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The relationship between the one-dimensional kinetic Ising model at zero temperature and
diffusion annihilation in one dimension is studied. Explicit asymptotic results for the average
domain size, average magnetization squared, and pair-correlation function are derived for the Ising
model for arbitrary initial magnetization. These results are compared with known results for
diffusion annihilation, and it is shown that there is only partial equivalence between the Ising model
and diffusion annihilation. The results of Monte Carlo simulations for the domain-size distribution
function for different initial magnetizations are also presented. In contrast to the case of diffusion
annihilation, the domain-size distribution scaling function 4 (x) is found to depend nontrivially on
the initial magnetization. The exponent r characterizing the small-x behavior of 4 (x) is determined
exactly and is shown rigorously to be the same for both the Ising model and diffusion annihilation.

I. INTRODUCTION

The kinetics of diffusion-controlled annihilation in one
dimension has been of interest for some time in the con-
text of particle-antiparticle annihilation,' binary reac-
tions in one dimension,’ and exciton fusion kinetics® in
low-dimensional media. While the exponent characteriz-
ing the decay of the particle density in one dimension is
well known''? and an exact solution has been given for an
initial Poisson distribution in the continuum case,? only
recently have explicit solutions (for certain initial condi-
tions) been given for diffusion annihilation on a lattice.*>
Because of the equivalence between domain walls in the
Ising model and particles in diffusion annihilation, it has
been assumed’ that there exists an exact duality between
the one-dimensional Ising model at zero temperature and
diffusion annihilation. In particular, Racz has used this
analogy to study the kinetics of diffusion annihilation in
the presence of sources.® However, no direct comparison
between the kinetics of the Ising model and diffusion an-
nihilation in one dimension has been made.

In this paper we derive exact asymptotic expressions
for the average domain size, wall density, and pair-
correlation function for the one-dimensional kinetic Ising
model at zero temperature, as a function of the initial
magnetization (mg). Our results turn out to be identical
to known results*> for diffusion annihilation in the case
my=0. However, for general values of m, they differ.
Monte Carlo simulation results for the domain-wall dis-
tribution function as a function of m are also presented.
Again, there is agreement for the case m,=0, while for
mq70 our results depend on m, in contrast to what is
expected for the case of diffusion annihilation. This
demonstrates that the duality between the kinetic Ising
model and diffusion annihilation is only partial. Finally,
we study the small-x behavior of the domain-size distri-
bution scaling function h(x) as a function of m, and
show, for both the case of the Ising model and diffusion
annihilation, that the exponent 7 is equal to 1.

The organization of this paper is as follows: In Sec. II
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we review the general solution of the kinetic Ising model.
Our analytical results at zero temperature are presented
in Sec. III and compared with results for diffusion annihi-
lation. In Sec. IV Monte Carlo simulation results for the
domain size are compared with the asymptotic predic-
tions. In Sec. V we study the scaling of the domain-size
distribution and compare it with results for diffusion an-
nihilation. A summary of the results and a discussion are
given in Sec. VL.

II. MODEL AND GENERAL SOLUTION

The one-dimensional kinetic Ising model consists of a
lattice of spins s; =*1, which interact ferromagnetically
with their nearest neighbors. The Hamiltonian for this
model (for a chain of length N) is

N
H=—J 3 55,1, (1)

=1

while the master equation is

dp(s|,S3,...,Sy,t)
dt
== S wls,)p(s,85, .. .5 ...,Sy,1)
1
_Si"'SN’t) » (2)

+ ELU(—'Si>p(Sl,52, P

where p(s,,s,,...,sy,t) is the probability of

configuration {s,,s,,...,sy} at time ¢ and w(s;)—the

probability per unit time that a given spin s; will change

sign—satisfies the Maxwell-Boltzmann distribution:
1=3ysi(si oy +s, )

ol lys(s o Fsioy)

w(s,)/w(—s;) (3)

where y =tanh(2J /kz T). Assuming w(s;) of the form
w(s,) =4[ 1=4ys;(s, 11 +5,_)] - @

Glauber’ was able to write an equation for the expecta-
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tion value of the spin-spin pair-correlation function
G(k,t)=(sy(t)s,(t)) which, when averaged translation-
ally, becomes, for k >0,

dG (k1) _

a =2G(k,t)*+y[G(k —1,0)+G(k+1,1)] . (5)

The exact solution to this equation has been given by
Glauber’ as
J

eX

I, (x)=
nlx V2mrx

s=1 j=1

where p=4n2. For T >0, y is less than 1 and G(k,t)
decays exponentially to its equilibrium value n*.

The equation for the expectation value of each spin
(s(2)) has also been given by Glauber’ as follows:

d (s, (t))

i =— (s () +1y[ (s (D) + s 11 ()] .

(®)

The solution of this equation is

(s ())=e™" 3
If we define m(t)=(1/N)3¥_, (s.(¢)) and sum Eq. (8)
over k (subscripts are modulo N), Eq. (8) becomes

(5, (O _, (y1) . ©)

dm (1)
—_—=—(1—- t 10
dt ( v )m(t) (10)
orm(t)=e 1"""m . For T=0, y=1, we get the some-

what surprising result:®* m(t)=m,=const.

III. SOLUTION AT ZERO TEMPERATURE
At T=0, y=n=1 and Eq. (6) becomes
G(k,)=1+e * 3 [G(m,0)—1]
m=1
X[y -y (2) =1 4, (20)] . an
For an initial random state with magnetization (s )= mg,
and G(k,0)=m(2) for k-0, this equation reduces to

Glk,t)=1—e % S (1—m3)

m=1

X[ m20—1, 1, (20)].  (12)

Keeping in mind that I, (x)=1I_,(x) for n integer, x >0,
this infinite series can be rearranged to obtain

G(L,)=1—e *(1—m3)[I,(20)+1,(20)], (13a)

1+3 ’(-1)5 T0 [e—(2j— 1] V[s!(sx ¥
[
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Gk,t)=n*+e * 3 [G(m,0)—n"]

m=1
X[ —,,2yt)—I; ,,,(2yt)], (6)
where n=tanh(J /kgzT) and I,(x) is the modified Bessel

function of the first kind. For large x, I,(x) has the
asymptotic expansion®

) )]

G(k,)=1—e 2(1—m2)|I,(2t)+1,(21)

k—1
+2 3 I,(2t)

m=1

for k>1. (13b)

Thus, the average wall density n(¢2)=[1—G (1,1)]/2 is

(1—md)

2

where ng=n(0)=(1—m})/2.

It is interesting to note that for an initial random
configuration with m,=0, for which ny=1, Eq. (14) is
identical to the following expression which was recently
derived® for one-dimensional diffusion annihilation on a
lattice for the time-dependent concentration of particles
¢ (t) with initial concentration 1 and with an initial ran-

2
dom distribution

n(e)= e I (20)+1,(20)], (14)

c(t)=(L)exp(—4D1)[1(4Dt)+1,(4D1)] , (15)

if one assumes D =1.1°

Substituting the asymptotic expansion Eq. (7) into Eq.
(14) yields
1—m}
—t 240073 . (16)
2V :
Thus, the average domain size L(z)=1/n(t) varies
asymptotically as
VT ip

/. (17)
1—m}

n(t)=

L(t)=

Equations (16) and (17) hold in general, if one assumes
an initial configuration such that G(k,0)=m3+£(k) for
k0 where £&(k)—0 as k — . (This is because, as one
may see by substituting the asymptotic expansion (7) into
the sum e 3= _, &m)[I; _,,(2t)—1I, ,,(2t)], terms
of order O(t ~'/?) cancel.) Thus, the asymptotic expres-
sion for domain size depends only on the initial magneti-
zation m, (assuming no other long-range order at t =0)
and not on the short-range order of the initial spin distri-
bution.

We note that, in contrast to the case of one-
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dimensional diffusion annihilation, for which the asymp-
totic form"? for the density of particles n(t)
=(87Dt)"'/? is independent of the initial density of
particles/walls, (16) depends on the initial wall density
(magnetization). However, as already pointed out, in the
case my=0 (ny=4, D=1), the two results agree. Thus,
for the case m;=0 our results appear to be equivalent to
those obtained for diffusion annihilation, while for m 70
they are not.

It is interesting to note that for an initial nonrandom,
antiferromagnetic configuration such that G(k,0)
=(—1)¥ (corresponding to a full lattice of walls), Eq. (11)
implies

n(t)=exp(—20)1,(2t) . (18)

This result agrees with the exact result c¢(¢)
=exp(—4Dt)I,(4Dt) derived by Lushnikov® for
diffusion annihilation with an initially full lattice, if one
again assumes D =1. Thus, for the case m;=0, we re-
cover the two known*? exact results for diffusion annihi-
lation on a lattice.

Using Eq. (13) we may also calculate the asymptotic
scaling form of the pair-correlation function G(k,?) in
the limit t,k — oo with k/V't finite. If we insert the
asymptotic expansion (7) into (13b), keeping in mind that
Skl m?=k?"*1/(2n+1)+0(k?"), we obtain

Gln=1—12m0 § __(=lrk
’ Vir S, 2n+1)nnRiynt12
+0(t71?) . (19)

In terms of the scaled variable z=k/\/7, this may be
rewritten as

2
1 mg =

Ve 2, 2n+1)n2?

(__l)nz2n+1

G(k,t)=g(z)=1—

+0(:7172) . (20)
On inspection this may be seen to be equal to
g(z)=1—(1—m3})erf(z /2)
=(1—md)erfc(z/2)+m? , Q21

where erf(z)=(2/V'm) [ idu e “’. We note that at T=0
(y=1), Eq. (5) for G(k,t) is the discrete version of
a one-dimensional diffusion equation 0dG(x,t)/dt
=093%G(x,t)/3x% The exact solution of this equation,
with boundary conditions G(0,z)=1 and G(x,O)'—:rgé
for  x#0, is G(x,1)=1—(1—m})erf(x /2V't )
=1—(1—m3})erf(z /2) if one identifies x /V't as z. Thus
the asymptotic result for g(z) is the same as in the con-
tinuum approximation. We note, as before, that Eq. (21)
holds for an arbitrary initial configuration with
G(k,0)=m}+&(k) with £(k ) going to zero as k — 0.

IV. MONTE CARLO SIMULATIONS

In order to study the approach to the asymptotic be-
havior, we have conducted Monte Carlo simulations (on a
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lattice of size N =128 000) for several values of m, with
initial random configurations. Figure 1 shows plots of
L(t) versus time (Monte Carlo steps) from Monte Carlo
simulations with m;=0 and m;,=0.75. We see that after
only a few Monte Carlo steps (MCS) there is good agree-
ment with Eq. (17).

Figure 2 shows the scaled pair-correlation function
g(z) along with the asymptotic result [Eq. (21)] for an ini-
tial random configuration (m,=0). Again after a short
time there is very good agreement between our simula-
tion results and the asymptotic results.

We have also looked at another measure of domain
size, Ry (1), corresponding to the mean-square magneti-
zation, where

Ry ()=N[{m*1t))—(m(1))?]. (22)

This measure of domain size is not self-averaging,'! i.e.,

the error in R,,(t) does not depend on system size and
depends only on the number of independent runs. Thus,
the brackets in Eq. (22) correspond to an average over a
large number of runs. Recalling that (m(t))zmo, and
the fluctuation-susceptibility relation, we obtain in the
asymptotic limit,

Ry()=[" [G(x,0)—m}dx

=(1=m3Vt [ erfe(z/2)dz , (23)

Ry (t)=4(1—m2)'?2 Vi .

At first sight, it might seem surprising that, if
(m(t))=my=const, that {(m?%(t)) should not be con-
stant as well. This has to do with the fact that R,,(z) is
not a direct measure of domain size but rather of fluctua-
tions about a mean, and in this case consists in averaging
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FIG. 1. Comparison of asymptotic predictions for domain
size [Egs. (17) and (23), solid curves] with simulation results
(symbols). Top and middle curves correspond to average
domain size L(¢) with m,=0.75 and m =0, respectively. Bot-
tom curve corresponds to R, (¢) for the case m,=0, for which
the simulation results consist of an average over 1000 runs.
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FIG. 2. Scaling form for the pair-correlation function g(z)
for the case m,=0 [solid curve, Eq. (21)] compared with simula-
tion results at 1 MCS ( X’s) and 200 MCS (triangles).

over an ensemble of runs (with different initial
configurations) for which the average magnetization is
mgy, and (G(k,0))=m} for k>0. We get excellent
agreement in our simulations for m,=0 (Fig. 1) even
after only a few MCS.

V. DOMAIN-SIZE DISTRIBUTION FUNCTION

We have also looked at the asymptotic distribution of
domain sizes N(k,t) where N(k,t) is the density of
domains of size k at time ¢t If one defines
plk,t)=N(k,t)/n(t) as the fraction of domains of size k
at time ¢ and assumes scaling with the average domain
size L(t), one obtains

h(x)=p(k,t)L(1), (24)

where x =k /L(t), L(t)=[2V'7/(1—m})]t'/?, and h(x)
is a scaling function satisfying f gdx h(x)=1. Figure

3(a) shows a plot of the scaling function h(x), obtained
from Monte Carlo simulations, for two different values of
the initial magnetization m,. We note that the scaling
function h(x) for my=0 has a peak near x =1 rather
than at x =1. The scaling function for my=0.75 has a
peak which is higher and narrower than that for my=0
and its location is at a smaller value of x. Thus, the scal-
ing function h(x) is seen to depend nontrivially on the in-
itial magnetization m unlike what is expected in the case
of diffusion annihilation.

We note, however, that for m;=0, our numerical re-
sults for the domain distribution scaling function for the
Ising model are almost identical (except possibly below
the peak) to numerical results obtained by Doering and
ben-Avraham'? for the interparticle distribution scaling
function for one-dimensional diffusion annihilation [see
Fig. 3(a)]. This is perhaps not surprising given that our
results for the domain size (wall density) for m,=0 were
also identical.

h(x)

h(x)

FIG. 3. (a) Domain-size distribution scaling function A(x)
for the cases my=0 (curves with squares imposed) and
my=0.75 (upper peak) from Monte Carlo simulations. Data
shown are for increments of 20 MCS up to 100 MCS. (The scal-
ing function for m,=0.75 has been reduced by a factor of% for
clarity.) Squares show data from Ref. 12. (b) Enlargement of (a)
comparing the asymptotic result h(x)—mx /(1—m3)? derived
in the text (dashed lines) with simulation results.

We have also studied the small-x behavior of A(x) as a
function of m,. If one assumes that A(x)~x" as x goes
to zero, then one expects N(k,t)~p(k,t)t™ '
~¢~1*7/2 " Analysis of data for late times indicates that
N(k,t)~t32 i.e., 7=1. We note that this same behav-
ior (7=1) has been seen in simulations of coagulation in
one dimension'® (for the behavior of the number of clus-
ters of size k) and has been obtained in a recent paper'?
on the interparticle distribution function for the one-
dimensional irreversible one-species coagulation model
A+ A— A

The small-x behavior of 4(x) as a function of m, and
the exponent 7 may be derived as follows. If we define
the wall density at size i as
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w,=1(s;—5,41), (25)

then w,=1 corresponds to a +|— wall, w,=—1 to a
—|+ wall, and w, =0 to no wall. We may then in gen-
eral calculate the (signed) wall correlation function,'*

(wow, ) =1[2G(x,1)—G(x—1,1)—G(x+1,1)] .  (26)

In particular, we have N(1,1)=—(wow, )
=—1[2G(1,1)—G(2,t)—1]. Substituting the asymptot-
ic form for G(k,t), we obtain

1—m3
N(1,t)=——="213240(t 572 27
8V
for the density of domains of size 1. Thus

p(1,1)=N(1,t)/n(t)=1/4t and h(x)—mx /(1—m2)? as
x goes to zero. Thus, we have shown explicitly that 7=1,
and for small x, found the dependence of A(x) on m.
Figure 3(b) shows a comparison with this asymptotic
form for small x.

VI. DISCUSSION

We have calculated explicit asymptotic expressions for
the average domain size, density of walls, mean-square
magnetization, and pair-correlation function, as a func-
tion of initial magnetization m, for the one-dimensional
kinetic Ising model at zero temperature. We have carried
out Monte Carlo simulations and find that the results
converge rapidly to the asymptotic solutions. We have
also studied the domain-wall distribution scaling function
h(x) for different values of m,, and derived the small-x
behavior of A(x ) and the exponent 7.

For the case my=0, our results for the wall density
turn out to be identical to results recently derived for the
particle density in the case of one-dimensional diffusion
annihilation. In fact, we recover the two known exact

solutions*> for diffusion annihilation on a lattice. Simi-
larly, our numerical results for the domain-size distribu-
tion scaling function A(x) with m;=0 are in excellent
agreement with simulation results'? for the interparticle
distribution scaling function in the case of diffusion an-
nihilation. However, for general m, we find, in contrast
to the case of diffusion annihilation, that the coefficient of
t "2 in the asymptotic expression for the domain-wall
(particle) density for the Ising model depends on the ini-
tial magnetization (concentration). Similarly, we find
that the domain-size distribution scaling function h(x)
depends in a nontrivial manner on the initial magnetiza-
tion.

The above results show that the duality between the
one-dimensional Ising model at zero temperature and
diffusion annihilation is only partial. This is due to the
fact that, while the correspondence between the diffusion
of walls in the Ising model and the diffusion of particles
in the diffusion annihilation model is exact, the dynamics
of annihilation in the two models is slightly different. Al-
though this duality may be used to determine exponents
for diffusion annihilation, such as 7, it does not apply to
nonuniversal quantities such as the interparticle distribu-
tion scaling function. In systems in which the annihila-
tion process differs from that of ordinary diffusion annihi-
lation, as in the case of the Ising model, a nontrivial
dependence on the initial particle density would also be
expected.
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