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Short-wavelength collective modes in a binary hard-sphere mixture
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We use hard-sphere generalized hydrodynamic equations to discuss the extended hydrodynamic
modes of a binary mixture. The theory presented here is analytic and it provides us with a simple
description of the collective excitations of a dense binary mixture at molecular length scales. The
behavior we predict is in qualitative agreement with molecular-dynamics results for soft-sphere mix-

tures. This study provides some insight into the role of compositional disorder in forming glassy
configurations.

I. INTRODUCTION

The study of short-wavelength collective modes in
one-component hard-sphere fluids has greatly contribut-
ed to our understanding of the dynamical properties of
dense simple fluids on molecular length scales. de
Schepper and Cohen' used the revised Enskog kinetic
equation to calculate the extension of the usual hydro-
dynamic modes to large wave vector k. They showed
that at high density collective modes exist even for wave-

lengths as small as a fraction of the molecular diameter
and that the neutron-scattering structure factor S(k, co)

can be represented as a superposition of Lorentzians
peaked at these extended modes. This simple form of the
structure factor provides, as the scattering wave vector k
changes, an accurate description of both light scattering
and neutron-scattering data. Alley, Alder, and Yip used
computer molecular dynamics for a one-component
hard-sphere fluid to determine the wave-vector-
dependent transport coefficients that should be used in
the generalized hydrodynamic equations for hard
spheres. Kirkpatrick established the connection be-
tween the microscopic and the phenomenological ap-
proaches using a projection operator method and a
short-time approximation at the level of generalized hy-
drodynamics.

The main conclusion of the above authors is that in a
dense fluid density fluctuations are long-lived even on
molecular length scales, where they relax very slowly,
essentially by self-diffusion. Physically one can interpret
this slow relaxation on a molecular scale, near the wave
vector ko where the static structure factor S(k) has its
first maximum, as due to structural relaxation. de
Schepper and Cohen, ' and Kirkpatrick proposed a sim-
ple approximation for the decay rate of density fluctua-
tions that is accurate for wave vectors not too small and
depends explicitly on the equilibrium structural proper-
ties of the Quid through S(k). This simple approxima-
tion not only displays in a transparent way the physics of
structural relaxation, but has also proved quite useful for
considering mode-coupling effects in dense fluids. It is
well-known that the usual long-time algebraic tails of the
correlation functions that determine the transport
coefficients of a simple fluid arise because the five con-

served densities relax very slowly at small wave num-
bers. Similarly in a dense fluid density fluctuations also
relax slowly for k —ko. Density nonlinearities yield,
therefore, an additional renormalization of the transport
coefficients via a finite-wave-vector mode-coupling mech-
anism. These generalized mode-coupling effects have
been evaluated and have been shown to be very important
in dense simple fluids. ' They can qualitatively ac-
count for the large coefficient of the long-time tail of the
stress tensor autocorrelation function"' and for the
shear-dependent viscosity' ' observed in computer
simulations. They also provide a good description of the
behavior of the velocity autocorrelation function at inter-
mediate times. ' Finally, a self-consistent implementa-
tion of the generalized mode-coupling theory predicts, at
a critical density, the transition to a glassy state where
structural relaxation is frozen. ' ' Subsequently, a
more detailed analysis has revealed that the transition is
an artifact of the approximation used and is cut off when
additional couplings are included. ' The generalized
mode-coupling theory has, however, proved quite accu-
rate in describing the slowing down of the dynamics of
dense fluids in a region of moderate viscosity, still above
the glass transition, but in a regime where the relaxation
is cooperative and nonexponential. ' ' In short, consid-
erable insight into the dynamical properties of dense
liquids has been gained using the methods and ideas of
generalized hydrodynamics.

In the last few years much attention has been devoted
to the study of the dynamical properties of binary fluid
mixtures as a simple model for some real glass-forming
fluids, namely metallic glasses. ' Several researchers have
carried out molecular-dynamics simulations for simple
model potentials to understand the role of the composi-
tional disorder and the resulting jammed configurations
that can occur in fluids of molecules of different sizes in
slowing down the dynamics. The study of the
dynamical properties of dense mixtures on molecular
length scales is therefore of great current interest. In this
paper we derive a set of generalized hydrodynamic equa-
tions for a binary mixture of hard spheres of different
sizes and masses and we use these equations to study the
short-wavelength collective modes of the fluid. The
motivation of our work is twofold. First, the study of the
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extended hydrodynamic modes in mixtures is interesting
per se. As in one-component fluids, it leads to a simple
and physically appealing representation of neutron-
scattering data. Our second and main motivation is to
obtain a relatively simple analytical representation for the
extended modes in the region of large wave vector that
can be used to evaluate mode-coupling effects at finite k.
The hard-sphere potential is chosen for two reasons.
First, all the static properties can be evaluated explicitly
in this case. ' Second, a kinetic equation is available
for hard spheres, the revised Enskog equation, that de-
scribes exactly the short-time dynamics at all densities
and contains all important excluded volume correc-
tions. The special feature of hard spheres is that the
short-time dynamics include momentum transfer, which
require a finite time to develop in fluids interacting via
continuous potentials. For this reason a description of
the short-time dynamics of a one-component fluid of hard
spheres, such as that contained in the revised Enskog
equation, works well even when extended ac hoc to long
times. This motivated Kirkpatrick to use a short-time
approximation at the level of the generalized hydro-
dynamics to evaluate the frequency- and wave-vector-
dependent transport coefficients that appear in the equa-
tions. The resulting generalized hydrodynamic equations
describe well the short-wavelength collective modes of a
dense hard-sphere fluid. They are only appropriate for
dense fluids, where the contribution to the transport
coefficients from collisional transfer is much larger than
the kinetic contribution.

In this paper we follow closely the method of Kirkpa-
trick and use an analogous short-time approximation in
the generalized hydrodynamic equations of a binary
hard-sphere mixture. In the case of the mixture there is
an additional complication not present in a one-
component fluid. Mass diffusion and thermal diffusion
(i.e., diffusion due to thermal gradients) are important
dissipative processes in a binary mixture that need to be
taken into account when describing dynamical proper-
ties. On the other hand, all mass transport only takes
place via translational motion and not via instantaneous
collisional transfer. The collisional transfer contributions
to the coefficients of mutual diffusion and thermal
diffusion vanish identically. A short-time approximation
analogous to that used by Kirkpatrick in the one-
component case only keeps the instantaneous collisional
transfer contributions to the transport coefficients and
therefore neglects diffusion altogether. This is clearly un-

physical at all values of the density. We use, therefore, a
modification of the short-time approximation that is ap-
propriate for fluid mixtures. While for all other transport
coefficients we only keep the collisional transfer contribu-
tions, we evaluate approximately the frequency- and
wave-vector-dependent coefficients of diffusion in a
Sonine polynomial approximation. The consistency and
implications of this approximation will be discussed
below.

Our derivation of the generalized hydrodynamic equa-
tions for a binary mixture starts from the Liouville equa-
tion. It can be shown, however, that the same results are
obtained using the Enskog equation as the starting point.

The Enskog equation has been used before to describe the
light scattering spectra of binary fluids and to discuss
neutron-scattering experiments in disparate-mass binary
fluid mixtures at moderate densities. Our work differs
from earlier studies because it focuses on the study of the
extended hydrodynamic modes at large wave vector in
the high-density regime. By analyzing in detail the struc-
ture of the collective excitations of the fluid on molecular
length scale we obtain a simple description of the dense
mixture extended modes that can be used as an input for
studying large-wave-vector mode-coupling effects at high
densities.

In Sec. II we outline the formal derivation of the gen-
eralized hydrodynamic equations for a binary hard-
sphere mixture. The elements of the frequency matrix
appearing in these equations are evaluated exactly and
the approximation used for the memory functions is de-
scribed. In Sec. III we discuss the solution of the general-
ized hydrodynamic equations in terms of the eigenfunc-
tions and eigenvalues of the corresponding hydrodynamic
matrix. Numerical results for the extended hydrodynam-
ic modes are presented for various values of the parame-
ters. The paper is concluded with a brief discussion.

II. GENERALIZED HYDRODYNAMIC EQUATIONS

In this section we use the projection operator method
to derive the generalized hydrodynamic equations for a
binary hard-sphere mixture. ' We consider a fluid of N~

spherical particles of mass m, and diameter o. , and N2
spherical particles of mass m2 and diameter o.z, con-
tained in a volume 0 and interacting via the hard-sphere
potential. The six conserved densities in a binary mixture
are the mass densities of the two species, the three com-
ponents of the total momentum density, and the energy
density. The Fourier components at wave vector k of the
fluctuations of the six corresponding microscopic densi-
ties from their equilibrium values are

N„ Ikr,
p,„=g m, e "—Qp, 5„0,

I =1

N„ ikr,
gg g g a ai

a =1,2 i =-1

(2. l)

(2.2)

y —m, v„e " n— (2.3)

where a =1,2 labels the species, r„- and v„- denote the
position and velocity of the ith particle of species a, re-
spectively, p, =m, n, is the equilibrium mass density of
species a, with n, the corresponding number density,
n =n, + n 2 is the total equilibrium number density, and
P=l/kiiT. In writing (2.3) we have used that hard-
sphere particles only have kinetic energy.

Our objective is to derive a set of equations for the
equilibrium time correlation functions of the fluctuations
in the conserved densities. The time evolution of the mi-
croscopic densities is governed by the pseudo-Liouville
equation, according to



3216 M. CRISTINA MARCHETTI AND SUPURNA SINHA 41

i3, &„i,(t) =L+a„i,(t), (2.4)

where we have denoted the set of six microscopic densi-
ties (p, i„gi„si,) collectively as &„i„with iM=p„g, e. The
operator L+ in Eq. (2.4) is the forward streaming
pseudo-Liouville operator for a binary hard-sphere mix-
ture, given by

N

L+= g gv„
a=1,2 t =1

a =1,2 b =1,2
bWa

+ g g T+(ai aj)
a

ai a=i, 2i&j=l
N Nb

T+(ai, bj ),
i=1 j=1

JWl

(2.5)

where T+ (ai, bj ) is the hard-sphere binary collision
operator describing a collision between the ith particle of
species a and the jth particle of species b. It is given by

T+(ai, bj )

=cr,i, f d& 8( o"v—„b )ltr v.;, i„l&(r.;, b,
—o.t, a}

1/2
p

k~ g„,a k=fk
t p

(2.13)

where p=p, +p2 is the total equilibrium mass density and

S,2(k)
a(k) =sin

[S„(k)S22(k)]'
(2.14)

Here S,b(k) are the partial static structure factors,
defined as

(n, ni, )' S,b(k)=(n, i„nbk)

=(n, nb)' [5,&+(n, nb)' h,b(k)],

(2.15)

with h, b(k) the Fourier transform of the pair correlation
function of species a and b. We have also defined a set of
three orthonormal unit vectors (k, ki, ki), with k=k/Ikl.
The set of microscopic variables defined in Eqs.
(2.9)—(2.13) satisfy

X [b (ai, bj ) 1],— (2.6) ( „a,i,a„)=5„,. (2.16)

Pab
b (ai, bj )v„=v„—2 o(o"v«b, ),

Plg
(2.7)

Pab
b (ai, bj)vb, =v„,+2 o(o"v„b, ),

P?b
(2.8)

where o,b =(o, +ob)/2, r„bj =r„rbj, an—d v«bj
=v„—vb are the relative position and velocity of the
colliding pair, 8(x) is the unit step function and the cr in-
tegration is an angular integration over the unit sphere.
The operator b (ai, bj ) transforms the velocities of the

colliding particles into post-collisional velocities, accord-
ing to

We have introduced a scalar product between two arbi-
trary phase functions A and B, defined as

(A, B)= lim —( A "8),1

(N. &n- 0
(N, )

a

(2.17)

where the angular brackets denote a grand canonical en-
semble average for hard-sphere particles with the equilib-
rium distribution function in the bra vector.

We now derive equations for the time evolution of the
correlation functions of the normalized densities, given
by

L+t
C„„(k,t)=(a„„,e + a„„). (2.18)with iu, b =m, mb/(m, +mb) and cr a unit vector along

the line joining the centers of the colliding spheres at con-
tact, directed from sphere (bj ) to sphere (ai)

In deriving the generalized hydrodynamic equations, it
is convenient to consider linear combinations of the den-
sities 8„k that form an orthonormal set. Denoting this
new set of microscopic densities by a„k, for @=1,6, l, T,
t„t2, we choose

When using the projection operator method it is con-
venient to consider the Laplace transform of the correla-
tion functions, defined as

C„„(k,z)= f e "C„„(k,t)
0

(2.19)pk~ ~ avk
z L+

P1k

m, [n, S„(k)]'~
(2.9)

for Re(z) )0. The projection operator P is defined as

1 P lk
sina(k)

cosa(k) m, [n, S„(k)]'~
P=Q la„i, }(a„i,i . (2.20)

1/2
13

p

1/2
2

3n

P2k

m2[n2S22(k}]

3
Ck

— „n«
2P a=1,2

(2.10}

(2.11)

(2.12)

[z5„+Q„(k)+M„(k,z) ]C„2(k, z) =5„i„, (2.21)

where repeated Greek indices are summed over. The fre-
quency matrix A„(k) is given by

Q„(k)= (a„i„L+a„i,), —

and M„„(k,z) are the memory functions

(2.22)

Operating on the Laplace transform of Eq. (2.4) with P
and Q =1 P, we can derive—formal equations for the
C„„(k,z) in a standard way. One obtains
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1
M„,(k, z) = — a„l„L+Q QL+a„l,

z — L+
(2.23)

placing the memory functions by their high-frequency
limit, i.e.,

The elements of the frequency matrix can be evaluated
immediately, with the result

1/2

pPS„(k}Q, lk = ik— =Q&,(k), (2.24)

—ik n1
Q~, (k) = sina(k)

cosa k

1/2
Pl 2

pPS

Qlb(k)

2 (nn)'"
Q (k)=

3P g, b tEab
' 1/2

2n
Qlr(k) = —ik

3 p

d l(kcr, b ),

(2.25)

(2.26)

nb jl(kO ~b )
X 1+g 2lr o3by. b

g b " Oab

=Qr, (k),
2p,b(n, nb )'

Qrr(k) = g d3(ko, b ),
a, b tEab

(2.27)

(2.28)

2p, b(n nb )
Q, , = g d2(ka, b ),

P ., b tEb
(2.29)

and Q„„(k)=0, for all the other values of p and v. In
Eqs. (2.24}—(2.28) tb, b is the Enskog mean free time be-
tween collisions, given by

4(lrn, nb ) cr,b
+ab (2.30)(2'.b } "tEb

with g,b the pair correlation function of species a and b
evaluated at contact y, b =g,b (r =o,b ). Also, the func-
tions d, (x), for i =1,2, 3, are defined in terms of the
spherical Bessel functions j,(x) as

d&(x) =1—jo(x)+2j2(x),

d2(x) =1—jo(x)—j2(x),
d3(x)=1 —jo(x) .

(2.31)

(2.32)

To obtain an explicit form of the generalized hydro-
dynamic equations one also needs an expression for the
memory functions M„„(k,z). In general, these are com-
plicated functions of wave vector and frequency and can-
not be evaluated exactly. Motivated by the short-time
approximation used to derive the Enskog kinetic equa-
tion for hard spheres, which is exact at short times and
yields qualitatively correct results even at long times,
Kirkpatrick suggested a short-time approximation at the
level of generalized hydrodynamics. This consists in re-

M„„(k,z)~ lim M„„(k,z)=0 .
2'~ oo

(2.34)

QL+p. —= —lk.j..
for a = 1,2. We find

(2.35)

pa
jak gak gk

P
(2.36}

where g, k is the momentum density of species a and

gk=g1k+g2k. One then sees immediately that

j2k j1k (2.37)

and the total projected mass current vanishes. Using
Eqs. (2.35) and (2.36) the four memory functions deter-
mining the generalized diffusion coefficients can all be ex-

Within this short-time approximation the memory func-
tions vanish and the set of generalized hydrodynamic
equations only contains the elements of the frequency
matrix Q„,(k). This approximation relies on the special
feature of impulsive potentials that collisions are instan-
taneous and even in the limit z ~ 00 there is a nonvanish-
ing contribution to the generalized wave-vector- and
frequency-dependent transport coefficients. This is usual-
ly referred to as the collisional transfer contribution and
at high density is much larger than the kinetic contribu-
tion that takes a finite time to develop. In the case of
continuous potentials replacing the memory functions by
their high-frequency limit amounts to neglecting dissipa-
tion altogether. The resulting generalized hydrodynamic
equations are simply those of an ideal fluid. This is be-
cause correlations take a finite time to develop in Auids
interacting via a continuous potential. The short-time
approximation proposed by Kirkpatrick works well for
single-component dense hard-sphere Auids. The resulting
generalized hydrodynamic equations are identical to
those obtained from the Enskog equation.

When we try to implement the same short-time ap-
proximation at the level of generalized hydrodynamics in
a binary hard-sphere mixture we run into a difficulty.
The instantaneous collisional transfer contribution con-
tained in the frequency matrix 0 to the generalized
coefficients of diffusion and of thermal diffusion vanish.
The diffusion coefficients are determined by the elements
of the memory functions M„„(k,z) for p=1, h and
v=1, 5, and the coefficients of thermal diffusion by
M&„(k,z) for p=l, h, and v=T, and for p=T and
v=1,h. To include these dissipative processes in our
generalized hydrodynamic equations we need to evaluate
approximately the corresponding memory functions at a
finite frequency.

The four generalized diffusion coefficients defined by
the four memory functions M„„(k,z) for p=1, b, and
v= 1,6, are not independent, but are related via the On-
sager reciprocal relations. There is only one independent
diffusion coefficient in a binary mixture. This is easily
seen by evaluating explicitly the projected mass currents
j,k defined by
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M]z(k, z)= A (k)M»(k, z)=Mb](k, z),
Mbb(k, z)= A (k)M„(k,z),

with

(2.38)

(2.39)

na(k)+ [m,p,S» (k) /m 2P2S2z(k)]'"
A (k)= (2.40)

cosa k

The memory function M»(k, z) is in turn given by
' 1/2

ill 2 7l 2M„(k,z)= D(k, z),
S]] k m] n]

(2.41)

with

D(k, z)=— I I

m, m, (n, n, )]~' '
z —QL + Q

k j11, k.j]

The two coefficients of thermal diffusion are deter-
mined by the memory functions M„„(k,z) for p= 1,6 and
v=T (or ]Lb=T and v=1, b, ). They are not independent,
but they are related by an Onsager relation according to

Mb T(k, z) = A (k)M]T(k, z), (2.43)

pressed in terms of a generalized coefficient of mutual
diffusion D(k, z). We find

ficients are "second-order" transport coefficients, in the
sense that they are nonvanishing only when evaluated in
a two-Sonine polynomial approximation. Here we as-
sume that in the limit z =0 the generalized thermal
diffusion coefficient is small compared to the generalized
diffusion coefficient for all values of wave vector and we
neglect the thermal diffusion constants in our generalized
hydrodynamic equations. As a consequence, our equa-
tions contain no coupling of the densities to temperature
fluctuations.

To proceed, we need an approximate expression for
D(k, z). For frequencies smaller than the inverse of the
Enskog mean free time we can neglect the frequency
dependence of the generalized diffusion coefficient and re-
place it by its value at z =0. The resulting generalized
hydrodynamic equations apply for frequencies up to this
characteristic Enskog frequency, which in a dense Quid is
considerably larger than the frequency scale of conven-
tional hydrodynamics. We then approximate

D(k, z) =D(k, z =0)

I
k j]]„k.j]], , (2.47)

m]mp(n]n2)'

and then evaluate the right-hand side of (2.47) using a
first-Sonine polynomial approximation, with the result

k
M]T(k, z) =—,DT(k, z),

[S (k)]]/2

with

(2.44)

where A (k) is given in Eq. (2.40). The generalized
coefficient of thermal diffusion DT(k, z) is defined by

x Pal

a, b ™abpaPb ) Eab

where

D(k) = 3

2Pm ] m 2(n ] n2)' '
2

d,b(kcr, b), (2.48)

DT(k, z)= p
m n '" '"' —QL Q

d,b(x) = —
(
—1)'+"[jo(x)—2j2(x)] .

Pb
(2.49)

(2.45)

(2.46)

In Eq. (2.45) jT], is the projected heat current, defined by

&n
QI.,a [z +Q«(k)]C«(k, z) =5,

& . (2.50)

Finally, we can now write the six generalized hydro-
dynamic equations in an explicit form. The two equa-
tions for the transverse momentum fluctuations are
decoupled from the others and are given by

In the limit k ~0 and z ~0 the Enskog thermal diffusion
coefficients are small compared to the Enskog diffusion
coefficients. ' In addition the thermal diffusion coef-

The remaining four equations for the fluctuations in the
partial densities, the temperature, and the longitudinal
momentum are coupled together. They are given by

' 1/2
D(k) m2 n2z+k
S»(k) m, n,

1/2

C]]](k,z)+ k
S„(k) rn, n,

n,
A (k)C~p(k, z) ik— ' 1/2

C(p(k, z) =5]]],

(2.51)

2 D(k) 2 "2z+k
S]](k) m] n,

1/2 ' 1/2

A (k) C~p(k, z)+k D(k) m2 n2
A (k)C]]](k,z)

S], m, n,

ik n1
sina(k)

cosa(k) P»„
1/2

71 2

P»22

1/2

C]p(k, z) =
fib,&, (2.52)
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[z +Alt(k)]C, p(k, z)— ik n)
sina(k)

cosa(k)

' 1/2
n2

pPS

1/2
n]

Cap( k, z) —ik pS„k

1/2

C,p(k, z)

[z + Qrr(k)]Crp(k, z)+ Qrt(k)CI p(k, z) =5rp,

+Q(r(k)Crp(k, z)=5Ip, (2.53)

(2.54)

where to simplify the notation we let D (k) =D(k, z =0).
For small wave vector k the above equations reduce to

the usual linearized hydrodynamic equations for a binary
mixture with the exact thermodynamic coefficients and
the Enskog value for the diffusion coefficients. The oth-
er transport coefficients equal their Enskog values if in
the latter, one retains only the collisional transfer contri-
butions. These are in fact the instantaneous contribu-
tions that survive in the high-frequency limit considered
here. In dense hard-sphere fluids the collisional transfer
contribution represents the most important part of the
viscosities and of the thermal conductivity. On the other
hand, the collisional transfer contribution to the diffusion
coefficient vanishes. Even in a dense mixture approxi-
mate hydrodynamic equations that properly incorporate
interspecies diffusion can only be obtained by retaining a
noninstantaneous contribution to the corresponding
memory function. The approximation used here yields
hydrodynamic equations that are appropriate to describe
the dynamics of fluctuations in dense hard-sphere mix-
tures.

III. EXTENDED HYDRODYNAMIC MODES

It is convenient to rewrite the set of generalized hydro-
dynamic equations in a matrix form as

[z 1+R(k)]C(k,z) =1, (3.1)

where 1 is a 6X6 unit matrix. The solution of (3.1) can
be written in terms of the eigenvalues and eigenfunctions
of the matrix R. This matrix is symmetric, but not self-
adjoint. It has six complex eigenvalues zz(k). The right
eigenfunctions 8&(k) are six-component column vectors
and the left eigenfunctions 8&(k ) are six-component row
vectors. They are given by the solutions of the right and
left eigenvalue problem, respectively,

R (k)O~(k) =z„(k)O„"(k),

8q(k)R(k)=zq(k)8q(k) .

For normalization we require

(3.2)

(3.3)

(3.4)

In this section we evaluate the hydrodynamic modes
that follow from Eqs. (2.50)—(2.54). We consider both
the full solution of the six hydrodynamic equations as
well as two approximate solutions that describe well the
structure of the extended modes in the large-wave-vector
region.

A. Full solution

I

decoupled from the others. It follows immediately that
the two eigenvalues corresponding to the extension of the
shear modes are

z, (k)= —Q, , (k) . (3.5)

Here we use the terminology shear, heat, sound, and
diffusion modes to identify the extended hydrodynamic
modes in order to make contact with conventional hydro-
dynamics in the small-k limit and maintain the continuity
in k. As in a one-component fluid, the extended shear
modes are always diffusive. For a simple fluid it has been
shown that mode coupling effects —which are neglected
here —are needed to account for the propagating shear
waves observed in computer experiments.

The remaining four extended hydrodynamic modes are
the continuation of the two sound modes and of the heat
and diffusion modes. They are determined by finding the
eigenvalues and the eigenfunctions of the 4 X 4 matrix of
the coefficients of the four coupled equations
(2.51)—(2.54), as described above. The eigenvalues are
found numerically as the roots of a quartic equation. The
four extended modes corresponding to the two complex
conjugate hydrodynamic sound modes (A, =+), the
diffusion mode (A, =D), and the mode of heat diffusion
(A, =H) are displayed as functions of wave vector in Figs.
1 —4 for various values of the parameters. The frequen-
cies of the extended modes are scaled with an Enskog
time tz, given by tz=(2pIJ iz) /[ vm( n+12n)%1%12]'
This time scale is chosen to be only a weak function of
the concentration x and to reduce to the Enskog mean
free time of a one-component fluid of hard spheres of di-
ameter o. , mass m, and density n, +n2 when o. , =o.2=cd
and m, =m2=m. All the results shown are for a con-
stant value of the packing fraction rt=n /6(n, o, +neo z).
We have chosen g =0.46, which corresponds to the value
of the packing fraction close to that observed for the
freezing of a one-component hard-sphere liquid. To fix
a convention, we assume that the type 2 spheres are the
larger ones and fix the mass ratio m&/m2=0. 5 and the
size ratio a =o, /o.

2
=0.7. Finally, we vary the concen-

tration of large spheres, denoted by x, with x =n2/n.
To a great extent the large-wave-vector structure of the

extended modes (in particular, the structure of the ex-
tended heat and diffusion modes) is governed by the static
structure factors S,b(k), which have been evaluated in
the Percus-Yevick approximation. The relevant param-
eters in determining the sharpness of the static structure
factors are the packing fractions g& and g2 of the two
species, given by

It appears from examining Eqs. (2.50—(2.54) that the
equations for the transverse momentum fluctuations are

(1—x)a
'g) — n )cT]— Yf 76 ' ' x+(1—x)a

(3.6)
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3— X

x+(1—x)a
(3.7)

0.50—
X =Q.Ql

The packing fraction of each species can be changed by
either varying the concentration x or the size ratio a.
Even though these two parameters play quantitatively
different roles in determining the packing fractions, simi-
lar qualitative behaviors will be obtained, for instance, in
the cases of a small concentration of small spheres with
an arbitrary (not too small) size ratio or an arbitrary con-
centration with a very small size ratio. For this reason
we keep the size ratio fixed and only vary the concentra-
tion x.

The four longitudinal extended hydrodynamic modes
for the case of a very small concentration of large
spheres, i.e., x =0.01, are shown in Fig. 1. The upper
half of the figure displays the magnitude of the imaginary
part of the two complex conjugate sound modes. The
lower half displays the real part of the modes that de-
scribes the damping of the excitations. The value
x =0.01 corresponds to a very small number of large
spheres immersed in a dense Auid of smaller spheres (a
kind of colloidal suspension, even though the size ratio of
two species is much closer to 1 here than in real colloids).
The packing fractions of the two species have the values

ri, =0.97' and F2=0.03'), and Szz(k) = 1 for all values of
k. The sound modes are very similar to those of a one-
component hard-sphere fluid of type 1 particles. As in a

one-component fluid, the imaginary part of the sound
dispersion relation vanishes over a region of wave vec-
tors, yielding a sound propagation gap. In the propaga-
tion gap the sound modes are strongly damped. From
consideration of the eigenfunctions we can see that this is
because at these large wave vectors the sound modes
essentially describe the decay of longitudinal momentum
fluctuations, which are expected to decay on short micro-
scopic time scales. As in a one-component hard-sphere
fluid the continuation of the heat mode softens consider-
ably at k =2m/0 „where the structure factor S&, (k) has
its first maximum. In this large-wave-vector region the
heat mode governs the decay of fluctuations in the total
mass density. The softening of the heat mode corre-
sponds to the slowing down of structural relaxation on
molecular length scales. In contrast with the one-
component fluid, there is an additional mode that is the
continuation of the mode of diffusion. For the case of a
very low density of large spheres displayed in Fig. 1, the
diffusion mode describes the decay of concentration fluc-
tuations and is quite structureless.

At intermediate values of the concentration x all the
partial static structure factors S,b(k) exhibit considerable
structure as functions of k. As a consequence, fluctua-
tions in the partial densities are strongly coupled as
reflected in the modes. The solutions of the quartic ei-
genvalue equation for x =0.2 and 0.5 are displayed in
Figs. 2 and 3, respectively. The imaginary part of the
sound modes exhibits a pronounced softening at large
wave vector, but there is no propagation gap. The sound
modes are always overdamped in the region where the
imaginary part softens. The heat mode exhibits a pro-
nounced softening near the peak of the generalized iso-
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FIG. 1. Reduced eigenvalues z+(k), zH(k) (solid line), and
zD(k) (dotted line) obtained from the full solution as functions
of the reduced wave vector ka». The upper half of the figure
displays the magnitude of the imaginary part of the two corn-

plex conjugate sound modes. The lower half displays the real
part of the four modes. The parameter values are g=0.46,
x =0.01, a=0.7, and m, /m& =0.5. FIG. 2. Same as Fig. 1 for x =0.2.
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FIG. 3. Sameas Fig. 1forx =0.5. FIG. 4. Same as Fig. 1 for x =0.9.

thermal compressibility defined in Eq. (A5). The value
x =0.2 of the concentration (Fig. 2} corresponds to very
similar values of the packing fraction of the two species
(r1, =0.58' and rlz=0. 42rl}, while for x =0.5 (Fig. 3)
there is a larger packing fraction of large particles, with

g, =0.16' and gz=0. 74'. At x =0.5 the generalized
compressibility is mainly determined by Szz(k} and the
softening of the heat mode occurs near 2n /oz. An addi-
tional effect that takes place as x increases is that the
diffusion mode acquires some structure. For both x =0.2
and 0.5 there is a clear two-rate diffusion process, with a
quite sudden increase in the diffusion rate at length scales
of the order of the size of the large spheres. For x =0.5
the diffusion mode also displays a very slight softening at
k =2m/oz, due to the peak in Szz(k).

Finally, the extended hydrodynamic modes for x =0.9
are shown in Fig. 4. For this value of x the packing frac-
tion of the smaller type 1 particles is very small, with
rli =0.04' and rlz=0. 96rI. Consequently, S»(k) = I and
Szz(k) is sharply peaked at koz —-2n. The sound modes
resemble those of a dense fluid of type-2 spheres and the
propagation gap reappears. Near k =2m/o. z, the location
of the first maximum of Szz(k), we obtain both a soften-
ing of the heat mode and an appreciable softening of the
diffusion mode.

B. Approximate solutions

Our main interest here is in the structure of the extend-
ed hydrodynamic modes on molecular length scales, with
the objective of developing a simple approximation to de-
scribe the collective excitations of the fluid in this region.
A standard approximation that is made in the literature
when discussing effects on molecular length scales ' is

neglecting temperature fluctuations. The motivation is
that temperature fluctuations of large wave vector are ex-
pected to decay on short microscopic time scales in a
dense fluid and do not affect the structure of the long-
lived excitations at these wave vectors. This approxima-
tion works well in one-component fluids where it has
been shown that the most important aspect of the extend-
ed hydrodynamic modes, i.e., the softening of the heat
mode near the first maximum of S(k), is retained when

temperature fluctuations are neglected. It is not clear a
priori that the approximation will work as well in mix-
tures for all values of the concentration.

In view of this we have evaluated the extended hydro-
dynamic modes for a dense binary mixture by neglecting
temperature fluctuations. In this case we only have five
hydrodynamic modes. The extended shear modes are
still given by Eq. (3.5). The three coupled equations
describing the dynamics of fluctuations in the densities
and the longitudinal momentum yield a cubic eigenvalue
equation that can be solved analytically. The result is,
however, not very illuminating and will not be given here.
The three longitudinal extended hydrodynamic modes
obtained when neglecting temperature fluctuations are
displayed in Figs. 5, 6, and 7 for x =0.01, 0.2, and 0.9,
respectively. The first observation is that neglecting tem-
perature fluctuations leads to a gross overestimate of the
size of the sound propagation gap. The same feature has
been observed in a one-component hard-sphere fluid.
When neglecting temperature fluctuations we obtain a
propagation gap for x =0.2 (and x =0.5—the corre-
sponding figure is not shown), while when temperature
fluctuations are included we find a deep minimum of the
sound propagation at these values of the concentration,
but no actual gap (see Figs. 2 and 3). In the propagation
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FIG. 5. Reduced eigenvalues z+(k) and zD(k) obtained when

neglecting temperature fluctuations as functions of the reduced
wave vector ko. l2. The parameter values are g=0.46, x =0.01,
a=0.7, and m
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FIG. 6. Same as Fig. 5 for x =0.2.

gap one of the sound modes is strongly damped, while the
other softens considerably at a value of k near the peak of
the generalized compressibility defined in Eq. (A5). This
softening describes the same physics as the softening of
the heat mode in the description that includes the cou-

FIG. 7. Same as Fig. 5 for x =0.9.

pling to temperature fluctuations. In both cases it
represents the slowing down of structural relaxation at
molecular length scales. From consideration of the eigen-
functions we can see that in both the full solution and the
approximate one the mode that softens is the relaxation
rate of fluctuations in the total density of the fluid. The
overdamped sound mode describes the decay of longitu-
dinal momentum fluctuations. The extended diffusion
mode obtained from this "three-mode approximation" is
close to that obtained from the full solution of Sec. III A
for all values of the concentration. We conclude that
the essential feature of the extended modes in the large-
wave-vector region are the same as when temperature
fluctuations are included.

A further simplification of the description of extended
hydrodynamics at large wave vectors can be obtained by
observing that on physical grounds one also expects
momentum fluctuations to decay on a short microscopic
time on molecular length scales. This is confirmed by the
results discussed above. In this large-wave-vector region
where one observes the slowing down of structural relax-
ation the generalized viscosity All(k), which governs the
decay of momentum fluctuations, becomes approximately
constant and large. For ztz &1 one finds z «0&1(ko),
where ko is a characteristic wave vector corresponding to
a molecular length scale. One can then neglect the fre-
quency in the momentum equation (2.53) and eliminate
the momentum fiuctuations from Eqs. (2.51) and (2.52),
obtaining two coupled equations for the correlations
functions describing the decay of density fluctuations. It
is important to remark that the same equations can also
be obtained by choosing a set of slow variables to be pro-
jected out containing only the two mass densities (proper-
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ly orthonormalized). Physically one would indeed argue
that this choice is the appropriate one for describing the
decay of fluctuations on molecular length scales, where
one expects that only the densities will be long lived and
behave as hydrodynamic variables.

The two coupled equations for density fluctuations are
given in the Appendix. Their solution yields two
diffusive modes and does not reproduce conventional hy-
drodynamics as k ~0 since the approximation of neglect-
ing momentum fluctuations only applies for wave vectors
not too small. In Figs. 8-10 we graph the extended heat
and diffusion modes obtained from the quartic eigenvalue
equation (solid lines) and the corresponding approxima-
tions obtained for these modes when (a) temperature fluc-
tuations are neglected and (b) temperature and momen-
tum fluctuations are neglected. The dotted lines
represent the diffusion mode and the sound mode that
softens at large wave vector obtained from solving the cu-
bic eigenvalue equation resulting from neglecting temper-
ature fluctuations. The dashed lines are two roots given
in Eq. (A8) obtained from the simple "two-mode" ap-
proximation described in Sec. III A. The approximation
obtained by neglecting both temperature and momentum
fluctuations is a very good representation of the extended
heat and diffusion modes at large wave vector for a11

values of the concentration, as shown in Figs. 8—10. The
two-mode mode1 provides therefore a simple and yet
quite accurate description of the long-lived excitations of
the fluid on molecular length scales. It will be particular-
ly useful to evaluate large-wave-vector mode-coupling
effects in binary mixtures.

Consideration of the eigenfunctions corresponding to
the two diffusive modes obtained when neglecting tem-
perature and momentum fluctuations suggests, for the
case of very small or very large concentration x, a very
simple analytical approximation for these modes. For

I I I

—0.25-

I I

—0.25—

—0.50-

—0.75-
X= 0.2

3 5 7 9 11

FIG. 9. Same as Fig. 8 for x =0.2.

both small and large x the cross terms in Eqs. (A3) and
(A4) coupling total mass density and concentration be-
come very small and the two modes given in (A8) are well
approximated by

and

k
z (k)=-

pyr(k )QII (k)
(3.8)

z+(k) = kD (k)—
r

m2 n2

m, n,

mI n&+
m2 n2

1/2

f, (k)

' 1/2

f2(k) . (3 9)

The eigenvalue z (k) governs the relaxation of fluctua-
tions in the total mass density. For a very low concentra-
tion of type-2 particles one finds yr(k) =yTSII(k), while

in the opposite case of a very low concentration of type-1
particles y r( k ) =y TS22 ( k ). The eigenvalue z+ ( k )

governs the relaxation of concentration fluctuations, as
defined in Eq. (A2). In the case of a small concentration
of large spheres (type 2), the second term in square brack-
ets on the right-hand side of Eq. (3.9) dominates over the

—0.50—

—0.75—
X =0.01
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I I I I I I I I I I

1 3 5 7 9 11
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FIG. 8. Here we compare the real part of the reduced heat
and diffusion modes obtained from the full solution (solid lines)
to the corresponding modes obtained from the approximate
solutions {explanation in text). The parameters are g=0.46,
x =0.01, a=0.7, and ml/m2=0. 5. For this value of x the
various approximations to the diffusion mode fall on top of each
other.

—0.75-

5 7 9

FIG. 10. Same as Fig. 8 for x =0.9.

X= 0.9
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first term. The diffusion rate is determined by the
diffusion coefficient of the large spheres and it is quite
slow (see Fig. 2). In the opposite case of a small concen-
tration of small spheres the first term in square brackets
dominates over the second. The diffusion rate is deter-
mined by the diffusion coefficient of the small spheres and
it is much faster (see Fig. 7).

IV. DISCUSSION

In this section we make a number of comments on the
results obtained in this paper.

(i) In a dense binary mixture of particles of different
sizes, fluctuations in the mass densities of both species
can decay slowly on molecular length scales. This is in
close analogy with what is observed in a one-component
fluid, where at high density the decay rate of density fluc-
tuations softens appreciably at wave vectors near the first
maximum of the static structure factor.

In a binary mixture, when the packing fractions of the
two species are comparable, the equations that govern the
decay of fluctuations of the two densities are always cou-
pled. Our normal mode analysis of the equations
identifies modes that are the extensions of the hydro-
dynamic diffusion and sound modes. For the value of the
size ratio considered here we observe a slight softening of
the extended diffusion mode near k =2m /o z followed by
a rather sharp increase of the diffusion rate and a soften-
ing of the sound damping for k near the first maximum of
the generalized compressibility defined in Eq. (A5). Phys-
ically, this corresponds to the fact that both small and
large spheres can be trapped in a cage by other particles,
as expressed by the fact that all three static structure fac-
tors are peaked for intermediate values of x. As a conse-
quence there may be interesting molecular scale mode-
coupling effects involving the interplay of these two slow
modes in a mixture. In a recent paper, Erpenbeck, on
the basis of molecular-dynamics studies of a moderate
density isotopic mixture, concludes that the long-time be-
havior of the time correlation functions for the shear
viscosity as well as for the other transport coefficients
agree with the predictions of conventional mode coupling
theory. This, however, does not preclude the possibility
of obtaining finite wave-vector mode-coupling corrections
at high densities.

For large or small values of the concentration x (corre-
sponding to the case where the packing fraction of one of
the two species is very small) softening of the decay rates
occurs at wave vectors near the first maximum of the par-
tial structure factor of the dense species. For small x,
corresponding to a mixture with a small concentration of
large spheres in a dense background of smaller spheres,
the softening appears in the sound damping. For large x,
corresponding to a mixture with a small concentration of
small spheres in a dense fluid of larger spheres, the
softening occurs in the extension of the diffusion mode.
In both cases the softening describes the same physics. It
corresponds to the slowing down of the decay of fluctua-
tions in the density of the dense component at wave
lengths of the order of the corresponding molecular size.
At these wavelengths fluctuations in the density of the

large-concentration component decay via self-diffusion.
The decay rate of fluctuations in the density of the small-
concentration component is quite structureless. For both
small and large x it is essentially described by a diffusion
process (=Dk ). Here D is the diffusion coefficient of
the small-concentration component. In a mixture with a
small concentration x (x =nz ln) of large spheres the de-
cay rate of fluctuations in the small-concentration com-
ponent is much slower than in the opposite case of a mix-
ture with large x (see Figs. I —4) simply because the larger
and heavier spheres have a smaller diffusion coefficient.
The slowing down of diffusion of larger particles in the
background of smaller particles may provide us with
some insight into the caging dynamics characteristic of a
transition to a glassy state.

(ii) We have considered two approximations of the ex-
tended hydrodynamic modes of a binary mixture that are
known to capture the essential features of the modes at
large wave vectors in the case of a one-component fluid.

The first consists in neglecting temperature fluctua-
tions which are expected to decay on microscopic time
scales at large wave vectors. W'e find that, as in a one-
component hard-sphere fluid, the softening of the extend-
ed diffusion and heat mode is still present when tempera-
ture fluctuations are neglected and is comparable to the
full solution for all values of the concentration. On the
other hand, this approximation leads to a gross overesti-
mate of the sound propagation gap.

Second, we have considered a very simple model where
both temperature and momentum fluctuations are
neglected. This approximation yields only two diffusive
modes that describe the relaxation of density fluctuations
and in the large-wave-vector region reproduce very close-
ly the extended heat and diffusion modes obtained from
the full solution, as shown in Figs. 8-10. This two-mode
approximation yields a very good description of the
long-lived collective excitations of the fluid on molecular
length scales. It can be used as the starting point to ana-
lyze large-wave-vector mode-coupling effects in binary
mixtures.

(iii) Mountain and Thirumalai found that a situation
where there is a low concentration of smaller particles in
the background of larger particles is more favorable for
crystallization to take place compared to a situation
where there is a low concentration of larger particles.
They argue that a few smaller particles find it easier to
move around in the background of larger particles mak-
ing the process of crystallization easier to occur. A few
large particles, on the other hand, find it difficult to move
around in the background of smaller particles and have a
greater tendency to get caged into glassy configurations.
This is consistent with our observation of a very slow
diffusion of larger particles in the background of smaller
particles and a fast diffusion of smaller particles in the
background of larger particles.

(iv) It has been observed' that there exists a propaga-
tion gap in the sound modes around the location of the
first peak of S(k) in a one-component fluid. In a binary
hard-sphere mixture one also observes a considerable
softening of the sound propagation at large wave vectors
that can be understood as arising from the competition



41 SHORT-WAVELENGTH COLLECTIVE MODES IN A BINARY. . . 3225

between elasticity and dissipation. The softening de-
pends on the relative concentration of the two species.
Only in the limit of a small concentration of large spheres
in a dense fluid of small spheres or a small concentration
of small spheres in a dense fluid of large spheres the
imaginary part of the sound dispersion vanishes and one
obtains a propagation gap, as in the one-component fluid.
There is no gap for intermediate values of the concentra-
tion of the two species.

(v) We have also evaluated the extended shear modes
given in (2.50) for a variety of concentrations. When
scaled with the Enskog mean free time tE defined in Sec.
IIIA, the shear modes only change very little when the
concentration x ranges from x =0.01 to 0.9 and resemble
very closely the extended shear modes obtained previous-
ly for a one-component hard-sphere fluid. '

(vi) The results obtained here can be used to evaluate
the dynamic structure factor S(k, co) of a binary mixture.
For large values of k the dominant contribution comes
from the extended diffusion and heat modes. This follows
both from the fact that these modes relax more slowly
and that the corresponding amplitudes are larger than for
the sound modes.
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APPENDIX

Here we consider the two generalized hydrodynamic
equations for density fluctuations that are obtained when
neglecting both temperature and momentum fluctuations.
The two coupled equations governing the dynamics of
fluctuations in the two orthonormal densities a, 1, and a~„
can be obtained immediately by neglecting the frequency
z compared to the generalized viscous damping QII in
(2.53) and then using the resulting equation to eliminate
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Here yr(k) is the generalized isothermal compressibility,
defined as
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