purity in the integration volume Q. Also, since

p =p —p; we have

h»(r„rz)=C»(r~, rz)+pp fC»(r~, r3)h»(r3, rz)dr3+p; f [Cz, (r~, ro)h&(ro rz) C»(r, , ro)h»(ro, rz)]dro, (2.15)

where we have used ro, instead of r2, in the last term in-

volving the impurity density p;.
If we write (2.15}as

h»(r, , rz) =h~~(r „rz)+p~~h»(r„rz) (2.16)

—C (r, —ro)h (rz —ro)] . (2.17)

Owing to the convolution structure of the OZ equation
this expression needs to be symmetrized in r, and rz.
However, as far as the calculation of 5Wz(E) is con-
cerned this is not required because r &, r2, and ro are in-

tegrated over [see Eq. (2.9)].
We also note that if the impurity is replaced by a plas-

ma particle the correction term hh (r, , rz~ro) goes to zero
as it should do.

In evaluating (2.17) to zeroth order, C, (r, —ro) is
available from Eq. (2.14) since h; (r&

—ro} is directly
available from a DFT calculation for a plasma with the
impurity at the origin. After some manipulation we get,
in reciprocal space,

~h (r~ rzlrp) =Eh (ri ro rz ro)~~h (q q'} .

we see that h (r&, rz) ~h (r& —rz) as p; ~0. The
corrections (to leading order in p; ) to hz~(r„rz) are hence
contained in hh (r„rz) evaluated using zeroth-order
quantities. Note that b,h (r&, rz) is an integral over the
impurity position ro. However, the calculation of the
correction to the microfield, 5'(E), requires
b,h»(r&, rz~ro) prior to the ro integration, as is clear from
Eq. (2.9). Thus we identify hh (r, , rz~ro) as

~h(r~ rzlro)=p, [C~(r, —ro)h~(rz —ro)

Retaining only terms in leading order in h, we get from
(2.17)~

C. The inhomogeneous plasma model

An alternative approach to the calculation of h»(r„rz}
in the presence of an impurity is to treat the impurity and
plasma system as an inhomogeneous plasma. " The im-
purity is treated as contributing an "external'* potential
which perturbs the homogeneous plasma. In Appendix
A of Ref. 11 Fertig and Halperin (FH) develop the
hypernetted-chain (HNC} equation and the OZ equation
for an inhomogeneous system. These equations have also
been discussed in Hansen and MacDonald. ' If the
external potential is P(r), the inhomogeneous HNC and
OZ equations are

g~ (1,2) =exp[ —U(1, 2)+h~ (1,2)—C~ (1,2)] (2.19)

and

h t'(1, 2) =C~ (1,2)+ f h ~ (1,3)p~(3)C~~(3, 2)dr3,

(2.20)

respectively. In (2.19) U(1,2) is the pair potential between
two plasma ions in units of kz T.

In Appendix D of FH, h~ (1,2) is evaluated as an ex-
pansion in terms of h; starting from the homogeneous

hh (q, q')=p;[h; (q)h,z(q') —h ~(q)h (q')] . (2.18)

Hence we see that the leading correction is found to be
second order in h; . Lauglin's result ' is also found to be
second order in h; but the correction term involving h

is missing in his expressions.
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plasma value h z(1,2}. Instead of following Ref. 11 we

proceed in a more direct manner.
The impurity (i.e., the external potential) is centered at

the origin of coordinates. Suppressing the pp subscripts
for brevity, we have, from Eq. (2.19),

This equation is identical with Eq. (D9) of Fertig and

Halperin, " although different in appearance. The
Fourier transform of Eq. (2.21) gives

bh (q, q') =AN(q, q'}

bh (1,2) =g (1,2)[bh (1,2)—b, C(1,2}]

=g (1,2}bN(1,2), (2.21)

+(2n. ) fd Q h (Q)bN (q —Q, q+Q) .

(2.24)

Using Eq. (2.23) we can write b,C(q, q') as

EC(q, q')=Ah(q, q'}S (q)S (q')

—C (q)bp(q+q')C (q') .
+p f C (1,3)bh (3,2)dr3

+ f C (1,3)bp(3)h (3,2)dr3 . (2 22)
Therefore

where N(1, 2)=h(1, 2) —C(1,2) is the nodal function.
Writing p(r) =p+ b,p(r) we have, from Eq. (2.20),

bh(1, 2)=BC(1,2)+pf bC(1, 3)h (3,2)dr3

Defining the double Fourier transform f (q, q') via

f (1,2)=(2n. ) f e 'f (q, q')e 'dqdq',

Eq. (2.22) can be written as

bN(q, q')=[S (q)S (q') —1]bh(q, q')S (q)S (q')

+C (q)hp(q+q')C (q') .

Using Eq. (2.24) we can finally write the change in the
plasma-plasma correlations as

bh(q, q')=S (q)bC(q, q'}S (q'}

+h (q)4p(q+q')ho(q') .

b h (q, q') =b p(q+ q')K (q, q'),

(2.23} where

(2.25)

K(q, q')=h (q)h (q')+S (q)S (q') f (2m) 31QCO(q —Q)ho(Q)CO(q+Q)

+S ( )S ( )f(2 ) 'dgh (Q) K( —Q, +Q).
S (q —Q}S (q+Q)

(2.26)

Using Eqs. (2.25) and (2.26) one can calculate b,h (q, q') as
an expansion in powers of h (q). Using Fertig and
Halperin's form of p(r} we have

b,p(r)=-ph, (r) .

Hence, to leading order in (2.25),

hh(q, q')=h (q}h (q')bp(q+q')

=0([p(h )]') (2.27)

Thus the dependence to leading order obtained from
the Fertig-Halperin treatment of the inhomogeneous
plasma seems to be of the order of [h (q)], while the
TCP treatment (cf. previous discussion, or Laughlin s dis-
cussion in Ref. 9) lead to an h (q) dependence.

The resolution of this inconsistency between the vari-
ous results seems to lie in the exact definition of hp(r).
In particular, the addition of an impurity atom, together
with the removal of a plasma particle, leads to changes in
the density of the order of I/O, where 0 is the volume of
integration. We believe that these I/O terms have not
been handled in the same manner in Refs. 10 and 11. We
note that the quantity b,h (q, q') calculated in the inho-
mogeneous plasma model is, in r space,
b,h ( ~ r, —ro ~, ~ r2 —ro ~ ) with ro the origin of coordinates.
Thus the hh (

~ r, —
r2~ ) for the TCP model of Ref. 10 has

to be recovered from that of Fertig and Halperin" by an

D. Change in the density profile on impurity substitution

In order to understand the contributions to Ap we con-
sider two systems: (i) a system with N+1 plasma parti-
cles, p =(N+ I)/0, having no impurity but a plasma
particle at the origin ro. (ii) A system with N plasma par-
ticles, p =N /0, and with an impurity at ro, i.e.,
p; =1/Q. Thus we have, for the two systems, with
p"'(x), x=r —r, ,

p'"=p [1+h (x,p;N+1)],
p' '=p [1+h; (x,p;N)] .

(2.28)

integration over ro. Similarly, the modified density
profile bp( ~r —ro~ } when integrated over ro and r should

give the number of impurities in the volume 0,. This
turns out to be zero in the Fertig-Halperin treatment,
while it is of the order of unity in the Laughlin treatment
and in ours. However, the reduction in plasma density
from N/I}. to (N —I)/0 is not included in Laughlin's
treatment given in Ref. 10. Thus, while Refs. 10 and 11
are partially correct, they both miss certain terms which

appear in the more complete expressions given here.
Since hp(q+q') is needed in Eq. (2.25), in Sec. II D we
review the density change due to the introduction of the
impurity into the plasma.
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The differences in the Ursell function of Eq. (2.6) for
these two systems arise from (a) modifications in

g,~(lr, —ral) and g;~(lr2 —rol) which also involves an im-

purity correction, and (b) modification in h»(r„rzlro)
when r0 contains the impurity. The DFT calculation ex-

plicit includes an impurity and hence item (a) does not
arise in the present discussion. In the calculation of the
difference

b h (r„r2lro) = h (x„xz,p'2', N) —h (x„x2,p"', N +1)

the relevant density change can be written, on using the
property pz

=p
—p;, as follows:

gp —p(2) p(1)

= —p, +p [h,p(x,p, N+I) —h (x,p, N+1)]

+p 0(h )+p;0(h) . (2.29)

The first term is due to the replacement of a plamsa
particle with an impurity atom in a homogeneous system.
The second term describes the rearrangement of the par-
ticle density around the particle at the origin. It corre-
sponds to a purely inhomogeneous effect in a system with
a constant number of particles. As we are interested only
in the limit p;~0, only the linear response to hp is
relevant. Hence, writing (2.29) as

bp= —p;+bp'

E. Final expressions for hh (r~, rglrp}

In view of the preceding discussion, the ipp-correction
term to be evaluated can be written as

hh (r, , r2lro)=Eh' +Ah

where

b,hg~(r„r 2rl)o=h;~(l x&l)h;, (lx2I)
—h (lx, l)h ((xzl)

and

(2.30)

(2.31)

with

X [h;~ ( I x31)—h» ( I x31)]h,', ( l x3 —
x& I ) $ ~x&,

(2.32)

etc.

x, =r, —ro,

we can treat the effect of p, and Ap' separately. That
is, we use the TCP to evaluate the effect of p, and the in-

homogeneous plasma model to evaluate the e8'ect of
Ap' . Note that we could have in principle evaluated
the effect of Ap' using only the TCP equations if an
iterative calculation involving Eqs. (2.13) and (2.14) were
to be carried out. But the present procedure is easier and
enables us to retain an expansion defined to a specific or-
der in perturbation theory.

Numerical calculation of the contribution to the
microfield arising from (2.32) involves the expansion of
bp' (q —q') in Legendre polynomials up to and includ-
ing order 3. The calculations show that the ipp correc-
tion arising from the inhomogeneous term is quite small,
and hence the restriction of these calculations to lowest
order is well justified. Other small corrections (e.g. ,
changes to the pair potential) which appear in this con-
text have also been neglected.

III. CALCULATION OF THE ELECTRIC FIELDS

The microfield calculation requires the value of the
electric field E due to the perturbing ions acting on the
impurity ion at the origin. If the electron-ion coupling is
weak we may write

E= g(Z'/r )exp( Ar—), (3.1)

where the summation is over all the perturber positions
r . In (3.1) A, is a screening constant and Z" is a mean
ionic charge. In the weak-coupling limit there is no seri-
ous ambiguity regarding Z' or A, . The mean ionic charge
is calculated via a Saha-like equation and A, is obtained
from linear screening theory. In such a theory Z* be-
comes essentially identical to the global value Z such that
the free-electron density n =Z P, with P the perturber-ion
density far away from the impurity. In a dense plasma
this simple picture is no longer valid. Bound states of a
given perturber ion may extend' beyond a nearest-
neighbor distance and the concept of ions with a compact
she11 of bound states may not be valid. The screening of a
given ion due to the free electrons will be nonlinear and
also strongly dependent on the configuration of the other
ions around it (uniform background models are invalid).
Hence electron screening cannot be specified without
reference to the ionic correlation functions of the system.
A naive approach to such a coupled system will not yield
the additive structure of the electric fields assumed in Eq.
(3.1).

Our approach to such systems is essentially to con-
struct the structure of the perturber ions, i.e., their
bound- and free-state densities, correlation functions,
etc. , out of the total electron and ion densities n (r), p(r)
which are considered to be made up of superpositions of
individual charge densities. Hence a superposition prin-
ciple holds, essentially as in second-order pseudopotential
theory, although we do not need to assume the validity or
the existence of such pseudopotentials. We remind the
reader that the plasmas that we are studying here have
ion-ion coupling I ( 1 and hence the deconvolution ap-
proach used here could be considered an excellent pro-
cedure.

A DFT calculation for a plasma treats the whole plas-
ma contained in a "correlation sphere" of radius R and
volume 0 about a nucleus of charge Z placed at the ori-
gin. The correlation sphere radius R is such that g(R) is
essentially unity, i.e., 0 is big enough to include charac-
teristic lengths associated with ionic and electronic corre-
lations. Typically R is some 5 to 10 Wigner-Seitz radii
and would involve a large number of atoms and electrons.
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The single-particle (electron) spectrum and ion-
correlation functions associated with the central ion are
obtained from the DFT calculation. The calculation
yields a free-electron (energy e) 0) density nf(r) and a
bound electron (e(0) density n (r). These densities are
for the total system and need to be decomposed into con-
tributions from individual ions. Since, in the homogene-
ous plasma all ions (including the central ion) are
equivalent, the total densities can be considered as ob-
tained from a linear superposition of individual spherical
densities. Thus, if n is the mean density and
b, n (r)=nf(r) —n, we have

bn (r)=An (r)+ g'bn„(~r —r'~), (3.2)

where the primed p summation is over all the lasma ions
at position r, excluding the origin. Thus b, n~( ~r r~

—
~ ) is

the free-electron density pileup (displaced density) around
an individual ion at the location r in the plasma. Note
that this b, n (r) has to be calculated for each environ-
ment, with all the other charges in place, and hence need
not be the same as, say, the displaced electron density
b n j(r) around an isolated ion placed in a uniform
responding jellium background with the same density n

and temperature T.
The summation over ion positions in Eq. (3.2) can be

written in terms of the ion-distribution function. Hence
Fourier transformation of (3.2) gives

bnf(q)=An (q)/[1+ph(q)] . (3.3)

This displaced electron density depends explicitly on
the ion correlation function h (q) and implicitly on the to-
tal plasma environment since hnf(q) is an electron densi-
ty calculated from the self-consistent solution of the
Schrodinger equation for the electrons and ions inside the
correlation sphere. We refer to the calculation of En'~(q)
given above as the deconuoluted plasma model of the dis-
placed density.

Since the total bound electron density n (r) is known,
an effective ionic charge

Z=Z n b
p (3.4)

Z =nf+n (3.6)

where nf is the number of free electrons in the sphere
of radius r". Thus

nf=(r /r, ), r, =3/(47m) . (3.7)

r may be thought of as the size (radius) of the perturber
ion, carrying a cloud of n bound electrons. In the
present case r is simply the Wigner-Seitz radius

where n is the number of bound electrons associated
with a single ion, can be defined. Since the total bound
density distribution n (r) is known, the number n of
bound electrons contained within a radius r is

n = 4mr n (r)dr (3.5)
o

and satisfies the neutrality condition

rws =[3/(rnp)]' (3.8)

Z= ——q(r)2
(3.9)

for r ) r . For perturbers approaching the central ion so
that r &r, i.e., for penetration of the bound electron
shell, this equation is not suitable. In any case, the prob-
ability of such close approaches is very sinall since g,~(r)
rapidly drops to zero for r & res. Further, for such close
approaches, the microfield calculated at the origin will
not be a good approximation to the microfield "felt" by
an electron in, say, a 2p-bound state whose Stark shift is
to be calculated. Then we need concepts which go
beyond the microfield model and we shall not consider
this case in this paper.

Returning to the second-order BM expression and the
ipp correction given by Eqs. (2.8) and (2.9), the electric
fields E(1,0) [i.e., E(r, )], etc. , are now identified with the
physical fields given by Eq. (3.9). Hence the microfield is
completely and unambiguously defined.

IV. NUMERICAL RESULTS FOR THE MICROFIELD

In this section we present the microfields in a hydrogen
plasma at a density such that r, =1 a.u. , i.e., the mean
electron density n =1.611X10 electrons/cm, and the
temperature T such that P '=50 eV. This corresponds
to T/'rF=1 where TF is the Fermi temperature, i.e.,

k~ TF =EF is the Fermi energy. Under these conditions
the H plasma is fully ionized and Z=1. The use of a ful-

ly ionized plasma makes the plasma model closer to what
is possible in traditional microfield calculations. The
high electron density (r, =l) would suggest that linear
screening theory may not be too bad and hence these cal-
culations can in principle be compared with traditional
microfield calculations where linear screening assump-
tions are made. Note that the unscreened ion-ion cou-
pling parameter is I =0.544 and hence ion correlations
begin to be important.

The micro6elds are calculated at the impurities He, Li,
Be, and B, and also at a proton (H+ ) although, of course,
such a radiator could only support free-free processes. In
dealing with such impurity ions we could either assume
that these ions are "given" in specific electronic
configuration, or we could assume that they are taken in
their "average atom" configurations. The use of an aver-
age atom con6guration implies that there are many im-
purities in the system, even though p,. is small, and hence
the possible impurity configurations average over. Hence
the impurity-plasma pair distribution functions g,~(r) are.
calculated using a density-functional description of the
impurity electronic structure, with the impurity energy

Now that the bound- and free-electron distributions as-
sociated with a perturber ion in a strongly coupled plas-
ma have been defined, we can define the electric field
E (r) at the origin, due to a single perturber ion at a dis-
tance r from the origin, as being

E (r)= ——+—f bnf(x)4vrx dx
Z 1 r 2

2 2 0
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TABLE I. Details of the impurities introduced into a fully ionized hydrogen plasma such that r, =1,
i.e., n, =1.6X10 electrons/cm', T/T =1, i.e., P '=50 eV; and I =0.544. The total number of elec-
trons bound by the impurity ion and the displaced ion density pg;;(r) is Nz. Also, hp(q =0) is the addi-
tional number of plasma ions displaced from the correlation sphere on introducing the impurity. Thus

~p =p f [g~(r) g—~~(r)]r dr. The bound state ( ls) energy is given in atomic units (27.21 eV).

s&, (a.u. )

Ng

bp(q =0)

H He

—0.2098
1.0484

—0.3488

Li

—1.1790
1.3024

—0.6132

Be

—2.8024
1.6375

—0.8420

—5.1800
1.8855

—1.0865

levels occupied by mean electron numbers (rather than by
integer or zero occupations). The impurities He, Li, Be,
and B support a 1s bound state, but the host plasma is
fully ionized (see Table I for details). Although these im-
purities would not give line spectra, they are used here
purely for illustration of how the microfields would be
affected by the ipp correction.

We shall first discuss the calculation of the electric
fields that go into the construction of the microfields.
Then we examine the second-order Baran ger-Mozer
microfield [i.e., sum of Pw, + (p 2/2) w z ] with and
without the ipp corrections. We shall also estimate the
contributions due to higher-order terms (beyond second
order) in the BM expansion using the WCS approxima-
tion and two versions of the APEX model.

A. Results for the electric fields

The electric field at the impurity due to a single per-
turber ion of charge Z at r is given by Eq. (3.9), i.e.,

E(r)= ——1 —= hn/(x)4@x dx
Z 1 2

p2 Z 0

= —Zq (r)/r (4. 1)

where hn (x) is the screening charge associated with a
perturber ion. Thus bnI(x) is bn (x) or b,n (x) for the
jellium model or for the plasma model, respectively (we

drop the superscript f for simplicity). The displaced elec-
tron density hn (r) derived from the plasma according to
Eq. (3.3) is shown in Fig. 1, while the difference
hn (r) —b, n (r), weighted with r is shown in Fig. 2. It is
clear that for the hydrogen plasma studied here
( I =0.544, r, = 1, T/TF = 1, Z= 1) the jellium model pro-
vides a good approximation to the deconvoluted plasma
model. The screening function q(r) calculated from the
plasma model is shown in Fig. 3. Differences between the
jellium and plasma models become more apparent in the
electric fields (Table II) and in the calculated microfields
(to be discussed in Sec. IV B). If the calculation had been
carried out for a hydrogen plasma, which is slightly less
dense, or more hot, the jellium results would be

O
CL
C

FIG. 1. Displaced electron density hn~ attributed to a plas-
ma hydrogen ion, obtained by deconvolution of the electron
density displacement given by the DFT calculation for the hy-
drogen plasma (r, = 1, T/TF = 1, Z= 1, I =0.544).

FIG. 2. Differences between the densities An, (jellium back-
ground) and An~ (from the deconvoluted DFT calculation for
the plasma).



41 ION CORRELATIONS AND ION MICROFIELDS AT. . . 3289

EO=Z/ro, r0=0.999 117Sr, , (4.2)

writing E =E/Eo, x =kEO, we have, from Eqs. (2.2) and
(2.3),

W(E)= E—f dx x sin(Ex)W(x) .
7T 0

(4.3)

The BM microfield calculated up to second order is then
given by

—2

W(x) = W2(x) =exp pw &(x)+ w2(x) (4.4)

FIG. 3. Electric field screening function, Eq. (4.1},
q(r) =r E/Z for the H ion (deconvoluted plasma model).

significantly different from those of the deconvoluted
plasma results. This is because although the H+ ions in
the plasma do not support any bound states, an H+ ion in
jellium already begins to support an extremely shallow
bound state (e» = —0.000 66 hartrees, -0.03 eV) even at
the chosen conditions of r, =1 and T/Tz =1. For larger
values of r, and T, a definite bound state will arise in the
jelliurn case, before such a bound state arises in the plas-
ma case.

Using (4.4) in (4.3) we get W2(E). Although the impuri-
ties (see Table I) are denoted by H, He, Li, Be, and B,
they have mean charges Z; ranging from 1 for hydrogen
to Z =3.2 for boron. The case of the "H-impurity" really
corresponds to a homogeneous plasma. The impurity
electronic configuration enters into the microfield essen-
tially through the determination of g; (r). These PDF's
are shown in Fig. 4. The left-most curve is g„„(r), i.e.,
the PDF of the homogeneous fully ionized hydrogen plas-
ma g (r) The. right-most curve is for the Boron impuri-

ty, i.e., ga„(r).
Table III presents the results for W2(E) for the radia-

tors (H, He, Li, Be, B) under study. In each case, column
1 gives W2(E) calculated using the jellium model electric
field. This is shown graphically in Fig. 5. Column 2 of
Table III gives W2(E) calculated with the deconvoluted
plasma model of the electric field. The differences be-
tween these two models are more significant for boron
than for the H "radiator" (this is just a proton —it can
only support free-free processes). But even for the hydro-
gen case (homogeneous plasma), the differences are about
4% at E=0.16. Hence it is clear that the accuracy of the
jellium model (uniform background) is questionable for

B. Second-order BM microfield and the ipp correction

As is customary, we report the microfield probabilities
W(E/Eo), where Eo is the standard Holzmark field

given by

TABLE II. Comparison of displaced electron densities and
screened electric fields at distances r (a.u. ) from a hydrogen ion
(perturber) calculated from the uniform-jellium-background
model and from the deconvoluted plasma model. The electric
field is given by q(r)= —r E(r)/Z, Eq. (4.1).

Q. 5

(a.u. )

0.003
0.102
0.205
0.304
0.510
1.025
1.522
2.000
2.539
3.018

Jellium

0.6921
0.5260
0.3882
0.2860
0.1484
0.0337
0.0117
0.0049
0.0020
0.0009

1.0000
0.9975
0.9833
0.9560
0.8677
0.6127
0.4143
0.2716
0.1607
0.0957

Plasma

0.6177
0.4888
0.3640
0.2709
0 1AAA

0.0346
0.0122
0.0050
0.0020
0.0009

1.0000
0.9977
0.9847
0.9593
0.8756
0.6230
0.4205
0.2751
0.1639
0.1003

FIG. 4. Distribution function g;~(r) for various impurities
i=H, He, Li,Be,B are given from left to right. The plasma parti-
cles p are H+ ions (r, = 1, T/Tz = 1).
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TABLE III. The second-order BM microfield probability distribution at H, He, Li, Be, and B impurities in a hydrogen plasma

(r, = 1, T/TF = 1, Z= 1). Column 1 is evaluated using the jellium electric field (see Table II). Column 2 is evaluated using the decon-
voluted plasma electric field. Column 3 is obtained by adding the ipp correction to column 2. This is zero for the homogeneous plas-
ma (i.e., H impurity). Eo is the reference field Ze /ro. The maximum probability 8' occurs at the field E

E/Eo 1

H
2 3

He
2

Li
2

Be
2

B
2

0.0314
0.1571
0.3142
0.6283
0.9425
1.2566
1.8850

0.0185 0.0177
0.3507 0.3377
0.7539 0.7344
0.7631 0.7580
0.5086 0.5128
0.3254 0.3299
0 1413 0 ]AHA

0.0235
0.4388
0.9073
0.8326
0.5097
0.3032
0.1161

0.0225 0.0234
0.4229 0.4369
0.8851 0.9041
0.8297 0.8284
0.5154 0.5085
0.3090 0.3034
0.1195 0.1175

0.0279 0.0267 0.0287
0.5136 0.4952 0.5246
1.0255 1.0015 1.0352
0.8680 0.8667 0.8582
0.4969 0.5047 0.4908
0.2804 0.2865 0.2777
0.0979 0.1000 0.0978

0.0322 0.0308 0.0339
0.5830 0.5623 0.6084
1.1265 1.1014 1.1464
0.8875 0.8879 0.8702
0.4790 0.4878 0.4682
0.2588 0.2652 0.2546
0.0819 0.0840 0.0823

0.0372 0.0356 0.0405
0.6637 0.6406 0.7073
1.2357 1.2097 1.2639
0.8989 0.9015 0.8714
0.4551 0.4646 0.4399
0.2341 0.2404 0.2297
0.0662 0.0681 0.0672

E /Eo 0.4515 0.4581
8' 0.8482 0.8339

0.4205 0.4263 0.4273
0.9836 0.9666 0.9652

0.3995 0.4050 0.4063
1.0850 1.0664 1.0640

0.3828 0.3876 0.3892
1 ~ 1715 1.1516 1.1484

0.3656 0.3707 0.3727
1.2652 1.2440 1.2400

these systems, although the differences between An and
An seem to be small.

In column 3 of Table III we give the total Baranger-
Mozer microfield up to second order and including the
ipp correction. The principal correction to the PDF
which produces this ipp correction is b,h (r, , r2~ro), calcu-
lated using the TCP model. We show in Fig. 6 the form
of this correlation correction in the case of the boron im-
purity, for several simple configurations. In Table III, we
see that in the case of He and Li the deconvolution effects
and ipp corrections seem to go in opposite directions and
hence the simple uncorrected jellium calculation (column
1) seems to agree with the calculation in column 3. How-
ever, this is seen not to be the case in Be and B, where the
ipp correction dominates the deconvolution effects. In
fact, for higher-Z ions the ipp correction would be ex-
pected to be even more important. The full ipp correc-
tion was defined in Eqs. (2.29) and (2.9), and is the sum of
a correction 5%2(E) calculated via the TCP model and
another smaller contribution 5W'2(E) using the IHP
model. Table IV presents these two contributions sepa-
rately. From these two tables it is clear that the ipp
correction becomes increasingly important along the se-
quence He to B, as the field of maxirnurn probability
moves to lower values. In the case of the plasma with the
boron impurity the largest correction to W(E) is of the

order of 10%. Thus the ipp corrections need to be taken
into account.

C. All-order corrections to the second-order
BM microSelds

Having obtained the BM microfield up to second order
inclusive of ipp corrections, it is of interest to determine
the magnitude of the corrections arising from a resurnma-
tion of the remainder, i.e., h8'„= 8'„—8'2. The value
of 58'„will clearly depend on the method of resumma-
tion used. We will examine EW„calculated from the
weighted-chain-sum approximation and two forms of the
adjustable parameter exponential approximation.

The all-order microfield probability function W„(E) is
calculated from the sum S(k) of Eq. (2.3), viz. ,

S(k) = g S„(k)= g, w„(k) .
n n

(4.5)

The n-body microfield function w„(k), given by Eq.
(2.4), involves the Ursell function C„(r,, rz, . . . , r„). The
WCS approximation is discussed in detail in Ref. 5. It
proceeds by approximating the nth Ursell function by a
sum of chainlike contribution arising from the n —1

bonds in the cluster,

TABLE IV. The change in the second-order BM microfield distribution 68'2(E) due to the ipp correction. Column (1) contains
the TCP correction arising from h;~(1,0)h;~(2, 0)—h~~(1, 0)h~~(2, 0). Column (2) contains the IHP contribution arising from

Idr, h~~(1, 3)[h; (3,0)—h~~(3, 0)]h~~(3,2). See Eqs. (2.29)—(2.31).

E/Eo

0.0314
0.1571
0.3142
0.6283
0.9425
1.2566
1.8850
2.5133

0.0010
0.0162
0.0214

—0.0015
—0.0078
—0.0062
—0.0022
—0.0006

He
(2)

—0.0001
—0.0022
—0.0024

0.0002
0.0009
0.0006
0.0002
0.0OOO

0.0022
0.0332
0.0377

—0.0092
—0.0154
—0.0098
—0.0025
—0.0002

Li

—0.0002
—0.0038
—0.0040

0.0007
0.0015
0.0010
0.0003
0.0000

0.0035
0.0514
0.0501

—0.0191
—0.0216
—0.0117
—0.0020

0.0002

Be

—0.0004
—0.0053
—0.0051

0.0014
0.0020
0.0011
0.0003
0.0001

0.0054
0.0737
0.0603

—0.0323
—0.0271
—0.0121
—0.0011

0.0009

B

—0.0005
—0.0070
—0.0061

0.0022
0.0024
0.0014
0.0002
0.0000
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FIG. 5. BM-microfield distribution W&(E) without the ipp
correction, near the maximum, for H, He, Li, Be, and B impuri-
ties in the hydrogen plasma (r, = 1, T/TF =1). The electric field
is from the jellium model (see column 1 of Table III).

C„(r&,rz, . . . , r„)= U„[h (1,2)h (2, 3) h (n —l, n)]

+permutations . (4.6)

1.0—

FIG. 6. The dominant ipp correction, Eq. (2.30),
hh~~(r„r, ~ro) obtained from the TCP model shown (upper
panel) as a function of r =

~ r, —
r2~ for the isosceles configuration

(inset) with a boron ion at r0 and two protons at r, and r2. The
curves 1,2,3,4 correspond to 0=~/8, n./4, 3m./8, and m/2, re-
spectively. In the lower panel the total correlation function
h~~(r) and h,~(r), where p=H+ and i=boron, are displayed as a
function of r.

The weight factor U„attached to the decomposition of
the nth Ursell term is chosen to satisfy the sequential re-
lation between Ursell functions given by
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p f U„+,(r„r„.. . , r„+,)dr„+,

= —nU„(r, , r2, . . . , r„) . (4.7)

The decomposition (4.6) involves a Kirkwood-like
decomposition of higher-order correlation functions to
yield a result in terms of the pair correlation functions
h(12). It was found that the imposition of the sequential
relation by choosing the weight factor (4.6) helps to over-
come some of the shortcomings of the Kirkwood-like
decomposition and the restriction of the sum to chainlike
graphs. In principle, the h(12) terms in the WCS approx-
imation also need to be modified by ipp corrections. In
practice, we calculate W„(E)using the usual WCS ap-
proximation and W2 (E) using the usual simplified BM
calculation, and obtain hW„(E) from W„(E)
—W2 (E). That is, ipp corrections are ignored in the
terms beyond second order in the all-order evaluation of
the microfield probability function. If 8'2 and 8'„are
known, and if the ipp correction in second order is 58'2,
a proportionate ipp correction for the terms beyond 8'2
would be estimated as fiW2(6W„/W2). The maximum
value of 5 W2 found in Table III is about 10% and hence
the estimated ipp correction on the terms beyond second
order is less than 0.3%. Thus we did not attempt to sys-
tematically include the ipp correction into the WCS cal-

I

S(k)=4' f r dr g, (r) [Jo(kE ) —1] .
E*(r)

(4.8)

We define [c.f. Eq. (4.1)]

s= —q(r)/r, i.e. , E =Ze

x =kZ/ro, i.e. , x =kEO,
(4.9)

then the argument kE =xroe. The effective field E' is

determined so as to give the correct coefficient of the
term in x in the expansion of S(k) for k~0. In the
classical one-component plasma (OCP) this coefficient T2
is known exactly via the second-moment sum rule. For
the electron-ion plasma considered here, a less exact pro-
cedure is followed. We can calculate Ti " in this case
from the first two terms of the BM series, since only S,
and S2 contribute to second order in x. These contribu-
tions can be recast into the form

culation. Calculated values of 58' are given in
column 3 of Table V.

In the APEX method the actual single-particle electric
field E(r), given by Eq. (4.1), is replaced by an effective
field E'. The all-order sum S(k) of Eq. (4.5) is given by
the formula

x Tz = —xrop vT fpr 2
r —2p q q q g~rq rj, qrdr

r
(4.10)

where h (q) is hzz(q) and arises from the Krirkwood
decomposition of the g; (ro, r„rz) term in the second-
oder Ursell function (that is, no ipp correction is intro-
duced). The contribution to x in APEX is given by

x Tz = xr03pn f —g; (r)e'(r)e(r)r dr . (4.11)

In the OCP the bare electric field s(r) is of the I/r form.
In our plasmas e(r) has a more complicated form and
cannot be approximated by a Debye-like form. Never-
theless, to implement a form of APEX we assume that
e(r) arises from a Debye-like potential V, (r)=e ""/r,
where A, has to be determined by fitting to our electric
fields. The effective field e'(r) appearing in (4.10) is as-
sumed to arise from a potential e ' + '", where a is the
adjustable parameter of APEX. Thus

T

I +(A, +cx)l' ~p

1+A,r
(4.12)

Fitting the numerical data for the (deconvoluted plasma
model) electric field e(r) in the hydrogen plasma, we find
that

for r -2 or 3 a.u.

1.5A,~, for r-5 a.u.

where XD is the electron Debye screening constant.
Hence we have made two APEX calculations, viz. ,
APEX1 and APEX2 with A, =A.~ and X=1.5A.&, respec-

tively. For each choice of A, , a value of a is obtained by
requiring that Tz =Tz, from Eqs. (4.10) and (4.11).
Since the choices A, =A,D or 1.5XD both fail in some re-

gions of r in fitting E(r), all that we can hope for is that
these two calculations give an indication of what the
APEX estimate of h8'„would be. It is interesting to
note that the term b,h' =h —(h ), given more explic-
itly in Eq. (2.30), does not change the coefficient Tz, i.e.,
does not change the second moment (e ). This can be
verified by noting that the contribution to T2, viz. , AT2
from the ipp correction is given by

—,'p [g, (0, 1)[ir2 e(0, 1)]h, (0,.1)dr, J

—
—,'p [g~(0, 1)[irz e(0, 1)]h (0, 1)dri j

This correction vanishes by its angular part
focos&sin&d8. The dominant effects of the ipp correc-
tion appear in x and beyond, and hence cannot be cap-
tured by the APEX method. In this context we note
that, to order x, APEX involves a physical model where
the interacting plasma is replaced by an effective nonin-
teracting plasma, i.e., only the impurity-plasma interac-
tions remain. (Note that in the OCP, or in a homogene-
ous plasma, the ipp correction is zero. ) Hence any
modification of plasma-plasma correlation via the impuri-
ty should not contribute, as was explicitly found to be the
case.
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difference between the mean of APEX1 and APEX2 and
the WCS calculation. Hence, based on the OCP compar-
ison between APEX and WCS established in Ref. 5, it is
rather surprising that the two methods do not agree more
closely. This shows that the theory of all-order summa-
tions for electron-ion plasmas needs further improve-
ment, particularly when ions having internal structure
need to be considered.

V. CONCLUDING SUMMARY

0.3 0.4
I I

O. 06
/

FIG. 7. All-order microfield distributions [W„(E) without

ipp corrections] for H and B impurities. Full curve: WCS cal-
culation; crosses: APEX1, i.e., A, =A,& with the electric field
from hn~ of the deconvoluted plasma model.

Numerical results of 68'„obtained from APEX1,
APEX2 and WCS are given in Table V (see also Fig. 7).
It is seen that APEX2 with A, =1.5A, D (compared with
APEX1 where A, =kD ) gives a somewhat larger correc-
tion for larger fields. WCS also behaves in a similar way,
but the differences from APEX1 are more pronounced.
The all-order estimate given by WCS is seen to be smaller
than the APEX estimates, although essentially in the
same direction. It should be noted that, unlike the case
of pure Coulomb interactions, the APEX, as it is used
here, is somewhat weakened by the lack of an exact sum
rule. Sensitivity to deviations from the sum rule could be
modeled by deviations of a from the optimal value. In
our calculations we have, in fact, given two different
APEX calculations. It is seen from Table V that APEX1
and APEX2 are close to each other in comparison to the

In this paper we have achieved the following: (i)
sho~n how an impurity placed in a plasma effects the
plasma-plasma pair correlations, and clarified the rela-
tionship of the two-component plasma models and inho-
mogeneous plasma models which have been used for
studying this problem; (ii) discussed how the electric field
due to an individual ion in a dense plasma could be
defined without using a "uniform jellium background"
assumption; (iii) evaluated the effect of these two correc-
tions on the second-order Baranger-Mozer microfield
probability distributions at He, Li, Be, and B impurities
in a hydrogen plasma; and (iv) evaluated the contribution
to the microfield probability distribution beyond second
order using two versions of APEX and also the WCS
method; (v) given a new treatment of the impurity-plasma
modeling of the fractional quantum Hall effect excita-
tions. We conclude that an evaluation of the BM
second-order microfield distribution inclusive of all the
relevant corrections is now possible, but the evaluation of
the all-order contributions needs to be improved, espe-
cially in dealing with electron-ion plasmas, where the
electron-ion coupling is not weak.
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