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The relationship between the one-dimensional kinetic Ising model at zero temperature and

diffusion annihilation in one dimension is studied. Explicit asymptotic results for the average
domain size, average magnetization squared, and pair-correlation function are derived for the Ising
model for arbitrary initial magnetization. These results are compared with known results for
diffusion annihilation, and it is shown that there is only partial equivalence between the Ising model

and diffusion annihilation. The results of Monte Carlo simulations for the domain-size distribution
function for different initial magnetizations are also presented. In contrast to the case of diffusion

annihilation, the domain-size distribution scaling function h (x) is found to depend nontrivially on
the initial magnetization. The exponent ~ characterizing the small-x behavior of h (x) is determined
exactly and is shown rigorously to be the same for both the Ising model and diffusion annihilation.

I. INTRODUCTION

The kinetics of diffusion-controlled annihilation in one
dimension has been of interest for some time in the con-
text of particle-antiparticle annihilation, binary reac-
tions in one dimension, and exciton fusion kinetics' in
low-dimensional media. While the exponent characteriz-
ing the decay of the particle density in one dimension is
well known' and an exact solution has been given for an
initial Poisson distribution in the continuum case, only
recently have explicit solutions (for certain initial condi-
tions) been given for diffusion annihilation on a lattice. '
Because of the equivalence between domain walls in the
Ising model and particles in diffusion annihilation, it has
been assumed that there exists an exact duality between
the one-dimensional Ising model at zero temperature and
diffusion annihilation. In particular, Racz has used this
analogy to study the kinetics of diffusion annihilation in
the presence of sources. However, no direct comparison
between the kinetics of the Ising model and diffusion an-
nihilation in one dimension has been made.

In this paper we derive exact asymptotic expressions
for the average domain size, wall density, and pair-
correlation function for the one-dimensional kinetic Ising
model at zero temperature, as a function of the initial
magnetization (m&). Our results turn out to be identical
to known results ' for diffusion annihilation in the case
m0=0. However, for general values of mo they differ.
Monte Carlo simulation results for the domain-wall dis-
tribution function as a function of mo are also presented.
Again, there is agreement for the case mo=0, while for
mo&0 our results depend on mo, in contrast to what is
expected for the case of diffusion annihilation. This
demonstrates that the duality between the kinetic Ising
model and diffusion annihilation is only partial. Finally,
we study the small-x behavior of the domain-size distri-
bution scaling function h(x) as a function of mo and
show, for both the case of the Ising model and diffusion
annihilation, that the exponent ~ is equal to 1.

The organization of this paper is as follows: In Sec. II

we review the general solution of the kinetic Ising model.
Our analytical results at zero temperature are presented
in Sec. III and compared with results for diffusion annihi-
lation. In Sec. IV Monte Carlo simulation results for the
domain size are compared with the asymptotic predic-
tions. In Sec. V we study the scaling of the domain-size
distribution and compare it with results for diffusion an-
nihilation. A summary of the results and a discussion are
given in Sec. VI.

II. MODEL AND GENERAL SOLUTION

while the master equation is

dp(s, ,s». . . , $N, t)
dt

g w(si )p($1,$2, . . .Si . ~SN, t )

+ g w( $)p($))$2). . . ;$. . . siv )t

where p( &s, $,2. . . , zs, t ) is the probability of
configuration Is, ,s„.. . , sivl at time t and w(s, )—the
probability per unit time that a given spin s, will change
sign —satisfies the Maxwell-Boltzmann distribution:

1 —
—,'ys;(s, +, +s, l)

w(s, )/w( —s, ) = l+ —,'ys, (s, +, +s, , )

where y =tanh(2J/ks T). Assuming w(s, ) of the form

w(s, ) = —,'[1—
—,'ys, (s, +, +s, , )] . (4)

Glauber was able to write an equation for the expecta-

The one-dimensional kinetic Ising model consists of a
lattice of spins s, =+1, which interact ferromagnetically
with their nearest neighbors. The Hamiltonian for this
model (for a chain of length X) is

N
H= —J g s;s, +, ,
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tion value of the spin-spin pair-correlation function
G(k, t)=(so(t)sk(t)) which, when averaged translation-
ally, becomes, for k )0,

= —2G(k, t)+y[G(k —l, t)+G(k+1, t)] . (5)
dt

The exact solution to this equation has been given by
Glauber as

G(k, t)=rt"+e " g [G(m, O) —ri ]
m =1

X[Ik (2yt) —Ik+ (2yt)], (6)

where 21=tanh(J/k//T) and I„(x) is the modified Bessel
function of the first kind. For large x, I„(x) has the
asymptotic expansion

eX
I„(x)=

2 /rx
[s!(8x)'] (7)

where p=4n For. T&0, y is less than 1 and G(k, t)
decays exponentially to its equilibrium value g".

The equation for the expectation value of each spin
( sk ( t ) ) has also been given by Glauber as follows:

d &s„(t)) = —(sk(t))+2]y[(s/, ](t))+(s/, +](t))] .

G(k, t)=1—e '(1 —mo) Io(2t)+I, (2t)

k —]

+2 g I (2t)
m=1

for k & 1 . (13b)

The solution of this equation is

(8)

(14)

Thus, the average wall density n (t)= [1—G (1,t)]/2 is

(1—mo)
n (t)= e '[Io(2t)+I, (2t)],

(s„(t))=e ' g (s (0))I„(yt) .

If we define m(t)=(1/N) g/, ] (s/, (t)) and sum Eq. (8)
over k (subscripts are modulo N ), Eq. (8) becomes

dm (t) = —(1—y)m(t)
dt

(10)

III. SOLUTION AT ZERO TEMPERATURE

At T=O, y =rt= 1 and Eq. (6) becomes

or m (t)=e " r "mo. For T=O, y= 1, we get the some-
what surprising result: m ( t ) =mo =const.

where no=n(0)=(1 —mo)/2.
It is interesting to note that for an initial random

configuration with ma=0, for which no= —,', Eq. (14) is
identical to the following expression which was recently
derived for one-dimensional diffusion annihilation on a
lattice for the time-dependent concentration of particles
c(t) with initial concentration —, and with an initial ran-
dom distribution

c (t) =(—,
' )exp( 4Dt)[IO(4Dt—)+I, (4Dt) ],

if one assumes D =
—,'. '

Substituting the asymptotic expansion Eq. (7) into Eq.
(14) yields

G(k, t)=1+e " g [G(m, 0)—1]
m=1

1 —mo
(t)

0
t

—]/2+O(t —3/2)
2&m.

(16)

X [Ik (2t) —Ik+ (2t)] .

G(k, t)=1—e ' g (1—mo)
m=1

X [Ik (2t) Ik (2t )] . —(12)

Keeping in mind that I„(x)=I „(x) for n integer, x & 0,
this infinite series can be rearranged to obtain

G(l, t)=1—e '(1 —mo)[IO(2t)+I, (2t)], (13a)

For an initial random state with magnetization (s ) =ma,
and G(k, O) = m]] for k%0, this equation reduces to

Thus, the average domain size L(t)=l/n(t) varies
asymptotically as

L(t) ~ t]/2
1 —rno

Equations (16) and (17) hold in general, if one assumes
an initial configuration such that G(k, O)=mo+g(k) for
kXO where Pk )~0 as k ~ oo. (This is because, as one
may see by substituting the asymptotic expansion (7) into
the sum e 'g" ]g(m)[I„(2t) I„+ (2t)], terms-
of order O(t '

) cancel. ) Thus, the asymptotic expres-
sion for domain size depends only on the initial magneti-
zation mo (assuming no other long-range order at t =0)
and not on the short-range order of the initial spin distri-
bution.

We note that, in contrast to the case of one-
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FIG. 2. Scaling form for the pair-correlation function g(z)
for the case rno =0 [solid curve, Eq. (21)] compared with simula-
tion results at 1 MCS ( X 's) and 200 MCS (triangles). 1.5—

over an ensemble of runs (with difFerent initial
configurations) for which the average magnetization is

mc, and (G(k, O)) =mc for k)0. We get excellent
agreement in our simulations for me=0 (Fig. 1} even
after only a few MCS.

h(z}

V. DOMAIN-SIZE DISTRIBUTION FUNCTION

We have also looked at the asymptotic distribution of
domain sizes N(k, t) where N(k, t) is the density of
domains of size k at time t. If one defines
p(k, t }=N( k, t ) In (t ) as the fraction of domains of size k
at time t and assumes scaling with the average domain
size L ( t ), one obtains

0.5

o.o '
0.0

I I I I I

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(24)h (x)=p(k, t )L (t),
where x=klL(t), L(t)=[2&el(1—mo)]t', and h(x)
is a scaling function satisfying jc"dx h(x)=1. Figure

3(a) shows a plot of the scaling function h(x ), obtained
from Monte Carlo simulations, for two different values of
the initial magnetization mo. We note that the scaling
function h(x } for m&=0 has a peak near x =

—,
' rather

than at x =1. The scaling function for mp=0. 75 has a
peak which is higher and narrower than that for m0=0
and its location is at a smaller value of x. Thus, the scal-
ing function h (x ) is seen to depend nontrivially on the in-
itial magnetization mo unlike what is expected in the case
of diffusion annihilation.

We note, however, that for m0=0, our numerical re-
sults for the domain distribution scaling function for the
Ising model are almost identical (except possibly below
the peak) to numerical results obtained by Doering and
ben-Avraham' for the interparticle distribution scaling
function for one-dimensional diffusion annihilation [see
Fig. 3(a)]. This is perhaps not surprising given that our
results for the domain size (wall density) for me =0 were
also identical.

FIG. 3. (a) Domain-size distribution scaling function h(x)
for the cases mo =0 (curves with squares imposed) and
m p

=0.75 (upper peak) from Monte Carlo simulations. Data
shown are for increments of 20 MCS up to 100 MCS. (The scal-
ing function for mo =0.75 has been reduced by a factor of —, for
clarity. ) Squares show data from Ref. 12. (b) Enlargement of (a)
comparing the asymptotic result h(x)~ex/(1 —mo) derived
in the text (dashed lines) with simulation results.

We have also studied the small-x behavior of h(x ) as a
function of mo. If one assumes that h(x)-x' as x goes
to zero, then one expects N(k, t)-p(k, t)t-t "+' '. Analysis of data for late times indicates that
N(k, t)-t, i.e., ~=1. We note that this same behav-
ior (r= 1 ) has been seen in simulations of coagulation in
one dimension' (for the behavior of the number of clus-
ters of size k } and has been obtained in a recent paper'
on the interparticle distribution function for the one-
dimensional irreversible one-species coagulation model
A +A~A.

The small-x behavior of h(x ) as a function of mo and
the exponent ~ may be derived as follows. If we define
the wall density at size i as
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w, =2(si s, +1 (25)

(27)

for the density of domains of size 1. Thus
p( I, t ) =N( 1, t ) ln ( t ) = 114t and h (x )~ rrx l( I —m o ) as
x goes to zero. Thus, we have shown explicitly that r = 1,
and for small x, found the dependence of h(x) on mo.
Figure 3(b) shows a comparison with this asymptotic
form for small x.

VI. DISCUSSION

We have calculated explicit asymptotic expressions for
the average domain size, density of walls, mean-square
magnetization, and pair-correlation function, as a func-
tion of initial magnetization mo, for the one-dimensional
kinetic Ising model at zero temperature. We have carried
out Monte Carlo simulations and find that the results
converge rapidly to the asymptotic solutions. We have
also studied the domain-wall distribution scaling function
h(x ) for diff'erent values of mo, and derived the small-x
behavior of h (x ) and the exponent r.

For the case mo=0, our results for the wall density
turn out to be identical to results recently derived for the
particle density in the case of one-dimensional diffusion
annihilation. In fact, we recover the two known exact

then io, =1 corresponds to a +
~

—wall, io, = —1 to a
—~+ wall, and io, =0 to no wall. We may then in gen-
eral calculate the (signed) wall correlation function, '

(iooio ) =
—,'[2G( x, t) —G(x —I, t) —6( x+ i, t )] .

In particular, we have N( 1, t ) = —( ufo w i )
= —

—,
' [2G(1,t ) —G (2, t )

—1]. Substituting the asymptot-
ic form for G(k, t ), we obtain

solutions ' for diffusion annihilation on a lattice. Simi-
larly, our numerical results for the domain-size distribu-
tion scaling function h(x) with mo=0 are in excellent
agreement with simulation results' for the interparticle
distribution scaling function in the case of diffusion an-
nihilation. However, for general mo we find, in contrast
to the case of diffusion annihilation, that the coefficient of
t ' in the asymptotic expression for the domain-wall
(particle) density for the Ising model depends on the ini-
tial magnetization (concentration). Similarly, we find
that the domain-size distribution scaling function h(x )

depends in a nontrivial manner on the initial magnetiza-
tion.

The above results show that the duality between the
one-dimensional Ising model at zero temperature and
diffusion annihilation is only partial. This is due to the
fact that, while the correspondence between the diffusion
of walls in the Ising model and the diffusion of particles
in the diffusion annihilation model is exact, the dynamics
of annihilation in the two models is slightly different. Al-
though this duality may be used to determine exponents
for diffusion annihilation, such as ~, it does not apply to
nonuniversal quantities such as the interparticle distribu-
tion scaling function. In systems in which the annihila-
tion process differs from that of ordinary diffusion annihi-
lation, as in the case of the Ising model, a nontrivial
dependence on the initial particle density would also be
expected.
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