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The WKB method is commonly used in semiclassical approximations to the wave function in

both the classically allowed and the forbidden regions of a one-dimensional potential. In a multidi-

mensional space, the method can be adapted to construct wave functions in an "allowed" region
from classical trajectories or wave normals. However, in the "forbidden" region the WKB wave

function is in general specified by two sets of wave fronts, the equiphase and the equiamplitude sur-

faces or equivalently by two sets of paths defined to be normal to these surfaces, respectively. We

present a Huygens-type construction for obtaining these wave fronts and paths, which reveals that

for non-normal incidence the paths are coupled to each other. The analysis enables us to answer

some of the basic questions concerning tunneling in multidimensional nonseparable potentials. A

special and important case occurs when the incident wave is normal to the turning surface. We
show that for normal incidence the path equations are decoupled and are equivalent to Newton's

equations of motion for the inverted potential and energy.

I. INTRODUCTION

Multidimensional tunneling processes can be impor-
tant in many areas of quantum physics, such as nuclear
reactions' and fission, ' the tunneling of the false vacu-
um state in field theory, ' chemical reactions, ' and elec-
tron tunneling, e.g., in the scanning tunneling micro-
scope ' (STM) and point-contact junction devices. ' In
principle, to study these phenomena, one should solve the
Schrodinger equation or other appropriate partial
differential equations (PDE). However, in practice, we
rarely have exact analytical solutions to those equations.
Approximations are therefore often employed both in the
calculations and the formal analysis of tunneling process-
es in a multidimensional space. '

A convenient formalism for introducing approxima-
tions to tunneling theories is the Feynman path-integral
formulation of quantum mechanics. ' In this ap-
proach, for a single particle, one constructs the Green's
function G (rf, r;; t ) by summing over all the possible
paths connecting points r; and rf, i.e.,

rf
G(rf, r, ; t ) = f expt iS[r(t)]/fi) D[r(t)],

1/2

G wxB(r fr;;t)= g [i/(2M)] det
as
BrfBr,.

Xexp[i(S& /fi n~/2—)], (1.4)

X exp( i Wo /fi —in n /2 ) .

Here, G is the Fourier transform of G, and D and 8'0
are defined as follows:

det(B So /Brf Br; )
D

8 S /Bt
(1.6)

IVO (rf, r;;E ) =So +Et

where a labels the classical paths from r; to rf, d is the
dimension of the space, S0 is the action along the ath
classical trajectory, and n is the sum of the orders of the
focal points along a.

For tunneling, it is more convenient to express the
Green's function as a function of energy rather than time.
By performing a Fourier transformation, we have

Gwx(ar, fr;; E)=i g [i /( 2~)]" ' 'V ID

where the action functional is defined by

S[r(t)]=f L(r, r, r)d~,
0

and

(1.2)

(VIVo ) + V(r)=E .
1

(1.8)

It can be shown that S0 satisfies the Hamilton-Jacobi
equation, and the Hamilton characteristic function W0
satisfies the following time-independent equation:

L(r, r, t ) = —,'mr —V(r) (1.3)

is the Lagrangian. The symbol D[r(t)] denotes summa-
tion over all paths. As A~O, the leading term S0 in the
expansion of the action S in a power series in A' (known as
the WKB method) gives

The solution of Eq. (1.8) is the lowest-order WKB ap-
proximation to the phase of the Green's function. It is
not difficult to recognize that Eq. (1.8) also appears in
classical mechanics. As is shown in Sec. II, it is also the
zeroth-order approximation to the phase of the wave
function. In an allowed region, Eq. (1.8) can be solved by
the method of characteristics. " This method expresses
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a first-order PDE in terms of a set of second-order ordi-
nary differential equations (ODE). Specifically, the solu-
tion for Wo can be written as an integral

Wp = J &2m[E —V(r)]dg,
a

(1.9)

taken along the classical trajectory labeled a. The classi-
cal paths themselves satisfy Newton's equation. This
method of characteristics is reasonably successful in the
calculation of the wave functions and eigenstates in
bound-state problems.

In quantum tunneling, a forbidden region always
separates any two allowed regions so that they are not
linked by any classical trajectory. However, the path-
integral formalism allows the existence of trajectories
even in the forbidden region. The Green's function can
be evaluated by summing over all the possible paths
across the forbidden region. In tunneling, it is more con-
venient to divide space into several regions. It has been
shown that the global Green's function can be ex-
pressed in terms of the Green's functions of subdomains.
This decomposition into local Green's function has also
been carried out by Auerbach and Kivelson ' (AK) us-
ing path-integral formulation. They refer to this tech-
nique as the path decomposition expansion (PDX). The
method allows one to calculate independently the local
contributions to the global Green's function. Auerbach
and Kivelson applied the method to double-well prob-
lems and showed that the dominant contribution in the
forbidden region comes from a single (instanton) path.
This path can be obtained by solving Newton's equations
of motion with the inverted potential and energy, i.e.,
V(r) ~—V(r) and E~ E. '—

The method of AK has the additional Aexibility of al-
lowing the calculation of the local or site restricted
Green s functions in different approximations. This en-
ables them to circumvent the problem of the turning sur-
faces which characterize the WKB method. Here we
should emphasize that we are concerned with the exten-
sion of the WKB method to multidimensional nonsepar-
able potentials. In this we differ from AK who are con-
cerned with a calculation of the Green's function for tun-
neling and not especially with the WKB method.

In comparing the approaches of AK with ours one has
to recall that, in contrast with the one-dimensional WKB
approximation, the multidimensional semiclassical ap-
proximation is a solution of a partial differential equation
and hence cannot be discussed without references to
specific boundary conditions. We are concerned with the
tunneling transmission of an incident wave (including a
plane wave from infinity). On the other hand, AK are
concerned with a particle tunneling from a well. In the
latter case, one can always demonstrate that there are
classical paths normally incident on the turning surface.
For these paths, the transmission probability is exponen-
tially larger than for the obliquely incident paths. This
contrasts with the obliquely incident beam where the
boundary conditions exclude normal incidence. In this
case, the Hamilton characteristic function 8' must be
complex. This, however, is excluded by AK in their
semiclassical treatment, which leads to a purely imagi-

nary 8'. Thus the semiclassical treatment of AK is more
restricted than our approach.

In this paper, we show that two coupled sets of paths,
the R and I paths, are required to characterize the gen-
eral complex action 8'. An extended Huygens construc-
tion is proposed to determine these paths and the associ-
ated wave fronts. The method, while not easy, is the only
WKB-type approximation available for the general ob-
liquely incident beam. However, it reduces to the simpler
version of the semiclassical approximation advocated
inter alia by AK when the WKB wave is normally in-
cident on the turning surface. A detailed analysis is
presented in Sec. II. A discussion of the results and con-
clusions are given in Sec. III.

II. WKB APPROXIMATION
IN MULTIDIMENSIONAL SPACE

We could start the formal development with Eq. (1.8),
which is the lowest-order WKB approximation. Howev-
er, an equivalent but somewhat more transparent ap-
proach is to expand the wave function in a power series
in A. This approach is similar to one of the standard de-
velopments of the one-dimensional approximation.

A. Asymptotic series expansions in A

In the stationary-state Schrodinger equation

let

V %(r)+ V(r)%(r) =EV(r),
2m

(2.1)

%(r) =exp[i W(r)/fi] .

Hence

(2.2a)

W(r) = Wp(r)+ W, (r)+ (2.3)

substituting Eq. (2.3) into Eq. (2.2), and collecting the
coefficients of equal powers in A, we obtain the following
equations:

[V Wp(r) ] —2m (E—V) =0+0(iri),

2VWp(r) VW, (r) ifiV W(pr)=0 —+O(fi ),

(2 4)

(2.5)

where O(x) denotes a quantity which has the same order
of magnitude as the argument x. Equation (2.4) is identi-
cal to Eq. (1.8). Therefore the zeroth-order approxima-
tion of the wave function is also the lowest-order approxi-
mation in the path-integral formalism. As seen from Eq.
(2.4), Wp(r) may in general be complex. Hence we may
write

Wp ( r ) = Wpg ( I' ) + / Wpi ( I')'
and Eq. (2.4) becomes a pair of coupled equations

[V W(r)] i —V W(r)+ V(r) E=0 . (2.2—b)
2m 2m

Expanding W(r) in a formal power series in fi,
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[VWoz(r)] —[VWcr(r)] =2m [E—V(r)],

[VWO~(r)] [VWOI(r)]=0

(2.6a)

(2.6b)

The simultaneous solution of Eqs. (2.6), discussed below,
constitutes the zeroth-order WKB approximation of the
complex phase of the wave function Eq. (2.2a).

C. First-order solution in a classically allowed region

The first-order correction can be easily obtained once
the zeroth-order solution is available. With Wpr(r)=0,
Eq. (2.6a) reduces to Eq. (2.7a). Using Eq. (2.7b), Eq.
(2.5) becomes

B. Zeroth-order solutions in a classically allowed region
VW (r).e= i—(k 'e Vk+V e) .

1
(2.10)

In a classically allowed region, a particle can be de-
scribed by a real W(r), i.e., VWOI=O, and Eq. (2.6a)

reduces to

Integrating this equation along the classical trajectory
from r& to rz yields

[VWc„(r)] =2m[E —V(r)], (2.7a}
W'" —W"'=-'ie f k ' -dg+ f (V e)dg

dg

or

V Woz(r) =Pike=Rk(r),

where e is the unit vector and

k(r) = [E—V(r)] .

(2.7b)

(2.8)

(2.11)

Here, as noted above, e(r) is the unit vector tangent at a
point r to the classical trajectory, g is the arc length, and
the superscripts 1 and 2 denote, respectively, the initial
and final points. The integration in the first term on the
right-hand side of Eq. (2.11) can be easily carried out. To
evaluate the second term, we consider a tube formed by
classical paths as shown in Fig. 1. Let cr(g} be the cross
section of the tube. In the limit of small cr,

It is well known that by integrating Eq. (2.7b) along a
classical path, one obtains the expression for Wo„(r),
which is given in Eq. (1.9).' ' ' The above derivation
shows that the zeroth-order approximation, in A, of W(r)
reduces the solution of the Schrodinger equation to the
solution of a first-order PDE, that is, Eq. (2.7a). As stat-
ed in the introduction, a first-order PDE is equivalent to
a set of ODE's. Rather than proceed with the method of
characteristics, we present a formal constructive pro-
cedure that will facilitate the comparison with the solu-
tion in the forbidden region, which is presented in Sec.
II D.

Equation (2.7) can be solved by constructing equiphase
[Wc„(r}=const] surfaces. We assume that the ith equi-
phase surface (with phase equal to Woz) is known. The
(i + l)st surface (with phase Wo~+6, Wo~) is constructed
pointwise from the ith surface; the (new) point, on the
(i +1)st surface, is a distance hg=hWcz lfik(r) away
from the initial point on the ith surface in the direction of
e. This is the analog to Huygens construction of travel-
ing waves in optics. Besides the equiphase surfaces, the
construction also determines a set of paths each one of
which is perpendicular to all 8'o„surfaces. It is easy to
show that these paths satisfy the Euler-Lagrangian equa-
tions obtained from the Hamilton variational principle,
which in terms of the time independent action reduces to
5Wo~ (r) =0, i.e.,

V eo (g)kg= V eh V . (2.12)

V ehV=o((+bed) —o(g)=o'(g)hg . (2.13)

Note that only the surfaces perpendicular to the paths
contribute to Eq. (2.13). This in fact is the consequence
of the conservation of flux. Combining Eqs. (2.12) and
(2.13) we have

V ed(= d( .
cr(g)

(2.14)

With the help of Eq. (2.14), the integral in the second
term of Eq. (2.11) can now be evaluated to obtain an ex-
pression for W~ (r). With the result obtained in Sec. II B,
and on substituting the expressions for Woa (r) and

W, (r) into Eq. (2.2a), the wave function including the
zeroth- and the first-order approximations is

a((+6()

Hence, applying the Gauss theorem to the element of
tube with volume b, V=o b, g, we obtain

+ + , BV(r) BV(r)
df2 dg, . dg Bx, Bx,

i =1,2, 3, (2.9)

where x, =x,y, z. The proof of this assertion is presented
in Appendix A. We note that Eq. (2.9) can be also de-
rived directly from Newton's second law.

FIG. 1. A tube element formed by e field. o. is the cross-
section area and g is the arc length.
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%(r}= exp i f k(g)dg
k(r)o(r)

(2.15)

where C is the normalization constant. In one dimension,
cr(r) is a constant, and the expression reduces to the com-
mon WKB approximation for the wave function. An al-
ternative representation of the first-order correction can
be derived in terms of the Jacobian of the coordinate
transformation of o. +ho. to 0., also referred to as the
Jacobian of mapping via rays. Thus, at the top and bot-
tom surfaces of a ray tube denoted respectively by
cr(/+ b g) and 0 (g), we have

M,g
QI I

M'

o(g) J(g)
o(g+b, g) J(g+bg)

(2.16)

where J(g) is the Jacobian at point g. Therefore
cr(g) ~ J(g).

The first-order correction to the Green's function
GwKa(r&, r;;E ) is similar to the above. It can be shown
that D in Eq. (1.6) reduces, in a three-dimensional space,
to I pat

1

/kio
(2.17)

Here it should be noted that cr and J can be defined also
in all other n ~ 2 dimensional spaces.

D. Solutions in a forbidden region
WOl Woi + PWoi

In a classically forbidden region, both Woa(r) and
WM(r) may exist. Thus, instead of one set of characteris-
tic surfaces, we have two sets: the equiphase ( Woa ) sur-
faces and the equiamplitude ( Woz) surfaces as shown in

Fig. 2. We shall present a Huygens-type construction for
the determination of these wave fronts. First we define
the quantities kR(r), kz(r), e„(r), and e~(r) to satisfy the
following relations:

VWoa(r)=A'k„ea =deka(r),

V Woe(r)=%kiter=kkr(r) .

(2.18a)

(2.18b)

Equations (2.18} also define two corresponding sets of
paths, to be called the R and I paths, with unit tangent
vectors ez and er, respectively. That is, the R and I
paths are orthogonal to all constant Woz and constant
Woz surfaces, respectively. Substituting Eqs. (2.18) into
Eq. (2.6a) yields

FIG. 2. Schematic representation of two mutually orthogo-
nal wave fronts, i.e., constant 8'«and 8'o& surfaces. Also
shown are the orthogonal trajectories or R and I paths and oth-
er quantities introduced in Sec. II B. These quantities in general
characterize the wave function in the classically forbidden re-
gion.

Wor
fikr(r)= =ex'V Woj(r) . (2.20)

The distance between the Wor surface and the

or +~ Wor su~face at point r is

the allowed from the forbidden region, can be regarded as
a constant Wor surface, and in particular it is the Wor =0
surface (see Sec. II E). Assuming the Wo~ surface is
known, to determine the Wor+AWor surface we use the
following equation:

kz(r) —k~(r)=k(r) = [E—V(r)] .2 2m
(2.19) or

(2.21)

In the following, we will show that the construction of
the Woz and Wor surfaces requires three steps. First,
given a Wor surface we construct the surface labeled
Woy +6 Wpg. Next we calculate the values of kz ( r ) on
the second surface from the values of kz(r) given on the
initial surface Wor. Finally, we determine the set of R
paths on Wor+b Wor from the corresponding set on the
Wor surface.

The reason that we select a Wor surface to start the
construction is that the turning surface, which separates

Using the values k~(r) on the Wo~ surface, we can con-
struct the next equiamplitude surface similar to the
Huygens construction in the allowed region. However,
we also need to calculate kz(r) on the new surface in or-
der to continue the construction of subsequent surfaces.

To determine kz(r), let us choose a point M on a Wo~
surface and introduce a local coordinate system based on
the R and I paths passing through the point M. The
directional derivative of kR(r) along the I path is shown
(see Appendix B) to be given by
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Bk„(r) g8

where d8/dg is the curvature at point M of the curve ob-
tained by projecting the R path onto the plane (e~, eR ).
Note that d8/dg is not the curvature for the R path. It
can be shown that in the classically allowed region, Eq.
(2.22) reduces to the equation F„(r)=mu /R(r), where

F„(r) is the centripetal force and R(r) is the radius of
curvature at point r on the trajectory. Using Eq. (2.22) to
eliminate k„ from Eq. (2. 19) we finally obtain

kI(r) +k(r) g8
kI(r) dg

(2.22)

k(r) Bk(r)
kI(r) t3(

Bk~(r)

Bx;

i =1,2, 3 . (2.24b)

Equation (2.23) implies that the variation of kl(g) along
an I path depends, in particular, on the curvature d 8/dg.
Therefore, in addition to the construction of the
Wol+b, WOI surface and the calculation of kI(r) on it,
the R paths on the surface Woz+ b, 8'oz have to be deter-
mined in order to evaluate d8/dg, and hence the direc-
tional derivative Bkl /Bg.

The Huygens type construction of the Wol surface can
now proceed as follows. (i) Assume that an equiampli-
tude surface ~or and the quantities kz, kr, e~, and e
are given (see Sec. II E for details). Choose a point M on
a curve in the direction ez Xer. Since 8'oz and Wol are
both constant on this curve (see Fig. 2), it is denoted the
C path. A point M' corresponding to M, and located on
the next equiamplitude (War+a, Wol) surface is a dis-
tance b, g from M in the direction of er. Here, it follows
from Eq. (2.20) that b,g=b, Wol /(A'kr ). (ii) The curvature
d8/dg at the point M is calculated. (iii) The value of kI
at the new point M' is determined with the help of Eq.
(2.23), and k~ is calculated using Eq. (2.19).

This procedure is repeated for a set of points on the
starting C path. The locus of the images of these starting
points is a new C path on the Wol+68'o~ surface. Simi-
larly, other C paths can be constructed. These allow us
to determine the new R paths. That is, the normals to all
C paths which lie in the new 8'ol surface. Thus we ob-
tain the new equiamplitude surface as well as the values
of kr, kz, eI, and ez at each point on this surface. The
determination of these new starting values closes the cy-
cle of the procedure. Subsequent surfaces are construct-
ed by repeating the cycle. To conclude, we have present-
ed a procedure for solving Eqs. (2.6a) and (2.6b) by con-
structing the equiamplitude surfaces one by one. The
equiphase surfaces are obtained automatically in terms of
their normals, the R paths.

It is not surprising that the two corresponding sets of
paths [the I paths, x, =x, (g) and the R paths x, =x, (g),
i =1,2, 3] constructed as described above, satisfy the fol-
lowing coupled Euler-Lagrange equations:

d x; dx, Bkl(r) dx„Bkl(r)

d x; dx, Bk„(r) dx„
k„(r) — 'V

dg2 dg „Bx„dg

The two wave vectors in Eq. (2.24) have to satisfy Eqs.
(2.18) and (2.19). The derivation of these equations is
similar to the one presented in Appendix A for the classi-
cal trajectories Eq. (2.9). In the classically allowed re-
gion, Eq. (2.24a) is trivially satisfied by kI(r)=0. Furth-
ermore, Eq. (2.24b) reduces to Eq. (2.9). This suggests
that the I paths are the "continuations" of the classical
trajectories into forbidden regions.

Equations (2.24) show that, in a classically forbidden
region, in general, the lowest-order approximation of the
solution of the Schrodinger equation is not equivalent to
the solution of a single set of ordinary differential equa-
tions. Equation (2.19) obviously couples I and R paths.
In other words, in multidimensional tunneling the WKB
approximation generally does not reduce the problem to
the solution of a single family of independent path equa-
tions such as Newton's equations of motion. There are,
however, important cases where the path equations can
be decoupled. Some of these cases are presented below.

(a) Normal incidence: The incoming fiux is incident
normally at the turning surface E —V(r) =0, i.e., k„van-
ishes on this surface. From Eq. (2.22), it can be seen that
if k~ =0 on some 8 or surface, then kz vanishes on all
the subsequent surfaces in the same forbidden region.
That is, k„vanishes in the entire forbidden region. Thus
Eq. (2.24a) reduces to Eq. (2.9). The latter has been used
to calculate semiclassical trajectories in classically forbid-
den regions. ' ' ' Both the zeroth- and the first-order
WKB approximations, developed for the semiclassical
trajectories in a classically allowed region, can in this
case be used in the forbidden region. An illustrative ex-
ample of the application of this theory is provided by the
analyses of a model STM by Das and Mahanty. ' A simi-
lar example is given by Huang, Cutler, and Feucht-
wang.

(b) The separable potential: We will show in Sec. II F
that the I and R paths can be determined independently
if the potential and the boundary conditions are separ-
able. This result can be extended by an adaption of the
perturbation theory of Razavy and Pimpale. These au-
thors have developed a perturbative treatment of the
WKB theory for the nearly separable potential, which
includes a small additive nonseparable term.

(c) The last example in which independent trajectories
may be found without solving Eqs. (2.24) is the complex
ray method introduced by Keller. The technique seems
to be satisfactory for the discussion of some optical and
acoustical diffraction problems, ' when k(r) is piece-
wise constant.

E. Turning surfaces, caustics, and connection formulas

In the preceding analysis, we have obtained separately
the solutions of the Schrodinger equation in classically al-
lowed regions as well as in classically forbidden regions.
Now we need to join these solutions smoothly across a
surface, called the turning surface, which separates a
classically allowed region from a forbidden region. At
the turning surface, the first-order correction to the
WKB approximation diverges. Specifically, from Eq.
(2.15) we observe that the zeroth-order approximation is
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7T r0
2cos f k, dl, ——exp ~ f k~~ dl~~4 r

~exp — kId +i k„d&
rO

r (2.25)

where on the left-hand side r is in region I, and on the
right-hand side r is in region II. In the forbidden region,
the waUe Uector kz, being perpendicular to kz, is normal
to the turning surface The sam.e applies to the I paths,
which are all parallel to kl.

The complete analysis of the second turning surface
X2, is more complicated because the incident wave func-
tion consists of two sets of wave fronts. Two cases are il-
lustrated in Fig. 3, in which the second turning surface is
determined by locating the surface which is either the
locus of the zeros of kI or the envelope of the set of cross-
ing paths. In Fig. 3(a), the semiclassical trajectories are
normally incident at X,. Hence k„vanishes in the for-

always finite while the first-order term diverges if either k
or o. vanishes. The divergence of the WKB wave func-
tion at zeros of either k or o. defines the turning surface.
The surface on which o. is zero is called caustic.

Let us divide space into three regions I, II, and III,
with region II being the classically forbidden region and
regions I and III being the allowed regions. Sufficiently
close to the first turning surface X, (separating region I
from region II), we may formulate a local and linear ap-
proximation. We expand the potential in a multidimen-
sional Taylor series, and keep only the constant and
linear terms. Clearly, in this approximation, the poten-
tial is locally separable. At the turning point, the classi-
cal trajectory is normal or tangential to the turning sur-
face corresponding to k or 0. equal to zero. In order to
satisfy the continuity of flux, the wave vectors of the
WKB wave functions should be equal on both sides of the
turning surface, i.e., k=k~. In the direction normal to
the turning surface the separated problem reduces to
one-dimensional tunneling that can be treated within the
ordinary one-dimensional WKB approximation. Thus
the following joining relation holds at the first turning
surface:

bidden region. Just as in the argument presented for X,,
the continuity of flux requires that all the classical paths
in region III emerge perpendicularly from X2. The
second example depicted in Fig. 3(b) has nonzero k~ in
region II. At the intersection of two I paths lying on two
different Wo„surfaces, 11k':6 Wog /kg tends to infinity.
Hence, by Eq. (2. 19), kI diverges in this case, and one
may restrict the analysis to the I paths that are normal to
X2. It is evident that the I paths join corresponding tra-
jectories in the two disjoint classically allowed regions.
As a consistency check of our theory, we present in the
following a discussion of tunneling in a separable poten-
tial field.

F. Separable potential problem

Consider a potential field given by

V(r)= V, (x)+ V2(y)+ V3(z), (2.26)

which vanishes at infinity. Assume that the potential
barrier exists only in the x direction and the incident
wave function tends asymptotically, as x ~—~, to

4(r)=exp(iko, x+iko y+iko, z) . (2.27)

Here subscript 0 denotes the value as x —+ —~. In the
classically allowed region, the WKB wave function can
be described by a set of paths, or rays, which satisfy
Newton's equations. The separability requires these
paths to be reflected at a surface of constant x on which
k vanishes. This is the turning surface or the caustic X,
for this problem. To construct the wave function to the
right of X~, we notice that the tangential component of
the wave vector must be continuous across the turning
surface to satisfy the continuity of flux. Then, in the for-
bidden region, just inside the caustic, we have an equiam-
plitude surface with known k~, k„and k~ -0. It is easy
to see that in this case kz =k +k, and kI = —ik„. These
components of the complex wave vector can in this case
also be defined, respectively, as the parallel and normal
components, relative to the turning surface. In the neigh-
borhood of the turning plane the R paths are straight
lines. It follows from Eq. (2.23) that the change in k„
(which here is ikI) along the x direction is

k„
Bx

k Bk
k Bx

m dVi(x)
g2k dx

(2.28)

I path

Z =(W I
——0)

= (E-VW) ~l=~c
=(W I

——0)

(a) normal incidence (b) oblique incidence

FIG. 3. Two allowed regions I and III separated by a forbid-
den region II bounded by the turning surfaces X& and X2. Tra-
jectories in I and III are joined at X, and X, to I paths defined in
region II. In (a) X& and X2 satisfy E—V(r)=0. In (b) X& and X2
are also the caustics.

Here we have used Eq. (2.26). Hence following the gen-
eral reasoning described in Sec. II D, we conclude that in
the entire forbidden region k„ is a function of x only.
Consequently, the equiamplitude surfaces are planes of
constant x. That is, in the forbidden region, the I paths
are parallel to the x axis and the R paths are in the y-z
planes. A similar argument can be applied at the second
turning surface X2 in order to join the solutions across
the boundary. To the right of X2, i.e., in region III,
Newton's equations can be used to construct classical
paths. This concludes the demonstration of the con-
sistency of the method presented in Sec. IID with the
known result for separable potential problems.
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III. DISCUSSION AND CONCLUSIONS

A. Construction of the WKB wave function
in multidimensional space

In this paper, we have investigated the WKB approxi-
mation for tunneling calculations in a multidimensional
nonseparable potential field. To obtain the wave function
in a region including the barrier, we started in a classical-
ly allowed region the construction of a family of paths as-
sociated with the wave front, on which the boundary con-
ditions are specified. The turning surfaces (caustics) are
surfaces on which either the wave vector k vanishes (i.e.,
for paths of normal incidence) or the paths cross each
other. In the latter case, the family of the paths does not
have a unique wave front at the turning surface, which is
the envelope of the paths traced in the allowed region.
The wave vector k at the turning surface, when it does
not vanish, is tangent to this surface. Furthermore,
k=kz just inside the forbidden region.

In order to calculate the wave function in the forbid-
den region we require, besides kz, another wave vector
ki, which is always perpendicular to kz. That is, in this
region, we identify two mutually perpendicular sets of
rays or paths, the R and I paths with tangent vectors k~
and ki, respectively. In contrast to the rays in an allowed
region, these paths, in general, cannot be determined in-
dependently one by one. As noted above, we propose to
use the R and I paths to determine the Hamilton charac-
teristic W. In Sec. II D, we showed how to construct for-
mally the surfaces of constant

SORY

~ This construction is
sequential across the forbidden region, in which both R
and I paths are determined simultaneously.

As a by-product of this construction, we also obtained
two sets of coupled equations satisfied by the R and I
paths. Although neither an analytical nor a computa-
tional approach to obtain the explicit solution of these
equations is available, our geometric construction is a
solution of these equations subject to proper boundary
conditions. The method is general and applicable to any
tunneling problem as long as the WKB approximation,
Eqs. (2.3)—(2.5), is valid. In the following we discuss
several of the characteristics of multidimensional tunnel-
ing that can be deduced from our solution.

B. Tunneling at normal incidence to the turning surface

First we shall consider the use of Newton's equations
with inverted potential and energy to obtain the trajec-
tories in the forbidden region. From Sec. II we know
that this is justified when the incoming wave is normally
incident at the turning surface; in this case the tangential
component of the wave vector vanishes on the turning
surface, and hence kz remains zero in the entire forbid-
den region. Thus one set of wave fronts (i.e., the set of
constant Wot surfaces) suffices to describe the WKB wave
function in the forbidden region. The wave function can
be equivalently described by the I paths, which satisfy
Eq. (2.24a). These equations reduce, in this case, to the
semiclassical path equations and can be derived from
Newton's equations of motion with inverted potential

and energy.
The semiclassical treatment of the path decomposition

expansion method introduced by AK (Ref. 21) effectively
assumes the tunneling particle to be normally incident.
In this case, tunneling can be described by the I paths
which correspond to the instanton paths in their papers.
This treatment is valid for tunneling from a well because
for a fixed total energy the normally incident wave has
the smallest exponential decrement, and hence dominates
the other contributions to the tunneling rate.

C. Turning surfaces in multidimensional tunneling

Next, we consider the determination of the multidi-
mensional turning surfaces. It has been argued that
"for nonseparable potentials one cannot uniquely define
the kinetic energy for a particular coordinate, thus it is
impossible to obtain the turning points. " From Eq.
(2.15), it is clear that the turning surfaces are determined

by either of two independent conditions: k(r) =0 (normal
incidence), or o(r}=0 (the cross section of the flux tube
vanishes). Evidently in the second case it is impossible to
determine the turning surface in terms of only a single
classical trajectory. Thus in a multidimensional space
one has, in general, to use a family of classical trajectories
and to locate the surfaces on which either k(r) or cr(r)
vanishes in order to obtain the turning surfaces. Note
that the turning surfaces are determined not only by the
potential field but also by the boundary conditions. That
is, different families of classical trajectories do not, in

general, have the same turning surface. For example, in a
potential field that depends on x only, the turning surface
for a plane wave is a Rat plane. However, for a point
source, the turning surface could be a paraboloid of revo-
lution.

D. Most probable tunneling path

In some multidimensional tunneling theories, ' ' ' it is
suggested that the tunneling calculation can be per-
formed by evaluating the contributions from single or at
most a few locally most probable paths and their respec-
tive neighborhoods included in an appropriate Aux
"tube. " Consider the cases presented in Fig. 3. In the
first example all trajectories are normal at the incident
turning surface. These trajectories are continued by I
paths into the forbidden region. Because k~ =0, these
paths can be determined independently by Eq. (2.9), and a
set of these paths can be constructed. The contribution
from each of these paths can be evaluated easily and in-
dependently. The tube concept does not have in this case
any advantage in the calculation of the tunneling current
density. In fact, interpreting the tube as a device to in-
troduce a line-shape broadening of the tunneling proba-
bility density, we recognize that the tunneling current
density may have structure easily missed by the Gaussian
line shape.

E. Complex tunneling time

The preceding analysis also allows us to answer the
question concerning the complex time in tunneling calcu-
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lation. ' Here the intent is to extend the expression

I'2

'i &2[E—V(r)]lm
(3.1)

+if dg (3.2)

Here, a and b are adjacent turning points. The third
term involves an integral over the forbidden region of the
unknown function kI(r), which has been shown in Sec.
II D to depend on the neighboring paths which have to
be calculated. It appears that the determination of these
additional paths involves a construction similar to that
described in Sec. IID. The difficulty of implementing
this procedure probably is equal to that of the method
presented in that section. Again, if the incidence is nor-
mal to the first turning surface, then in the forbidden re-
gion we have k„=0 and kr = —ik. Thus in this case the
integrand in the third term in Eq. (3.2) is known. In fact,
the analysis is not different from that in the allowed re-
gion except that time becomes purely imaginary because
E ( V(r). It has been shown that for one-dimensional
tunneling, the complex time method recovers the WKB
approximation.

into the forbidden region. But as discussed above, a sin-

gle trajectory is in general not sufficient to determine the
turning surface. In particular, a single trajectory does
not determine its intersection with the caustic except
when this trajectory is at normal incidence. Only when a
family of paths is specified will we be able to separate the
allowed from the forbidden region. Therefore, in general,
multidimensional tunneling theory can not be formulated
in terms of a complex time associated with a single trajec-
tory.

However, if the point r& is taken to be the location of a
point source, then this boundary condition allows a fami-

ly of paths to be constructed. All of these paths emerge
from the point. Thus the procedure presented in Sec.
II D can be followed to obtain the paths in the different
regions. Two end points belonging to different classically
allowed regions can be joined by two segments of the
classical trajectory which are connected by an I path as
shown in Fig. 3. The preceding discussion amounts to a
generalization of Eq. (3.1) to the complex valued expres-
sion

t= a dg '2 dg
'i +2[E—V(r)]lm b 0 2[E—V(r)]lm

parable problems, the phenomenon can be adequately de-
scribed only in terms of two sets of paths.

G. Conclusions and results

We applied the WKB method to tunneling in multidi-
mensional and nonseparable potentials. In the classically
allowed regions our method leads to the standard semi-
classical approximation. In the classically forbidden re-
gion, we introduce two sets of real, mutually perpendicu-
lar paths, called I and R paths, which are defined to be
normal to the constant (amplitude) Woz surfaces and con-
stant (phase) Woz surfaces, respectively. These paths
characterize the WKB-type wave function and its propa-
gation, Classical trajectories, in two disjoint and classi-
cally allowed regions, are joined in the forbidden region
by corresponding I paths. The I and R paths obey two
sets of coupled ordinary differential equations which ob-
viously differ from Newton's equations, though they
resemble them. Specifically, if the incidence of all the
classical trajectories is normal to the turning surface, the
path equations decouple. In this case, the WKB method
used in the classically allowed regions is directly applic-
able in the adjacent forbidden region. This procedure
was, in fact, followed by Das and Mahanty' and Huang,
Cutler, and Feuchtwang. Finally, we note that the path
equations, Eq. (2.24), may be interpreted as the Euler-
Lagrange equations of the two constained variational
principles 5 WOI =0 and 5 Woz =0 subject to the constaint
given by Eq. (2.19). These variational principles reduce,
in the classically allowed regions, to the principle
5WO =0, whose Euler-Lagrange equations are Eqs. (2.9).

We are currently studying two alternative multidimen-
sional WKB-type methods: the complex time scheme de-
scribed in Sec. III E and the technique of spatially com-
plex trajectories, described in Sec. III F. In both cases, it
appears that the role of the real I path in joining classical
trajectories across a forbidden region will be assumed by
complex trajectories.
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F. Spatial complex trajectories

Finally, we turn to the problem of trajectory with com-
plex spatial coordinates. This is not essentially different
from the complex trajectories introduced by the complex
time scheme above. Trajectories can be always expressed
in terms of a single parameter, either the time or a spatial
coordinate. It can be real or complex. We emphasize
once more that any attempt to use a single trajectory to
describe tunneling in a multidimensional space is bound
to fail. This is due to the fact that except for some spe-
cial cases mentioned above, e.g. , normal incidence and se-

APPENDIX A: PROOF OF EQ. (2.9)

Consider the following integral for a function called
Wo~ (r):

Wo~(r)=Pi I k(x)dg (A 1)

b Wo~(r) =A'b J k(x)Qx„'x„'dg,

that is,

(A2)

If the end point r changes to r+Ar, 8 pg will be changed
by AWoa
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b, Wo„(r) =A' I 'l/ x„'x„'
a

I

k(x)
Qx„'x„'

x,'b x;
+Pi k(x}

XnXn

5x, dg

(A3)

called points N and M', respectively. Using M', we can
also define a point Q as the intersection of the R path
with the Woz +b Wo~ surface. The quantities b, g and b,g
shown in Fig. 2 can be calculated as follows: Wo~(r) at
point M can be written as Woz(r&(g)) and at point N as

Woii ( r, ( g+ b g }), where r, ( () represents the R path. Us-
ing Taylor expansion, we have

0 WoR
Woe(ri(k+~k}) = Woii {ri(k}}+

where the prime denotes the derivative with respect to g.
If we require that the change of r be perpendicular to the
constant Woz surface, then dr/dg is in the direction of
V Wo„, and Eq. (2.7b) becomes

8 W
+

~
+O(b, g )

2

= Wo„(r, (g) )+6k~ (r, (g) )b,g

dr
V Woii =A'k (A4)

elk it
+Pi +O(b, g ) . (B3)

Bg r 2

Thus substituting Eq. (A4) into Eq. (A3), we conclude
that the first term on the right-hand side of Eq. (A3} must
vanish. However, since 5x, is arbitrary, the expression
enclosed by square brackets must vanish, i.e.,

Similarly, the Wo„(r) values at points M' and Q satisfy
the following relation:

Woe (rz(k'+ hC ) } WoR (rz(g') }+A'ka (ri(g') }bg'

Bk, , d X;
Qx„'x„' — k(x) =0, i =1,2, 3 .

8k~+a ' +o(ag'}.
Bg ( 2

(B4)

(A5)

These are the Euler Lagrange equations for the variation-
al principle 5Woz =0, with fixed end points. With the
help of Eq. (2.8), Eq. (A5) leads to Eq. (2.9). A complete-
ly analogous analysis applies in the classically forbidden
region for the two paths, and leads to the two variational
principles 5 Wol =0 and 5Wo„=0, respectively.

APPENDIX B: PROOF OF EQ. (2.22)

First we show that the error in replacing an
infinitesimal arc length by a straight line is a third-order
quantity. Let the arc length be hA, , the corresponding
straight line length be Ag, and the radius of the curvature
of the segment be R, then we have

Points M and M' have the same Woz, and points N and

Q also have the same Woz. Hence we obtain with the
help of Eqs. (B3) and (B4),

~kR
k

b, b, g
Bg "Agbg '

where

(B5)

(B6)

Now, let us define a plane based on the points M, M', and
N We may d. raw a line M'Q' in the plane MM'N to be
parallel to MN, and terminate the line at the
Woz+AWoz surface. By applying the law of sine to the
triangle M'QQ', we obtain

EA. =(b 8)R,
where 60 is the angle subtended by the arc, and

(Bl) M'Q' sin( ir/2 —b a )

M'Q sin( n. /2 —b p)
(B7)

b, g =2R sin(b, 8/2) =2R (68/2) — + .(b,8/2)
6

With the help of Eq. (Bl) we have

Due to the fact that both M'Q and M'Q' are perpendicu-
lar to the Wo„+b, Wo„surface as b,/~0, we have
ba~bg, EP~bg, and

b(=bA, +-(bA, )

24R
(B2)

M'Q'=M'Q+O(M'Qbg ) .

We may write

(B8)

In the derivation of Eq. (2.22), second-order terms are
needed. However, one can still interchange the arc
length increment with a straight-line segment approxima-
tion.

Through every point M on a Wol surface, there pass a
R path and an I path. The intersections of these paths
with the Woe +~ Woe and Wor+ ~ Wor surfaces are

(B9)

where b,8 is the angle formed by the lines NQ' and MM'.
Note that these two lines are on the plane MM'N and are
perpendicular to the R path M¹ Substituting Eq. (B9}
into Eq. (B5), we have Eq. (2.22).
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