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Phase diagram of a system of hard spherocylinders by computer simulation
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We report a computer-simulation study of the phase diagram of a system of hard spherocylinders
with aspect ratio L/D between 0 and 5. For L/D 3 only isotropic liquid and crystalline solid

phases can occur. For L /D=3 a mechanically stable smectic phase occurs, but it is thermodynami-

cally unstable. For larger L/D values, stable smectic and nematic phases are present.

I. INTRODUCTION II. CALCULATION OF THE PHASE DIAGRAM

Computer simulations have proved very useful in ob-
taining an understanding of the physical phenomena in
atomic and molecular systems. The first computer simu-
lations focused mainly on atomic systems, i.e., systems in
which the particles interact through spherically sym-
metric potentials. Subsequently, simulations on systems
with particles interacting through nonspherically sym-
metric particles ("molecular systems") have been per-
formed. Such simulations allow us to gather insight into
the ordering phenomena that are typical for molecular
systems, e.g. , liquid crystals. Most liquid-crystal forming
molecules are quite complex. Surprisingly enough, how-
ever, many liquid-crystalline phases can be modeled using
simple hard-core molecules. Therefore computer simula-
tions on hard-core systems have been a subject of interest
for some time. ' Phase diagrams for various systems,
such as hard ellipsoids and hard parallel sphero-
cylinders, have been calculated. In the ellipsoid system
three different phases occur: isotropic, nematic, and
solid. An important question in literature has been
whether or not a stable smectic phase can occur in a sys-
tern with a purely hard-core interaction. Numerical
simulation of the phase diagram of the parallel sphero-
cylinder system first showed unambiguous evidence that
smectic order can occur in a hard-core system; apart
from the nematic and solid phases, this system also
displays a smectic and a columnar phase.

Recently it was shown that also in a system of hard
spherocylinders with a rotational degree of freedom
("free" hard spherocylinders) a stable smectic phase ex-
ists for the aspect ratio L /D=5. (Here D is the diameter
of the cylinder and L is the length of the cylinder input in
between the two hemispheres. The "total length" of the
spherocylinder is L +D. ) Recent density-functional cal-
culations ' predict that this stable smectic phase will ex-
ist for smaller L /D, together with a stable nematic phase.
The isotropic-nematic-smectic triple point is predicted to
occur at L /D= 3 {Ref.7) or L /D =2.46.

In this study we report the results of computer simula-
tions of hard-spherocylinder systems with L /D=1 and 3.
Combining our data with the known results for L/D=O
(hard spheres ) and L/D=5 (Ref. 5) we obtain a tenta-
tive phase diagram of the spherocylinder system for
L/D +5.

In this section we summarize the procedure used to
find the stable phases of a system of spherocylinders with
a given L /D ratio.

A. Calculation of the equation of state

Knowledge of the equation of state often provides a
rough estimate of the limits of stability of the various
phases; by generating various different (i.e., ordered or
disordered) starting configurations at different densities,
the range of mechanical stability of the observed phases
can be estimated. If only one phase is mechanically
stable at a given density, this will also be the thermo-
dynamically stable phase. If more phases appear to be
mechanically stable, a free-energy calculation is needed to
determine which phase is thermodynamically stable.

1. Num, erical techniques

We prepared configurations of the dense sphero-
cylinder system in three different ways.

(i) Compression of an isotropic liquid phase At a . low
density a "stretched fcc lattice" (i.e., a fcc lattice in
which all z coordinates are multiplied by a factor
(L /D + l ) was "melted" by the application of constant-
NVT (number, volume, temperature) Monte Carlo
(NVT-MC) to the system. The ensuing isotropic liquid
was thereupon compressed to a higher density by
constant-NPT (number, pressure, temperature) Monte
Carlo (NPT-MC) and allowed to equilibrate again by
NVT-MC.

(ii) Expansion of a solid phase. At a density of 90%%u& of
closed packing a stretched fcc configuration was allowed
to equilibrate by Monte Carlo. In this ordered phase at
high density the box shape determines, to a considerable
extent, what the "equilibrium" configuration wi11 be. We
therefore used a MC algorithm which allowed the box
shape to fluctuate while keeping the box volume constant
(variable-shape constant-volume Monte Carlo, or
VSMC). Thus we allowed the system to determine its
equilibrium box shape. The equilibrium configuration
was subsequently expanded to a lower density and al-
lowed to equilibrate again.

(iii) Starting from a parallel conftguration At some.
densities we started from a parallel spherocylinder
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confjiguration (e.g., in a smectic state) and allowed it
to equilibrate by VSMC. The ensuing equilibrium
configuration was subsequently compressed by APT-MC,
or expanded, and allowed to equilibrate again.

After preparing a well-equilibrated configuration, the
equation of state was determined by standard molecular
dynamics (MD). Typically, a MD run had about 400
collisions per particle (we used 240 particles in the
L/D=3 system, and 144 particles in the L/D= 1 sys-
tem), which proved to be sufficient to determine the equa-
tion of state with reasonable accuracy. Near the density
~here we expected a phase transition to occur, we per-
formed longer runs (1200—2000 collisions per particle), so
that we were able to study the time evolution of nematic
and smectic order parameter fluctuations.

2. Results
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In Figs. 1 and 2 and Tables I and II we display the
equations of state for L/D= 1 and 3, respectively. (In
the figures, p*=p/p, is the density relative to the densi-

ty of close packing, also called the reduced density, and
P *

= Pv 0/k T, where Uo is the molecular volume. )

In the L /D= 1 system we only find a liquid and a solid
phase. The solid already melts at a density higher than
that for which the smectic phase of the parallel L/D=1
system is stable. This clearly suggests that no stable
smectic phase occurs for this aspect ratio. We do not find
a nematic phase either. This is consistent with the early
observation of Vieillard-Baron' that a stable nematic
phase does not exist for L /D=2.

In the L/D=3 system we find three mechanically
stable phases: liquid, solid, and smectic. The smectic
phase was obtained both by starting from a parallel
configuration and by expanding the solid phase. When
expanded, the solid transforms spontaneously into a

FIG. 2. Same as in Fig. 1 for L/D=3. The stars refer to the
smectic branch.

TABLE I. Equation of state for the L/D=1 system.

Liquid
Pvo/kT

Solid
Pvo/kT

smectic phase at a reduced density p*=0.64. Upon
compression the system remains in the smectic phase up
to a density p*=0.70, above which solidification occurs.
Figure 3 shows the system in the smectic phase.

When the liquid is compressed we see that the nematic
order parameter S defined by

S =
—,
' ((3 cos 0—1) )

remains small (Table III), and we see no clear change in
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FIG. 1. Equation of state for L/D=1. The solid line
represents the virial expansion to fourth order, B, and B4 are
taken from Ref. 1. The MD results for the isotropic Auid
branch are represented by dots, the results for the solid branch
are shown as triangles.

0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34
0.36
0.38
0.40
0.42
0.44
0.46
0.48
0.50
0.52
0.54
0.56
0.58
0.60
0.62
0.64
0.66
0.68
0.70

0.374(6)
0.450(5)
0.533(8)
0.630(6)
0.736(5}
0.859(15)
1.009(13)
1.174(20)
1.366(24)
1.556(41)
1.834(27)
2.090(38}
2.457(66)
2.790(69)
3.239(52)
3.740(54)
4.288(82)
4.88(14)
5.62(12)
6.63(14)
7.54(25)
8.72(25)

10.15(28)
11.88(34)
13.94(48)
16.32(56)

0.70
0.72
0.74
0.76
0.78
0.80
0.82
0.84
0.86
0.88
0.90

10.00(23)
10.77(24)
12.07(49)
13.20(25)
14.49(32)
16.05(26)
18.40(27)
21.59(14)
25.05(57)
29.97(53)
36.84(60)
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Liquid

TABLE II. Equation of state for the L/D=3 system.

Smectic Solid

0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34
0.36
0.38
0.40
0.42
0.44
0.46
0.48
0.50
0.52
0.54
0.553
0.58
0.60
0.62
0.64

Pv, /kT

0.517(8)
0.633(9)
0.762(13)
0.915(16)
1.093(22)
1.300(26)
1.533(31)
1.792(30)
2.117(35)
2.457(46)
2.879(70)
3.356(62)
3.895(96)
4.437(99)
5.196(96)
5.96(15)
6.81(15)
7.95(14)
8.45(12)
9.94(30)

11.49(23)
13.14(45)
15.73(36)

0,62
0.64
0.66
0.68
0.70

Pvo/kT

8.53(23)
9.54(16)
9.99(30)

10.97(36)
11.27(53)

0.66
0.68
0.70
0.72
0.74
0.76
0.78
0.80
0.82
0.84
0.86
0.88
0.90

Pvo/kT

8.82(21)
9.66(28)

10.17(15)
11.35(29)
12.37(26)
13.74(46)
15.28(27)
17.14(29)
19.75(40)
22.62(45)
26.31(44)
31.07(32)
38.66(53)

and the static orientational correlation factor by

g =g(P (u u, )) . (4)

In order to study these quantities, MD runs were used

the slope of the equation of state. A dynamical study of
the system reveals, however, that collective orientational
fluctuations increase with increasing density in the isotro-
pic phase; we studied the decay of the collective- and
single-particle correlation functions and the static orien-
tational correlation factor g2. The single-particle orienta-
tional correlation function is defined by

Cz=(P2(u(0) u(t))),
the collective orientation function by

Cz= g (P2(u, (0) u, (&))),

with a length in the order of 40 time units, or 2000 col-
lisions per particle. (Here time is measured in units of
D&m/kT, where m is the mass of a particle and D the
diameter of a cylinder; ) Figure 4 shows that the ratio
~z/rz of the decay times of the collective and single-
particle correlation function and 1+g2 increase with in-
creasing density, indicating that nematic fluctuations in-
crease. Because the statistical errors in the decay times
of the collective reorientational fluctuations are very
large, we are unable to give an accurate estimate of the
density of the isotropic-to-nematic transition, except that
it is at some density p* & 0.60. We also performed runs at
reduced densities p'=0.56—0.60 starting from a parallel
smectic configuration (smectic is the equilibrium phase
for the parallel system at these densities). On these
configurations we first applied 26000—46000 MC cycles
to let the system "equilibrate, " and subsequently MD for
40 time units to study the dynamics of the system. The

TABLE III. Average nematic order parameter S defined by
Eq. (I) as a function of the reduced density p for L/D=3 in
the liquid branch.

FIG. 3. Smectic configuration at a reduced density p* =0.64.
The particles are represented by lines of length L. Left picture:
top view. Right picture: side view.

0.52
0.54
0.553
0.56
0.58
0.60
0.62
0.64

0.065(15)
0.026(12)
0.045(42)

0.131(23)
0.107(16)
0.060(11)
0.056(17)
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1. Theory

The differences in the Helmholtz free energy of two
thermodynamically stable points can be determined from
the equation of state by the following relation:

VF Fo—= — P'( V')d V'= I P*(p') Ip' dp' . (5)
)o

Fo is an integration constant that needs to be known in

order to determine the difference in free energy between
state points separated by a first-order transition.

The integration over P "(p) can be carried out b fittin

p& o a convenient analytical form. For this we used
the y expansion"

FIG. 4. t&/t2 (dots) and 1+g2 (triangles) as a function of
density for the compressed isotropic fluid. Here, t; and t', are
the decay times of the collective and single-particle correlation
functions, defined by Eqs. (2) and (3), and g2 is the static correla-
tion factor, defined by Eq. (4). Note that there is a gradual up-
ward trend with increasing density.

P'(p)= g C„*y" .

Here

values of the nematic order parameters at the start of the
MD runs indicated that there was still nematic order
present at the beginning of the MD run. Measurements
of the decay of the collective orientational fluctuations in-
dicate that even during the long MC run, equilibrium is
not reached. During the MD simulation the system is

(Fi . 5) show
still evolving towards the isotropic phase. S h

ig. s ow configurations that look more like an isotro-
pic Quid with remnants of a smectic phase than a true
nematic phase. The decay to the isotropic phase becomes
slower at higher density.

From these data it is not clear whether a small region
exists in which a mechanically stable nematic phase
occurs. Below we will show that the fact that the nemat-
ic phase can occur only for p* &0.60 implies that a ther-

L/D=3.
modynamically stable nematic phase does t

'
t fno exist or

As we can see from Figs. 1 and 2, the isotropic, smec-
tic, and solid phases are separated by first-order phase
transitions with the concomitant hysteresis effects. In or-
der to locate the thermodynamic coexistence points,
free-energy calculations have to be performed.

and

'9 UoP ~

where Uo is the molecular volume.
For the liquid phase Fo can be determined by compar-

ing the free energy of a system with the free energy of an
ideal gas. At low densities the difference in free energy
between the two systems should disappear.

For the smectic and solid phase Fo can be determined

by thermodynamic integration to a system with known
free energy. This will now be discussed.

Solid phase. For the solid phase the "reference s s-
tern" is the fixed center-of-mass Einstein crystal. The
free energy of this system is given by

FE= —kTln exp —
&

r. —r.

X5 g (r, —r;) d(r)

kT 1n I g ex—p( —PA, 2sin 8 )d(Q)

[ T ~f

C
1

) g

Here A, , and A, z are the coupling parameters which deter-
mine the strength of the harmonic force constants. The
reason why the center of mass is kept fixed is discussed in
Ref. 12.

The Helmholtz free energy of the Einstein crystal is
known in closed form. For large values of A. , and A, 2 it is
approximately given by

3/2(X —1 j X

I'E- —kTln ~ »2 2'
PA, , PA.2

(g) ~~oo) . (10)
FIG. 5. Coonfiguration of a spherocylinder s stem with

a p = . , obtained by applying MC to a parallel
r sys em wit

configuration. The configuration showed is presumably a tran-
sient state from smectic to isotropic.

The free energy of the original system can be related to
the free energy of the Einstein crystal by thermodynamic
integration to the Einstein crystal, using a Hamiltonian
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for a system of hard spherocylinders in a harmonic field,

Hi i =Ho+A. , g (r; —r, ) +A2 g sin 8;,
a parallel state by adding an aligning field to the Hamil-
tonian

Hi =Ho(r;, 8; }+A,g sin 8; .

When k, and kz become large, the contribution of Ho to
the free energy of this system becomes negligible. We
therefore have

It can now be shown that, for large A,

Fo =F~(A, =0)

FO=F(k, =0, A2=0)

=F@(Ai,Aq ) —kT lnv

—J
' di. , (x(r,. rol'—

)

—f '
dA, 2 +sin 8; (A,i, A,2 00) .

l k] j A2

(12)

=Fid(X=O)+[Fi(A, =A, )
—Fi„(A,=A, )]

N f— ((sin 8)i —(sin 8);d „)dA,

+kT [ln(exp( PH&
—) )&

—ln(exp( PHD—) )z i] .

(18)

Here Fz is the rotational part of the free energy of an
ideal gas of 1V rotators which has as a Hamiltonian

Here the averages are taken with respect to the Hamil-
tonian H& & . Also in these averages, the center of mass1' 2

is kept fixed. In order to get the free energy with respect
to the "laboratory frame, " a factor —lnV has to be add-
ed. ' In practice, the integrals are performed by choos-
ing a suitable path, i.e., we choose a parametrization

H'i (8;)=A, +sin~8, . (19)

Hence

F~d = NkT ln—f f exp( —pA, sin 8)(sin8)d8dp .
0 0

(20)

A, i=A, i(g), A~=A2(g)

such that

g= —1~A i =A2=0, g= l~ki =I
i

(13)

(14)

The averages in the integral are the averages of a system
of spherocylinders in the aligning field, and a system of
rotators with the Hamiltonian H&. In the averages in the
logarithmic terms, the second average is taken over the
Hamiltonian of a system of hard parallel spherocylinders
with an "additional aligning field"

We then have

Fo =F~ 1n V
H i =H (r; )+A, g sin 8, . (21)

g(r, —r, )2

( x sin e,. )

Note that H does not depend on 8;. H & can be regard-
ed as the Hamiltonian of a system of parallel hard
spherocylinders with an internal degree of freedom,
which couples to an external aligning field.

Now we have

( exp( ~HO }) E,ii., . (15)
F& (A, =O)= NkT 1n4n . —

Furthermore,

(22}

N(-p(-PH, ))„ (16)

Here, the average is taken over the Hamiltonian of the
Einstein crystal, and Po is the probability for a particle to
overlap with another particle, when the system evolves
according to the Einstein Hamiltonian. If A, , z ac, Po
will vanish. For large values of k, 2 Po can be calculated
by Monte Carlo simulation.

Smectic phase. For the smectic phase we chose as a
reference system the system of parallel hard sphero-
cylinders. The free energy of this system has been calcu-
lated in Ref. 3. A "free" smectic state is transformed into

In the last term the average is taken over the Hamiltoni-
an of the Einstein crystal. This term represents the
difference in free energy between the system with Hamil-
tonian Hi ~ at A, =A

i A,2=A, 2 and the Einstein crys-

tal at the same values of A. , and A,z. For large values of
and A.2 it can be shown to be equal to'

lim Fz(A, =A, )
—F'i (A, =k ) =F (23)

We see here that in order to obtain the free energy of the
system of free cylinders we have to supply a strongly
aligning field to the system, so that the particles become
parallel. This takes an infinite amount of "aligning ener-
gy.

" The difference between this aligning energy and the
aligning energy of a system of ideal rotators is, however,
a finite quantity, which is just the free energy of the hard
parallel spherocylinder system.

Now, for the third term

k T [ln( exp( PH ) ) i —ln( exp( —PHD) )~ i]-
N f [(sin 8)i ——(sin 8);~i]dA, .

m

(24)

This will give a vanishingly small contribution if we
choose k large enough. If we now choose a suitable
path
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TABLE IV. Coefficients for the y expansion fits to the equation-of-state data. The range of validity is given in column 3. For the

liquid phases, the exact C, , C, , and C, are used, which are related to the virial coefficients by Eq. (32).

L/D

1.0

3.0

Phase

liquid
solid

liquid
smectic
solid

0.20-0.70
0.70—0.90

0.20—0.64
0.62—0.68
0.66-0.90

Ci

1.000
8.988

1.000
—4.086

6.770

3.600
—3.467

5.455
15.429

—0.980

C3

4.140
1.542

8.520
—5.112

0.555

C4

—1.654

—7.670

C5

0.5511

2.471

A, =A(g), X=0~(=1, A, = ~~/= —1,
we have

Fo = —NkT 1n4m+F

+N I [(sin 8)k —(sin 8);~ &] dg .

(25}

(26)

Now the statistical error in the difference is always small-
er than the difference itself. Thus we are able to deter-
mine the integrand of Eq. (26) with greater accuracy.

Once we have obtained the absolute free energies for
the various phases, the phase coexistence densities can be
obtained. At these densities the following relations
should hold:

The integral over (sin 8);& & is known in closed form,
and can be calculated directly. It turned out, however,
that for A, ) 1000, when both terms in the integrand were
determined separately, the difference between the two
terms became smaller than the statistical error in the first
term. We therefore used a method to determine the
difference directly: we calculated both terms "simultane-
ously" in a MC program in the following way. For each
particle we generated values of 0; directly from the prob-
ability distribution

P (8) ~ exp( —PA, sin 8) . (27)

In this way, the term (sin 8);~ z can be determined nu-

merically. We now used these 0; also as the new trial
values for a particle displacernent in the MC algorithm of
the system with Harniltonian H&. The translational dis-
placements in the MC step were still generated in the
usual way. Now, if no overlap occurs after the trial step,
the value of 0, is a "good" value both for the system with
Hamiltonain H& and for the system with Hamiltonian
H&. In this case we have

sinH 0 —sin I& 0- =0 .
A

(28)

S 0 0; s, 0;=Sl 0I oig Si 0;„2'2=2'2 (29)

If overlap occurs, the H& system retains its old value of
A, , whereas in the H& system a new value occurs. In this
case, the difference between the two terms is equal to

Ps =PII Gs =Ga (30)

Here 6 is the Gibbs free energy, defined by

6=F+PV . (31)

2. Results

L/D=1. The coemcients to the y expansion of the P'
for the liquid and the solid phase are given in Table IV.
For the liquid phase, C&, C2, and C3 are the exact
values, derived from the virial coefficients given in Refs. 1

by
n —1

C» y n 1
( 1}n

—k —14kge
k=0

pe g /gn —
1

(32)

The absolute free energy F0 of the solid was calculated at
a density p' =0.82 by the application of (15). The respec-
tive terms which constitute F0 are given in Table V.
Having obtained F0 and P' in analytical form, we were
able to find the densities for which (30) is satisfied. These
are given in Table VI.

L/D=3. The coefficients for the y fit for the respective
phases are given in Table IV. For the determination of
the solid free energy we made use of Eq. (15). The results
are given in Table V. For the smectic phase we made use
of (26). The respective terms are given in Table V.

TABLE V. Various terms composing the free energy Fo of the solid and smectic phases as given by Eqs. (15), (16), and (26). Note
that here the free energies are given per particle. fE ~ is the energy of the Einstein crystal or the parallel system, depending on wheth-
er the phase is solid or smectic. Likewise, +f, denotes the contribution of the respective integral terms in (15) or (26). In column

3, the density at which the free energy is calculated is given.

L/D

1.0

3.0

Phase

solid

solid
smectic

0.82

0.82
0.64

14.686

18.576
2.086

+f',
—6.06(3)

—8.50(5)
5.80(16)

—PoI

2

0.006

0.006

—ln4m

—2.531

—(ln V)/N

—0.039

—0.029

fo

8.59(3)

10.05(S)
5.35(16)
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FIG. 6. Gibbs free energy G as a function of the pressure P*
for L /D= 3. Here both G and P* are determined by a y expan-
sion with the coefficients given in Table IV. Solid line, isotropic
liquid; dashed line, smectic; dotted line, solid.
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FIG. 7. Phase diagram for the hard-spherocylinder system.
The dots denote the calculated coexistence points. The shaded
region is the coexistence region. The isotropic-nematic-smectic
triple point lies at a L /D ratio higher than 3.

From Fo and P* we once again found the coexistence
densities. These are given in Table VI.

III. PHASE DIAGRAM AND DISCUSSION

From Table VI we see that, although we were able to
create a mechanically stable smectic phase for L /D= 3,
this phase is not thermodynamically stable. Therefore,
for L/D=3, as well as for L/D= 1, the only stable
phases are the isotropic and the solid phase. The coex-
istence pressure of the isotropic phase and the metastable
smectic phase for L/D= 3 are only slightly higher than
the isotropic-solid coexistence pressure. %e therefore ex-
pect that the smectic phase becomes thermodynamically
stable at a L/D value which is only slightly higher than
3. As we do not observe a (metastable) nematic phase for
L /D=3, we expect the nematic phase to become thermo-
dynamically stable at a still higher L /D value. We there-
fore conjecture that the hard-spherocylinder phase dia-
gram contains two triple points: an isotropic-smectic-
solid triple point at L/D somewhat higher than 3, and an
isotropic-nematic-smectic triple point at a higher value of
L/D that is well below L/D=5. The latter prediction is
somewhat higher than the predictions of density func-
tional theory, ' where an isotropic-nematic-solid coex-
istence point is predicted for L /D (3.

It may appear strange that the isotropic-solid and

isotropic-smectic transition densities are very close to
each other (actually they are the same within error bars)
whereas the isotropic-solid and smectic-solid transition
densities show such a clear discrepancy. The reason for
this becomes obvious when we look at a P*—G plot for
the three phases (Fig. 6); the solid and smectic lines are
very nearly parallel, and close to each other in the con-
sidered region, resulting in intersection pressures (and
hence densities) with the isotropic line that are very close
to each other. The intersection pressures of the isotropic
and smectic lines with the solid line are far apart, result-
ing in a large difference in the coexistence densities.

Combining our data with those of Refs. 5 and 8, we
can now construct the tentative phase diagram for the
hard-spherocylinder system. It is given in Fig. 7.

From Fig. 7 we see that for small values of L/D the
coexistence region is located at a higher density than that
of the hard-sphere system, contrary to the parallel hard-
spherocylinder system, where the density decreases. The
reason for this is that the free spherocylinder isotropic
liquid has an extra rotational degree of freedom, which
makes the entropy difference between the isotropic phase
and the solid phase larger. The parallel system does not
have such a rotational degree of freedom. In this system
we have an entropy loss with respect to the hard-sphere

TABLE VI. Densities at which coexistence between the various phases occurs.

L/D

1.0

3.0

Transition

liquid-solid

liquid-solid
liquid-smectic
smectic-solid

pI

0.695(3)

0.574(3)
0.581(10)

psm

0.665(10)
0.624(66)

0.792(2)

0.688(5)

0.649(30)
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system because of the greater excluded volume in the
disordered (i.e., nematic) phase.
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