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A procedure is presented for constructing a thermodynamic free energy for fluids in the critical
region that incorporates the crossover from Ising-like singular behavior near the critical point to
regular classical behavior far away from the critical point. The procedure is based on an approxi-
mation of the solution of the renormalization-group theory of critical phenomena, modified to in-
clude effects from a cutoff wave number for the crossover to the classical limit. As an illustration
we show how the procedure can be applied to a truncated classical Landau expansion. The results
are compared with experimental thermodynamic-property data for carbon dioxide, steam, and

ethylene in the critical region.

I. INTRODUCTION

The modern theory of critical-point phase transitions
predicts that asymptotically close to the critical point the
thermodynamic properties of a system exhibit singular
power-law behavior characterized by universal exponents
and universal scaling functions."? Fluids near the
vapor-liquid critical point are assumed to belong to the
universality class of three-dimensional Ising-like sys-
tems.>* However, the region where the asymptotic
power-law behavior applies is quite small® and
correction-to-scaling terms® have to be introduced in or-
der to compare the theory with thermodynamic-property
data in a finite range around the critical point.” On the
other hand, outside the critical region various analytic
equations of state are used to represent the thermo-
dynamic properties of a fluid from the ideal-gas limit to
the high-density limit.® Such analytic equations of state
have an analytic (mean-field) Landau expansion near the
critical point and fail to describe the singular thermo-
dynamic behavior of fluids in the critical region.’®

Very close to the critical point the Helmholtz free-
energy density, i.e., the Helmholtz free energy A per unit
of volume V, can be separated into a regular and a singu-
lar part. The singular part A4 of the Helmholtz free-
energy density A, made dimensionless as specified in Ap-
pendix A, becomes a generalized homogeneous function
of its arguments which implies that the number of in-
dependent variables can be reduced by scaling. Asymp-
totically close to the critical point A4 can be written in
the form?

AA=AA(t,M)=[t]> DM /|t|P), (1.1)
where a and [ are universal critical exponents and &,
apart from an amplitude, is a universal scaling function.
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Here the variable ¢ is proportional to the difference be-
tween the temperature T and the critical temperature T,
while M is the order parameter which, for fluids, becomes
asymptotically proportional to the difference between the
actual density p and the critical density p.. Near the crit-
ical point the correlation length £ is much larger than
any microscopic length g, ! and higher-order terms in
(gp&)~ ! are neglected. The scaling law (1.1) is the first
term of a so-called Wegner series, which has the form

AA=tP" DM /1P 1+(gp&) "D (M /|1]P)
+(gp&) (M /|t)P)+ - ],
(1.2)

where w,w,,. .. are correction-to-scaling exponents and
where ®; and ®,, apart from their amplitudes, are
universal correction-to-scaling functions.

To represent thermodynamic-property data of fluids
near the critical point one customarily uses for the scal-
ing function ® in (1.1) approximate expressions in terms
of parametric variables’ !! which, to a certain degree,
are supported by the renormalization-group theory of
critical phenomena.!'>!3 A popular parametric equation
used for this purpose is the so-called linear model. !
The linear-model parametric equation can be extended to
include the leading Wegner correction and revised to ac-
count for the asymptotic asymmetry of fluids near the
critical point.'> Such an extended and revised linear
model can represent the thermodynamic properties near
the critical point accurately. '™ !® Specifically, inclusion
of the first Wegner correction is necessary to represent
the data in terms of the theoretically predicted universal
critical exponents® rather than in terms of effective
empirical exponents.®!® However, the range of validity
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of the scaled equations is still rather restricted and the
agreement with experimental data deteriorates very rap-
idly as soon as these equations are extrapolated outside
the near-critical region. The problem is that these scaled
equations do not extrapolate properly to any known ana-
lytic behavior away from the critical point, neither at low
or high densities nor at low or high temperatures. Fur-
thermore, the critical fluctuations also induce nonscaling
analytic terms in the free energy which are not properly
included in the Wegner series and, hence, in the paramet-
ric models. '*2%:21

The challenge is to develop a thermodynamic free ener-
gy that not only incorporates the asymptotic critical be-
havior, but that also accounts for the crossover to the
regular behavior far away from the critical point. Near
the critical point the cooperative effect of the long-range
critical fluctuations determines the asymptotic singular
thermodynamic behavior. These fluctuations correspond
to gp&>>1. When the system moves away from the criti-
cal region, this inequality no longer applies and crossover
to regular behavior takes place when g, & becomes of or-
der unity.!® Specifically in this article we want to formu-
late a crossover model that has a theoretical basis and
that includes the following features. 22

(a) The crossover model should recover the asymptotic
scaling laws near the critical point with a realistic esti-
mate of the leading Wegner corrections, and merge into
the analytic behavior far away from the critical point.

(b) As mentioned previously, the critical fluctuations
not only produce a singular free energy, but also yield an
analytic contribution to the free energy.?®?! This non-
scaling feature of the free energy must be properly incor-
porated to account for, e.g., the crossover behavior of the
specific heat from its singularity at the critical point to its
jumplike behavior in the classical limit.

(c) Classical equations that represent data away from
the critical point imply critical parameters, in particular
a critical temperature, that differ from those of the actual
critical point.?* A satisfactory crossover model should
recover regular thermodynamic behavior far from the
critical point including the shift of the critical tempera-
ture from an apparent classical value to its actual
fluctuation-induced experimental value.

Some empirical attempts have been made to deal with
this crossover problem. A brute-force method was origi-
nally attempted by Chapela and Rowlinson®* in which
the scaled equation for the near-critical region was con-
nected to a classical equation outside the critical region
with the aid of a switching function. However, it was
demonstrated by Woolley that use of a switching function
for blending two fundamental equations necessarily leads
to spurious behavior of the derivatives of the thermo-
dynamic surface in the crossover regime.?> Another
empirical method has been proposed by Fox in which the
crossover from a classical equation outside the critical re-
gion to a scaled equation near the critical point is accom-
plished by an appropriate redefinition of the variables in
the classical equation.?®?’ The empirical procedure of
Fox avoids the pitfalls of the switching-function ap-
proach, but it still does not include the features for a
crossover model mentioned above.

A theoretical approach to deal with the crossover
problem on the basis of the renormalization-group theory
of critical phenomena was pioneered by Rudnick and
Nelson?® and Bruce and Wallace,? followed by the work
of Nicoll and co-workers,'*3® Bagnuls and co-
workers,*! 7** and Dohm and co-workers.**~*' Bagnuls
and co-workers have made a comparison of their theory
with experimental data for xenon, but the comparison
was restricted to the temperature dependence of the ther-
modynamic properties at the critical isochore only.3?
Dohm and co-workers have analyzed the nonasymptotic
behavior of the thermodynamic properties of “He near
the superfluid phase transition. 3>~

Inspired by the previous theoretical results of Nicoll
and co-workers'®3? we develop in this paper a procedure
for constructing a crossover free energy for fluids in the
critical region, which satisfies all the features listed above
and which can be used for a quantitative analysis of ex-
perimental thermodynamic-property data as a function of
both temperature and density. A slightly less sophisticat-
ed version of this work was presented in a previous Rapid
Communication. *?

II. THEORY

A theoretical treatment of the crossover behavior of
systems in the critical region can be deduced from the
renormalization-group theory of critical phenomena with
the aid of so-called match-point methods.?>*° In this
section we briefly review the main features of this
method. It is assumed that the effect of critical fluctua-
tions in a (symmetric) Ising-like system in d dimensions
can be represented by a Landau-Ginzburg-Wilson (LGW)
Hamiltonian of the form*?

HLGW=fA7{(¢(x))ddx, 2.1)
with
4—d
H= 1§+ R+ Lo gty 2.2)

Here ¢ is the temperature-like field, ¢(x) is the fluctuating
order parameter whose average value yields M, u is the
¢*-theory coupling constant rescaled by A*~¢, h is the or-
dering field and A is an ultraviolet cutoff. The relation-
ship of this Hamiltonian to that suitable for the descrip-
tion of the properties of fluids in the critical region has
been discussed by several authors.*~* The application
of the theory to fluids will be further considered in Sec.
Iv.

Near the critical point the correlation length £ be-
comes much larger than any microscopic length and,
hence, it is assumed that near the critical point the cutoff
A can be taken to be infinite. In field theory, the parti-
tion function associated with the LGW Hamiltonian (2.1)
is a generalization of the Green function which can be
specified with the aid of diagrammatic expansions. 14748
Here we only mention some results of the theory without
technical details.

The Helmholtz free energy A A, associated with the
LGW Hamiltonian depends on the variables ¢t and M, on
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the coupling constant u, and on the cutoff wave number
A. When A is taken to be infinite, the variables t and M
and the constant u have to be renormalized in order to
keep the renormalized Helmholtz free energy finite and
independent of the cutoff A (the free energy also receives
an additive renormalization constant proportional to ¢2).
The physical Helmholtz free-energy density A A4, is relat-
ed to the renormalized one as

AA(t,M;u,AM)=AA (Z "t,Z;'’M,Z 'u)
_%(Zt'*lt)?.A*M*d)Bl(u) ,

ren(

(2.3)

where Z,, Z,,, and Z, are rescaling factors and where
B'(u) is a function which arises from the additive renor-
malization of the specific heat.* The renormalized
Helmholtz free energy A A, is kept finite in the limit
A — o by a suitable choice of the rescaling constants Z;
(i =t,M,u), which are generally functions of u, A, and
the dimensionality of the system. The existence of a re-
normalized theory and the fact that the leading terms of

A 4, are independent of the cutoff implies*’
Latly 0 (2.4
A oA M u, o 4

where t,=Z,'t, M,=Z,;'’M, and u,=Z, 'u are the re-
normalized variables. Equation (2.4) is only correct close
to the critical point, where terms of order ¢ /A2 which ap-
pear at the right-hand side of (2.4), can be neglected. If

(2.3) is inserted into (2.4), one obtains a partial differential

equation of the form*> 447
AaA +B(u)8u+ 7 |5
1 d i 1,24 —(4—d) _
oMM A4 oA B(u)=0
(2.5)
with
dlnZ,,
M= =ATS (2.6a)
dlnZ,
T (2.6b)
2 1 _Aaan, re
Wu) - 9A (2.6¢

and where B (u), related to B'(u) in (2.3), is a function of
order unity.* The last term on the left-hand side of (2.5)
includes a fluctuation-induced analytic term* propor-
tional to ¢2.

The renormalization equation (2.5) has been studied by
many authors. Nicoll and co-workers'*3° have applied
the equation to develop a crossover theory using an ex-
pansion in terms of e€=4—d. Bagnuls and co-
workers®' ~3* have considered the solution of a similar
equation for three-dimensional systems. Dohm and co-
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workers have studied the solution of a similar equation
for the thermodynamic properties of *He near the
superfluid phase transition. > ~*!

The renormalization equation (2.5) is a first-order par-
tial differential equation which can be solved formally by
the method of characteristics and the solution can be
written in the form'®3°

AA(,Mu, A)=AA (tT(1),MD*(1),u(1),A]))

— L2 (1) 2.7
with
ADh=Ae ! (2.8)
The characteristic equation is
%=—B(u(1)) (2.9)
with the boundary condition
u(l=0)=u . (2.10)

The rescaled functions 7(/), D(1), and #(I) are the solu-
tion of

- B PO S

T(=exp | = [ |2 Ry ]ds’, .11
!

D) =exp fon[u(s)]ds], (2.12)

7{(1)=fO’B[um]‘Tz(s)e“‘*d’Sds . (2.13)

Equation (2.7) relates the free energy of a system with
cutoff A to another system with cutoff Ae ~/, with the
form of the function unchanged. Thus, the system can be
rescaled in space provided that the variables ¢ and M are
rescaled to new values. For the particular 3(u) functions
that are of interest to critical phenomena, u (/) ap-
proaches, as [ — o, a fixed-point value u*=Ilim,  u (/)
determined by the condition

Blu*)=0. (2.14)

The critical exponents a, B, y, 8, v, and 7, with
y=B6—1)=(2—n)v and dv=2—a=2B+y, that
characterize the asymptotic behavior of the thermo-
dynamic properties and the correlation function near the
critical point,2 are related to the values of the functions
v(u) and 7(u) at the fixed point u =u *,

v=v(u*), n=n(u*), (2.15)

while the exponent w=w; of the first correction-to-
scaling term in (1.2) is given by

o=A/v=dB(u)/du at u=u* . (2.16)

The quantity on the left-hand side of (2.7) is the actual
free energy of a system. Hence, it does not depend on the
value of the parameter / on the right-hand side. Since / is
arbitrary, it is possible to choose a special value [ =/*,
called the match-point value,3®%° such that the right-
hand side assumes a form convenient for constructing a
crossover free energy. The free-energy expression can be
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separated into a mean-field part A 4y and a fluctuation
part AA fluct»

AA,=AAyp+A A (k/AM/AY2 w217
where k is the mass term given by
kK=t +luAtTIM (2.18)

When (2.17) is used for the rescaled A 4, on the right-
hand side of (2.7), both A4y and A Aq,., will contain
the rescaling parameter I. If the match-point value / =/*
is chosen such that

AAdg, (I1*)=0, (2.19)

then only the mean-field or classical free energy is left on
the right-hand side of (2.17). It is for this classical free
energy that we want to study the crossover behavior.
Condition (2.19) yields a parameter value /* which is no
longer arbitrary but which is a function of ¢, M, and the
coupling constant u. For this particular matching (2.7)
becomes

A4, (t,M,u,A)
=Ad e (CTU,MDV2(1*),u(1*),Ae ™)

— L2 (1% . (2.20)
The mean-field functional A 4 has a Landau expansion
of the form

A Ay, M,u, A)=1tM >+ %u,deu

2.21)
We note that in (2.20) the variable ¢ is proportional to
T —T,, while in (2.21) t is proportional to T — T, where
T. is the critical temperature implied by the classical
equation; T, differs from the actual critical temperature
T, as further discussed in Sec. III C. The crossover mass
term «? becomes

K=t TU*)+Lu (I)AU*)DI*)M? . (2.22)

The solution of the match-point condition (2.19) be-
comes simple if we restrict ourselves to the critical iso-
chore M=0. From (2.17) we see that in that case the
match point is related to the root x, of the equation
AAdg,. (x0,0,u(1*))=0 by

k(I*)=Ae "xy(u (1)) . (2.23)

The match-point condition (2.19) becomes harder to solve
when M#0. The solution has been determined by Nicoll
and Albright in the € expansion. ?

III. PROPOSED CROSSOVER PROCEDURE

A. Formulation of crossover procedure

In order to implement the crossover theory outlined in
Sec. II in practice, we introduce a number of approxima-
tions. We shall then provide evidence in support of these
approximations.

The functions that appear in the renormalization-
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group equation (2.5) have been evaluated by Nicoll and
Albright in terms of the e expansion.!® Schloms and
Dohm have subsequently obtained expressions for these
functions in three dimensions with the method of Borel
resummation, but their results pertain to a different re-
normalization scheme. ¥ 4!

The function B(u (1)) in (2.9) has a nonzero fixed point
u* satisfying B(u*)=0 in accordance with (2.14) and a
Gaussian-like fixed point at ¥=0. Furthermore, in accor-
dance with (2.16) the slope of the function B(u) near
u=u* equals the first correction-to-scaling exponent
w=A/v, the value of which is known.’! A simple
closed-form approximant satisfying these conditions is
w2

Bu)=—ou +——u*. (3.1)
u

If this expression is substituted into (2.9) we obtain

ulD)=u*+(u—u*)Y , (3.2)
with

y=—-> (3.3)

1+@(e®—1)

and

u (DA =u*AU(]) (3.5)
From (3.2) and (3.3) it follows that

u (DA =u*AU) (3.5)
with

Uh=a'yVe[1—(1—g)y]e /e, (3.6)

For the function v(u) we know that v(#*)=wv in accor-
dance with (2.15) and that 2—v~ !(u) is proportional to u
to lowest order in perturbation theory. We thus propose

2—v N u)=~2—v N . 3.7
Substitution of (3.7) into (2.11) yields
T(H=y2 v /e (3.8)

The function 7(u) reduces to the exponent 7 at u =u* in
accordance with (2.15). We therefore consider

nu)=na?. (3.9)

The functional forms (3.1), (3.7), and (3.9) for the renor-
malization functions are fully consistent with the e-
expansion results to appropriate orders.!> However, by
adopting the actual theoretical critical-exponent values,
we obtain closed-form approximants for these functions
whose validity extends beyond that of a perturbation
theory.

We note that Schloms and Dohm*' have proposed a
closed-form approximant for the function 8(«) which has
a slightly more complicated structure than the approxi-
mation (3.1). Our function B(u) cannot be identified
directly with that of Schloms and Dohm, since they are
based on two different renormalization schemes. Our re-
sults are obtained from a renormalization scheme in
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which the renormalization constants [i.e., the Z; factors
in (2.3)] are determined via renormalization condi-
tions, *»47*® while Schloms and Dohm have employed the
minimal subtraction scheme.*»’2%  However, the
differences in the two renormalization schemes are con-
tained in the fixed-point value u*. When we rewrite the
function B as a function of the scaled variable # =u /u*,
we find that the numerical values implied by our (&) are
very close to the values implied by the function B(#&) of
Schloms and Dohm for the values of u of interest in this
paper. Furthermore, our approximants (3.7) and (3.9) for
2—v"Yu) and n(u), which are already written as a func-
tion of @, turn out to be identical to approximants pro-
posed by Schloms and Dohm.*! Substitution of (3.9) into
(2.12) yields

D=y Ween!=D¥=b/e, (3.10)
This function is important for the crossover behavior of
the order-parameter correlation function.>® However,
for the thermodynamic properties we prefer to simplify
(3.10) as

D=y e (3.11)

Strictly speaking, (3.11) is equivalent to replacing (3.9)
with n(u)=ni@, which is only correct for u close to u*.
While this replacement does not affect the asymptotic
power-law behavior it does affect the amplitudes of the
correction-to-scaling contributions by terms of order 7.
We justify this approximation on the basis that the ex-
ponent 7 is small for three-dimensional systems.

Finally, to obtain an expression for #(/) we note that
the function B(u (/) in (2.13) originated from the addi-
tive renormalization of the specific heat and has an ex-
pansion of the form*?

B(u)=1+0(u?). (3.12)

Here we approximate B(u) by unity, since the correc-
tions are of the order of u? or 7, which is small. '>* If
we then substitute (3.8) into (2.13), the resulting integral
cannot be evaluated analytically. However, if only the
leading scaling and correction-to-scaling terms are treat-
ed exactly, we obtain

H()=K(Y 2—1)+A% , (3.13)
where the constant K, given by
Ko=——— (3.14)
O am /oA

is related to the two-scale-factor amplitude ratio.?3%3¢
The correction A% in (3.13) is only important for the
Wegner correction terms, and for the leading correction
to scaling term we find A% =0.065(1—a)K,Y!~ /2
which has a small coefficient as compared to the other
terms. We adopt in practice

K=Ky (Y~ *2—1). (3.15)
The match-point value /*, determined by (2.23), was

derived for M=0, but we shall use this expression for
M0 as well. Moreover, we assume that the u(/*)
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dependence of x, is treated as a constant which can be
absorbed by a redefinition of the cutoff wave number A:

(3.16)

This match-point value /* needs to be substituted into
the expressions (3.6), (3.8), (3.11), and (3.15) for %U(l),
(1), D), and F(l) through the crossover function Y,
given by (3.3), which becomes

1

Y= . (3.17)
1+a[(A/k)°—1]

This crossover function can also be written in the form

Y= L L . (3.18)
a(A/k)? 1+[(1—=T)/alc/A)°

The factor @ (A /k)® in (3.18) reproduces the asymptotic
singular critical behavior of the Helmholtz free energy
and the remaining factor represents a ‘“resummed”
Wegner series in this approximation. If we expand this
second factor in a series for small (x/A)®, we see that the
coefficient 1 —# characterizes the rate of convergence of
the Wegner series.

The functional form (3.17) for Y is by itself not
sufficient to produce a complete crossover to the classical
behavior of the free energy far away from the critical
point. The reason is that in the derivation of the renor-
malization equation (2.5) terms like t/A? have been
neglected and these terms do contribute in the classical
region. Hence, to obtain a correct classical limit it is
necessary to consider more explicitly the consequences of
the existence of a finite cutoff A for the critical fluctua-
tions. Nicoll and Bhattacharjee have investigated the
effects of different froms of the cutoff in the case of the
spherical model which they were able to analyze exact-
ly.* They showed that for the spherical model the classi-
cal limit is recovered not as the limit A /k— 1, as suggest-
ed by (3.17), but instead as the limit A /k—0. We assume
that the cutoff effects for Ising-like systems yield the same
feature which can be implemented by modifying the ex-
pression (3.17) for the crossover function ¥ to become??

Y= L . (3.19)
1+a[(1+A2/&?)*?—1]
It is this additional feature to account for cutoff effects
which distinguishes our procedure from the major results
of Bagnuls and co-workers®! 73* and of Dohm and co-
workers.**~#! It is this feature which will enable us for
fluids to represent thermodynamic-property data all the
way to the classical region away from the critical point.>’
The quantity « is essentially an approximation for the
inverse correlation length and the ratio x /A is a measure
of the distance from the critical point. We note that the
crossover function Y depends on « which itself depends
on Y through (2.22). In practice, therefore, the crossover
function Y is determined by a numerical iteration pro-
cedure for a given ¢ and M. For the critical exponents
and the fixed-point value u * we adopt the values

v=0.630 (@=3v—2=0.110),
7=0.0333 ,

(3.20)
wov=A=0.51,
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in good agreement with the theoretical predictions for
three-dimensional Ising-like systems.3"?"%% Ags men-
tioned earlier, the fixed-point value u * depends on the re-
normalization scheme. Here we use the value®®®!

u*=0.472 (3.21)

which, together with the expressions adopted for B(u),
v(u), and n(u), reproduces the correct universal ratios of
the amplitudes of the asymptotic power laws as discussed
below.

In conclusion our crossover procedure starts from a
classical Helmholtz free energy A\ which has an expan-
sion of the form (2.21)

AAdyp(T,M;uh)=1tM*+ le-uAM“-F e, (3.22)
which is a function of t and M and which depends
parametrically on the coefficient u A of the M* term. The

crossover Helmholtz free energy A 4, is then
AA(tM;uN)=AAyg (0T, MD %5 u* AU — Lt*H
(3.23)
with T, D, U, and # given by (3.8), (3.11), (3.6), and

(3.15), while the crossover function Y is represented by
(3.19). This common function Y depends on k given by

K=t T+iu*UDM? . (3.24)

The quantity k serves as a measure of the distance from
the critical point. At the critical isochore x ' becomes
asymptotically proportional to the correlation length ex-
cept for terms of the order of the exponent 7 ~0.03.

B. Limiting behavior near the critical point

In our crossover model the critical region corresponds
to A/k>>1. In developing this model we have made a
number of approximations. Hence we need to check how
well our crossover procedure reproduces the known
asymptotic behavior of the thermodynamic properties.
This asymptotic behavior is characterized by power laws
which represent the asymptotic behavior of various prop-
erties along specific paths such as the critical isochore
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TABLE I. Asymptotic power laws.

Asymptotic power laws

+

LN

AC, ==~ [I+ A7 (D*+ - - - ] (M=0, t20)
AQ=——Aa le~*(1+ 47 [¢|*+ - - ) (M=0, t<0)
M .=*Bld(1+B,|t]*+ - - - ) (M =M, t<0)
X=CH )71+ (0% + - - - ] (M=0, t>0)
=T v +T7 2+ - - ) M=M,,., t<0)
h=+D|M|®(1+D,|M|*B+ - - )  (t=0)

E=E () (A+E e+ - - - ) (M=0, t>0)

M =0, the critical isotherm t=0, and the phase boundary
below the critical temperature. The power laws for the
reduced specific heat AC, « (3°A 4 /dt?),, the reduced
susceptibility y < 1/(3*A 4 /dM?),, the reduced order pa-
rameter M . along the phase boundary, the reduced or-
dering field h =(3A 4 /dM), along the critical isotherm,
and the correlation length £ along the critical isochore
are summarized in Table I. The amplitudes of these
power laws satisfy universal ratios which have been cal-
culated theoretically. The power-law amplitudes implied
by our crossover formalism can be readily obtained by ex-
panding (3.23) around the critical point.

In Table II we give the asymptotic amplitude ratios im-
plied by our crossover model together with theoretical
values reported in the literature from the € expan-
sion, % from field-theoretical calculations’* for d=3
and from a recent numerical analysis of the series expan-
sions for the three-dimensional Ising model.>® Identify-
ing k! with the correlation length £ we find with the aid
of (3.14) for our crossover model a value Rg:O.ZS for
the two-scale-factor amplitude ratio relating the ampli-
tude £* to the amplitude (4 7)!/? to be compared with
the value 0.27+0.01 predicted for this ratio.®’ In Table
II1 we give also the ratios for the amplitudes of the
Wegner correction terms. From the information in
Tables II and III we conclude that our crossover model
incorporates a satisfactory representation of the scaling
behavior near the critical point. It is worth emphasizing
that the small deviations of the amplitude ratios from the
theoretically predicted values are consequences of the ap-
proximations we have made in formulating a practical
and simple crossover procedure. They are not a conse-
quence of the crossover theory itself which is capable of
reproducing the theoretical amplitude ratios exactly. !>

TABLE II. Asymptotic amplitude ratios.

r+/r- AT/A” AYr*/B? r*pBpd!
This model 4.96 0/50 0.052 1.72
€ expansion 4.9 0.52+0.01° 0.048° 1.672
d=3 field theory® 4.77+0.30 0.541+0.014 0.0594+0.0011
Ising model® 4.95+0.15 0.523+0.009 0.058+0.001

*Reference 13.
"Reference 60.
‘Reference 34.
dReference 59.
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TABLE III. Amplitude ratios for the first Wegner correction
term.

A] /B, B, /T Ef/7AT
This model 1.2 0.61 0.59
Theory 1.10+0.25% 0.90+0.21° 0.6+0.1°

2Reference 32.
"Reference 4.

C. Classical limit

In our crossover model the classical region far away
from the critical point corresponds to the region where
A/k<<1. In the limit A/k=0, we obtain Y=1, so that
the functions 7 and 9 become equal to unity, while #
becomes zero and we recover from (3.23) the classical ex-
pression for the Helmholtz free energy. However, what
is of practical interest is the actual classical region where
A /k is small but not zero. To see what happens we ex-
pand the crossover function Y for small values of A /k:

A4
K4

2
Y=1-1a wi\~+0
K

(3.25)

Let us consxder the critical isochore M=0. In first ap-
proximation k*=t and

_ a1
oA — +O

L (3.26)
t?

When equation-of-state data are fitted to a classical
equation to determine the critical parameters, it is found
that the critical parameters differ from the actual values.
In particular the classical critical temperature is some-
what higher than the true critical temperature.?* This
shift is due to the neglect of the long-range fluctuations in
the classical equation. This shift in the critical tempera-
ture occurs naturally in our crossover model. From
(3.23) we note that the combination ¢ T appears as the re-
duced temperature in the classical equation. From (3.8)
and (3.26) we thus have in the classical region

tT=t'=1—+ |2— L |za2 (3.27)
2 v
Hence
5zc=l 2—L |aa2 (3.28)
2 v

is an apparent shift in the critical temperature.

We note in passing that it is also possible to estimate
the critical-temperature shift 87, from perturbation field
theory directly. Up to one-loop order this theory yields®’

8t ~Lluu*A’+0(u?) . (3.29)

This shift is of the same order of magnitude as that im-
plied by (3.28).
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1V. APPLICATION TO FLUIDS

To apply the crossover model derived from field theory
we need to identify the order parameter M and the fields
h and t appropriate for fluids. This identification is com-
monly made on the basis of the analogy between Ising
model and lattice gas.”**%? Let p be the density, T the
temperature, p the chemical potential and A /V the
Helmholtz free energy per unit volume. These properties
are made dimensionless* with the aid of the critical densi-
ty p., the critical temperature T, and the critical pres-
sure P,:

ﬁ=£, T=- TYf A= 'u;;:;”, A= IfPfCT 4.1
In addition we define
AT=T+1, (4.2)
Ap=p—pyT), 4.3)
A=ppyT)+ A(T)+AA4 , (4.4)

where ,uO(T) and A,(T) are analytic (background) func-
tions of AT subject to the conditions that at the critical
temperature AL =0and A,= —1.

Asymptotically close to the critical point the order pa-
rameter, for example, should be proportional to the den-
51ty difference p—l 50 that M =c,(p—1), t =¢,AT, and

=(0A A /dM),=c ' Afi, where ¢, and c, are system-
dependent scale factors However, a complication arises
since the Helmholtz free energy of fluids is not a sym-
metric function of the order parameter unlike the field-
theoretical model considered in Secs. II and III. The
consequences of the presence of odd terms in the LGW
Hamiltonian (2.2) have been analyzed by Nicoll.** A ma-
jor consequence of the asymmetric terms is that they lead
to a mixing of the field variables. Retaining mixing to
linear order only, we make the identification**>’

M=c,bp+c o84, : 4.5)
ot M
- dA 4,
t=c,AT+c¢ |, (4.6)
with
Ap=p—1—d,AT . 4.7)

Here c is a coefficient which determines the strength of
the mixing, while the coefficient d, in (4.7) represents a
global asymmetry. The corresponding expression for the
critical part A 4 of the Helmholtz free energy 4 becomes

dAA,
oM

A A,

T—ad —
AA=A c EY

, (4.8)
M

1

where A A, Is the symmetric fluctuation-induced part of
the Helmholtz free energy as given by (3.23). Equations
(4.5)-(4.8), together with (3.23), specify the crossover
model as we shall apply it to fluids.
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We should note that this procedure introduces a num-
ber of approximations. The coefficients c,, ¢, ¢, and d,
are in principle (analytic) functions of temperature and
density. We have no a priori knowledge of these
coefficients since that would require the solution of the
full exact renormalization-group equation for an actual
fluid Hamiltonian. Here we treat these coefficients as ad-
justable constants. The transformation of variables as
defined by (4.5) and (4.6), together with (4.7), has some
important consequences for the temperature dependence
of the diameter of the coexisting densities. First, mixing
of the variables® causes the diameter of the coexistence

curve to vary asymptotically as IAT|‘_ . Furthermore,
for Y=1 it follows from (3.22) and (4.5) that A {7 has an
expansion of the form Aﬁ=cp_1M —cc_lM

In the classical limit the order parameter at the phase
boundary will vary as M, =+(6t/uA)?+ .-
Hence, in the classical limit the coexistence curve diame-
ter will not only contain d lAT from (4.7), but also a term
tee, 'MZ =~3cc, '(c,/uM)AT. Thus, the coefficient d,
in (4 7) cannot be identified with the slope of the classical
coexistence-curve diameter. Instead this slope is the
combined effect of d; and a contribution from the mix-
ing.

As discussed by Nicoll,** terms of order ¢5 in the
LGW Hamiltonian (2.2) not only lead to mixing of the
field variables but also causes a new confluent singularity
in the expansion (1.2) of A4 with a new correction to
scaling exponent A;. The crossover of this additional
confluent singularity to regular behavior can also be in-
corporated?®?3#% and will be further discussed in a sub-
sequent publication. In this paper we shall limit our-
selves to an analysis of the crossover behavior ds found
from the ¢*-field theory for the first two terms of the ex-
pansion (3.22) of the classical Helmholtz free energy den-
sity.

The two important parameters of interest are the cross-
over parameters ¥ and A. The parameter 7 is related to
the rate of convergence of the Wegner expansion as dis-
cussed in Sec. IIT A; hence, it is a measure of the range of
validity of the asymptotic critical power laws. The pa-
rameter A is a measure of the wave number where the
fluctuations become microscopic; the field-theoretical pa-
rameter A can be related to the actual dimensional cutoff
wave number g, by writing

A=cyqp . 4.9)

We estimate the coefficient ¢, from the asymptotic rela-
tionship at the critical isochore between the variable «
and the inverse correlation length £ !

k=c 67" . (4.10)
For k<<1 at M=0, k}~tY'2™" /© and Y ~k® /7 A®, s0
that

K:(UAID) (2v— 1)/mt1 (411)

Since the correlation & diverges as

E=ET(AT)” 4.12)
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and noting that ¢t =c, AT asymptotically, we obtain

Cq=C,V(17Aw)_(2V'”/w§+ . 4.13)
We emphasize that (4.13) with (4.9) are only meant to
give a qualitative estimate of the physical cutoff wave
number g,. The cutoff g is a microscopic wave number
that depends on the molecular nature of the fluid. In the
field theory of critical phenomena the cutoff also depends
on the manner in which the cutoff procedure is imple-
mented. This variation is less important since the values
of the cutoff in the different formulations should have the
same order of magnitude. A specification of the precise
physical meaning of ¢, and its relationship to the molec-
ular properties is outside the scope of the Landau-
Ginzburg-Wilson-Hamiltonian approach and our approx-
imation (3.19) does not originate from a specific cutoff
procedure in perturbation theory. As we shall see in Sec.
V, the value of g, implied by (4.13) is indeed of micro-
scopic order.

V. COMPARISON WITH EXPERIMENTAL DATA

A. Two-term Landau crossover model

To illustrate how the crossover procedure developed in
the previous sections can be used to represent actual
thermodynamic-property data of fluids we consider here
the simplest possible classical equation, namely the Lan-
dau expansion (3.22) truncated after the first two terms:

A Ay = Leng2+ 20 ppt

1
2 (5.1)

Of course, a crossover model based on a two-term Lan-
dau expansion will not be able to represent the thermo-
dynamic properties of fluids from the critical point all the
way to the classical region, since more than two terms in
the Landau expansion will be needed to reproduce the ac-
tual classical thermodynamic behavior far away from the
critical point. However, a crossover model based on a
two-term Landau expansion already contains the most
important physical features of the crossover theory.
Furthermore, even with a two-term Landau expansion we
obtain a fundamental equation for the Helmholtz free en-
ergy for fluids in the critical region which improves upon
the extended and revised parametric model used in our
previous work. #1318

Our crossover model is determined by Eqgs. (4.1)-(4.8)
of Sec. IV with A 4 related to A 4, through (4.8). From
(3.23) and (5.1) we conclude that A 4, is now given by

A4, =1 TM D+ AL a2 1o (5.2)

with the functions 7, D, U, and # given by (3.8), (3.11),
(3.6), and (3.15):

T= Y(Z—-v")/w , (5.3)
D=y, (5.4)
ca___al/wyl/w[l__(l__ﬁ)y](w—l)/w , (5.5)



41 CROSSOVER FROM SINGULAR CRITICAL TO REGULAR ...

H=— (Y A1) (5.6)
atl “"“A
The crossover function Y is given by (3.19)
Y= 1+a[(1+A12/K2)“’/2~1] 67
with from (3.24)
K=t T+Iu*AUM™D . (5.8)
The Helmholtz free-energy density A is related to
AA=AA4,—c a4, | 1944, (5.9)
s oM |, | ot |m
by
A=ppyT)+ Ag(T)+AA . (5.10)

To specify this Helmholtz free-energy density completely

we represent the analytic background functions A4(T)
and fig(7T') by truncated Taylor expansions:

3
j=1

(5.11)

~

4 .
Bo(T)= 3 @, (ATY . (5.12)
j=0

Equations (5.2)—(5.12), together with the definitions (4.5)
and (4.6) of the variables M and ¢, specify our two-term
Landau crossover model.

The crossover model has the following system-
dependent constants: First it requires the critical param-
eters T, p. and P,; they are fixed at values deduced from
an asymptotic analysis of experimental thermodynamic-
property data close to the critical point. Secondly, it con-
tains the crossover parameters 7 and A, the scaling-field
parameters ¢, ¢;, ¢, and d, and the background parame-
ters A;, which can be determined by fitting the crossover
model to experimental P-p-T data. Finally, it contains
the caloric background parameters fi;, which can be
determined from experimental specific-heat or sound-
velocity data as done previously in determining the same
constants for the extended and revised parametric mod-
el.'®!® Actually, for the calculation of caloric properties
the coefficients i, and [i; are only of interest; the
coefficients fi, and [i, are related to the zero-point values
of energy and entropy and are not considered here.

The relevant equations needed to calculate the various
thermodynamic properties from our two-term Landau
crossover model are presented in Appendixes A and B.
The computation of the singular part AA of the
Helmholtz free-energy density for a given density p and
temperature T proceeds as follows.

(1) Calculate zeroth-order estimates for the variables ¢
and M as ty=c,AT and M, =c,Ap, respectively.

(2) Calculate the corresponding values Y, =Y (¢, M)
and ko =k(t4,M,) from (5.7) and (5.8) by iteration.

(3) Calculate (dA 4, /dt),, and (3A A, /dM), in this ap-
proximation and obtain new estimates ¢, and M, for ¢
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and M from (4.5) and (4.6).
(4) Iterate the procedure until convergence is obtained.

B. Application to carbon dioxide

In a previous publication we have presented an extend-
ed and revised parametric equation of state for carbon
dioxide in the critical region.'® The constants in this
equation of state were determined from a comparison
with the experimental P-p-T data of Michels and co-
workers®*% and with new specific-heat data of Edwards
and Buckingham.® We have used the same experimental
data to evaluate the two-term Landau crossover model
formulated in this paper. The values of the coefficients
for CO, in this model are presented in Table IV. In terms
of a distance function R defined as

A4
oM?

) (5.13)

t

which is closely related to the symmetrized compressibili-
ty x=(0p/0fi), the two-term Landau crossover equa-
tion is found to reproduce the experimental data within
the estimated experimental accuracy in a region around

the critical point bounded by
R <0.10. (5.14a)

This condition corresponds to a temperature range

298 K<T<323 K at p=p, (5.14b)
and a density range
245 kg/m><p <600 kg/m’ at T=T, . (5.14¢)

With only two terms retained in the classical expansion
the range of applicability of the crossover model is com-
parable to that of the parametric model used previously
except that our new model does much better below the
critical temperature, where the range of validity of the
parametric model'® is restricted to temperatures above
301.15 K. Furthermore, with the crossover model the
deviations from the experimental data increase less rapid-
ly when extrapolated outside the range of validity (5.14a).
The critical parameters were kept fixed at the values
determined previously.'® The crossover parameters &
and A, the scaling-field parameters c,, ¢,, and ¢, and the
equation-of-state background parameters d, and A ; were
determined from a fit to the experimental P-p-T data of
Michels and co-workers®>® after a temperature correc-
tion of —0.035 K had been applied'® to convert the ex-
perimental temperatures to the International Practical
Temperature Scale (IPTS 68). With o, =0.0001 MPa,
0 1=0.005 K, and 0,=0.01% as the estimated errors in
pressure, temperature, and density, the equation repro-
duces the experimental P-p-T data with a reduced x? of
2.3. In Fig. 1 we present a comparison between these ex-
perimental pressure data and the calculated pressures.
For most of the data the relative deviations from the
equation are less than 0.03% with an average relative er-
ror of 0.01%. We also note that the deviations are distri-
buted uniformly in the range of validity of the equation.
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TABLE IV. System-dependent constants in two-term Landau crossover model.

Carbon
dioxide Steam Ethylene
Critical-point
parameters (fixed)
T, (K) 304.107 647.067 283.3401
pe 467.69 kg/m’ 322.778 kg/m’ 7.623 mol/dm’
P. (MPa) 7.3916 22.0460 5.0397
Crossover parameters
u 0.559 50 0.56575 0.44727
A 1.3432 2.4806 2.1210
Scaling field
parameters
c 2.1479 2.9759 1.9863
Cp 2.3515 2.0490 24118
c —0.074 858 —0.126 00 —0.060476
Equation of state
background parameters
d, —0.702 12 —0.33456 —0.464 66
A, —6.0225 —6.8552 —5.3401
A, +9.5321 +5.2887 +5.3107
A, —15.273 +1.8933 +3.2807
Caloric background
parameters
i, —18.445 —20.566 —13.636
s +3.1833 +14.844 —13.174
iy +19.81 0 (fixed) 0 (fixed)
g5 (A) 2.0 1.0 1.4
T T T T
2298.185 K
004} COz v 298413 K
L " o +301.167 K
_ < s ©303044K
e 002f¢ . x a® x o " 5 | 9303524 K
5 . o >304.128 K
o® K o g x e * | v304.52 K
= o o ® 4 304.300K
g 000 &.‘ > 8 © * o v | 0304638K
o 30 & 8 - ) * o | »304435K
2 0 * | 4305
a-002["8 " °° © . ° | siesk
- e0 X ® 0 x 307084 K
Y +313202 K
-004+ o0313.220 K
| | | | 322827 K
000 002 004 006 008 Ql0
R

FIG. 1. Percentage differences between the experimental pressures obtained by Michels and co-workers (Refs. 65 and 66) for car-
bon dioxide in the critical reg.ion and the values calculated from our two-term crossover model. The deviations are plotted as a func-
tion of the distance variable R defined by (5.13).
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A crucial test of a thermodynamic surface in the criti-
cal region is its ability to represent the behavior of the
isochoric specific heat C,. In Fig. 2 we present a compar-
ison of our equation with the experimental C, data of Ed-
wards and Buckingham®’ subsequently corrected for a re-
vised estimate of the heat capacity of the empty calorime-
ter.'® In this comparison fi,, fi;, and fi, were treated as
adjustable parameters for the background behavior of the
specific heat. The equation reproduces these C, data
with an average absolute deviation of about +2.3
J/(mol K) or an average relative deviation of about 1.5%.

The value found for the dimensionless cutoff A is 1.34.
Since £1 is 1.5 A for carbon dioxide,®® it follows from
(4.9) and (4.13) that g5, '=2.0 A which is indeed a micro-
scopic distance. However, we found that the parameters
u and A are highly correlated in practice. The reason is
that close to the critical point the thermodynamic prop-
erties depend on # and A through #A®. To determine 7

AT
- 0.02 004 006
240 0.92 0 : 0 :
p=467.59 kg/m3
. 240 CO, m
X
K]
£
~N
2
>
o
140 |
L
40297 305 315 324
TEMPERATURE (K)
NS
-002 0 0.02 0.04 0.06
340 T T T T
p=43439 kg/m3
< 240f co, .
°
£
~N
=}
S
140 4
4Q ! L
297 305 315 324

TEMPERATURE (K)

FIG. 2. The isochoric specific heat C, of carbon dioxide in
the critical region. The data points indicate the experimental
data obtained by Edwards and Buckingham®’ and the solid
curves represent the values calculated from our two-term cross-
over model.
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and A as two separate independent parameters it will be
necessary to compare with experimental data over a
larger range of temperatures and densities by retaining
higher-order terms in the Landau expansion (5.1).

C. Application to steam

As a second example we consider steam for which ex-
cellent thermodynamic-property data in the critical re-
gion are available.'® An interesting feature of steam is
that it has a much larger vapor-liquid asymmetry than
most other simple fluids.

The values of the coefficients for H,0 are also present-
ed in Table IV. The range of validity of our two-term

crossover model is determined by
R <o0.11, (5.15a)

which for steam corresponds to a temperature range

640 K<T <685 K at p=p, , (5.15b)
and a density range
195 kg/m*<p <500 kg/m> at T=T, . (5.15¢)

The range (5.15a) is similar to the range (5.14a) found for
carbon dioxide.

The critical parameters were kept fixed at the values
previously determined by Levelt Sengers et al.'® The
crossover parameters # and A, the scaling-field parame-
ters ¢, ¢, and c, alld the equation-of-state background
parameters d; and A; were determined from a fit to the
experimental P-p-T data of Rivkin and co-workers®:7°
with the temperatures converted from IPTS 48 to IPTS
68. With 0,=0.001 MPa, 0,=0.02 K, and 0,=0.05%
as the estimated errors in pressure, temperature, and den-
sity, the equation reproduces the experimental P-p-T data
with a reduced 2 of 1.1. A plot of the deviations of the
experimental pressures from the calculated pressures is
presented in Fig. 3 With EF=13 A for steam,”" we find
qp '=1.0A.

We have also made a comparison of the equation with
several experimental caloric properties of steam. With
the system-dependent parameters deduced from the P-p-
T data and with only two background coefficients i, and
[i; as adjustable parameters we show in Fig. 4 a compar-
ison with speed-of-sound data obtained by Erokhin and
Kalyanov.”#”® In this comparison a difference of 0.06 K
with the temperature scale of Rivkin et al. was assumed
for reasons discussed in previous publications.'®’* In
Fig. 5 we show a comparison of the two-term crossover
model with C, data obtained by Baehr and
Schomicker.”> The original experimental data were ob-
tained by measuring the energy increments U, — U, cor-
responding to temperature increments 7, — T of the or-
der of one degree. The solid curves in Fig. 5 represent
the calculated values of C,=(U,—U,;)/(T,—T;). In
Fig. 6 we show a comparison with the C, data obtained
by Sirota and Maltsev’® after applying temperature
corrections recommended by Sirota, Maltsev, and Be-
lyakova.”” The data were actually obtained as enthalpy
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FIG. 3. Percentage differences between the experimental pressures obtained by Rivkin and co-workers (Refs. 69 and 70) for steam
in the critical region and the values calculated from our two-term crossover model. The deviations are plotted as a function of the
distance variable R defined by (5.13).

Sengers, and Balfour’® which have previously been com-
pared with the extended and revised parametric mod-
el.””8 Our two-term crossover model represents the ex-
perimental P-p-T data in the range for which

increments H, — H, corresponding to temperature incre-
ments T, —T,. The solid curves in Fig. 6 represent the
calculated values of Ep =(H,—H)/T,—T,). We em-
phasize that the comparisons in Figs. 5 and 6 were ob-

tained without any adjustable parameters whatsoever. R <0.15, (5.16a)

The agreement with the caloric data is within experimen- )

tal accuracy. which corresponds approximately to a temperature range
273 K=T=303 K atp=p,, (5.16b)

D. Application to ethylene

. . . and a density range
As a third example we consider ethylene. Specifically

we consider the P-p-T data reported by Hastings, Levelt 5.2 mol/dm*<p<10.7 mol/dm’® at T—T,.. (5.16c)

500} R
H, 0 H,0
a A o
/(; A
~ o a
£ 400 N
° A
c
3
(e}
(%]
ks
o
§ 300 vV 647.38 K o 65323 K I
%) O 648.24 K A 668.23 K
A 650.23 K © 67323 K
200 1 4 1 1 i 1 H i 1 1 1
22 23 24 23 24 25 26 27 28 29 30 31 32

Pressure (MPa)

FIG. 4. The thermodynamic sound velocity of steam in the critical region. The data points indicate the experimental values ob-

tained by Erokhin and Kalyanov (Refs. 72 and 73) and the solid curves represent the values calculated from our two-term crossover
model.
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FIG. 5. The isochoric specific heat C, of steam in the critical region. The data points indicate the experimental data obtained by
Baehr and Schomacker (Ref. 75) and the solid curves represent the values calculated from our two-term crossover model.

A plot of the deviations of the experimental pressures
from the calculated pressures is presented in Fig. 7. The
data obtained by Hastings, Levelt Sengers, and Balfour
include some data in the metastable and precondensation
region which were not included in the fit. With
0,=3X107° MPa, 0,=3X107° mol/dm’, and
o7 =5X10"* K, the equation represents the P-p-T data
with a reduced y? of 3.8, which is of the same order as
when the data are fitted to the revised and extended para-
metric equation.” However, we have adjusted the criti-
cal temperature slightly; the new value of T, is within the
range observed by Moldover.®! With £é¥=1.8 A for
ethylene,”! we find g5 '=1.4 A.

With the equation of state parameters determined from
the experimental P-p-T data and the caloric background
parameters [i, and [i, as adjustable constants we can also
make a comparison with the experimental speed-of-sound
data obtained by Gammon for ethylene®? as shown in Fig.
8. Again this property is satisfactorily represented by our
crossover model.

VI. CONCLUSION

In this paper we have presented a procedure for con-
structing a Helmholtz free-energy density which close to
the critical point reproduces the correct asymptotic scal-

600

0225651 MPa
24235360 MPa
0 245166 MPa
v 26.9683 MPa

450

300

Cp (kJ/kg K)

150

o
150
DENSITY (kg/m®)

FIG. 6. The isobaric specific heat C, of steam in the critical
region. The data points indicate the experimental data obtained
by Sirota and co-workers (Refs. 76 and 77) and the solid curves
represent the values calculated from our two-term crossover
model.
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FIG. 7. Percentage differences between the experimental pressures obtained by Hastings, Levelt Sengers, and Balfour (Ref. 78) for
ethylene in the critical region and the values calculated from our two-term crossover model. The deviations are plotted as a function

of the distance parameter R defined by (5.13).

ing and correction-to-scaling behavior and which far
away from the critical point approaches a classical ana-
lytic equation. As an illustration how the procedure can
be applied to actual thermodynamic-property data we
have implemented the procedure for the simplest classical
equation possible, namely a two-term Landau expansion.
This procedure yields a fundamental equation which
represents the thermodynamic behavior of fluids in a re-
gion around the critical point. In order to obtain a fun-
damental equation that will represent the thermodynamic

350
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»288.15K a280.15K
300l 4284.15K 0279.15K
v 282.35Kq278.15K

250

200
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behavior of fluids in the entire range of temperatures and
densities where the effect of long-range critical fluctua-
tions are observed, we need to apply the procedure to
higher-order terms included in the classical Landau ex-
pansion. Such research is currently in progress. An al-
ternative approach is to apply the procedure to a closed-
form classical equation representing a summed classical
Landau expansion. *

The basic assumption in this work is that the effects of
the critical fluctuations on the thermodynamic properties
of actual fluids can be treated on the basis of a Landau-
Ginzburg-Wilson Hamiltonian (2.2). This assumption
implies that the leading confluent corrections to scaling
are due to the ¢* coupling. This assumption would break
down if u =u*; in that case the leading Wegner correc-
tions would have zero amplitude and one would need the
crossover behavior of higher-order terms in (2.2) explicit-
ly as discussed by Bagnuls and co-workers.**3* In prac-
tice, though, we find u <u™* for fluids. At a distance
where the nonclassical effects of the higher-order terms
might be important we expect that the system is well on
its way to its crossover to the classical equation, so that
an approximate treatment of the crossover behavior of
these terms would be adequate. This expectation can
only be confirmed a posteriori by a comparison with ex-
perimental data and it is consistent with the results ob-
tained by Bagnuls, Bervillier, and Garrabos for xenon. 2
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FIG. 8. The thermodynamic sound velocity of ethylene in the
critical region. The data points indicate the experimental values
obtained by Gammon (Ref. 82) and the solid curves represent
the values calculated from our two-term crossover model.
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APPENDIX A: THERMODYNAMIC RELATIONS

1. Reduced thermodynamic quantities

Here we list the reduced thermodynamic quantities:

~ Tc /J'chc = PTC
=—_°< = pP=
T===7> P=pp_> TP, ’
- AT _ U
‘”:_B_ A= ¢ U=
P, VTP,’ vp,
o ur (A1)
§=""¢ pg=__c =% |
VP, VTP, o |r
1/2
~ ZCUTC ~ _CpTC 37— chc
v yp,> P wp.’ PT |

where T is the temperature, p the density, P the pressure,
u the chemical potential, A the Helmholtz free energy, U
the internal energy, S the entropy, H the enthalpy, C, the
isochoric heat capacity, C, the isobaric heat capacity,
and W the speed of sound.

2. Fundamental equations

Here we list the fundamental equations:

AT=T+1, (A2)
Ap=p—1—d,AT (A3)
A=ppyT)+ Ay(T)+A4 , (A4)
with
Ay T)=—1+ A,AT+ A,(AT >+ A5(AT)*,
(A5)
b T) =g+, AT + (AT P+ 05 (AT P +p, AT . (A6)

The term A A4 in (A4) is the crossover part of the free en-
ergy density as specified in Appendix B.

3. Derived thermodynamic quantities

Here we list the derived thermodynamic quantities:

P=pn— A, p=Aap+pyT), (A7)
ap= 224 (A8)
AP |at
.
PR K (A9)
AP~ AT

3175
8P| __ddD  oad _di_
aT ar  PanpaaT xr'
_ | 944 +d, AR, (A10)
ap
A4 | _ |34 | A4
~ - ~ 1 _ —
dAT? |, |9AT? |4, dAp AT
h
+a, |24 (A11)
3Ap? |ar
_ dAyT) diyT) i
g=-—200"0 SO g A A (A1)
dT T Ap
S=—A-TU, (A13)
H=P-TTU, (A14)
I d*Ay(T)  d*uy(T) A4
oV (L AL Rl AL (Y N
T’ dT OAT? |,
- aﬁ 2
C,=C,+X |p-T || | . (A16)
p 3T |,
_ ~6 172
w=|£ 2 (A17)
x C,
APPENDIX B: EQUATIONS FOR TWO-TERM
LANDAU CROSSOVER MODEL
1. Fundamental equations
Here we list the fundamental equations:
_ dAA,
t=c,AT+c | =0 B (B1)
M=c, Ap+ 084, (B2)
——(;p pTC ot M’
AA=A 024, 984, (B3)
AT | | et
*
A/TS='I‘TM2:Z)+u$(uM“1)2 L2 (B4)
fT'__ Y(Z*vf‘)/w , (BS)
D=y e (B6)
U=T7 l/wyl/w[l _(1_17)Y]((-)'1)/n) , (B7)
H=—te (Y A1), (B8)
aii YA
1
Y= , (B9)
1+a[(1+A2/k*)2—1]
K=t T+Iu*AUM*D . (B10)
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2. Thermodynamic derivatives

Here we list the thermodynamic derivatives:

AA | _ |9AA4 A | | 9A4 B11)
AT |n; L Ot M | 9AF Jar Pl WM |7
N 3*AA
d A~A _ tz . s -1 (B12)
AT ? |4, a’  m
- 2N T a7 |2 N N T
RAA O°AA; 9°AA, O°A A, 0°AA, 4
PO Teahal F1 —c — 3 3 G, (B13)
O0AT 0Ap ot oM ot oM at M| oM t
N T A4
PAL | _ o |98 -1 (B14)
aAﬁz AT P 8M2 t
—
with F,=f,YF,, (B21)
N N 2A T A2 2 el
oo 1_Ca A4 T |34 A4, 7, uA4a) 1+A2- , B22)
ot oM ar  m | aM?* |, 2k K
(B15) -1
fo=— |2 liTY
3. Derivatives of crossover function
1_
Here we list the derivatives of the crossover function: —Iu*AM 2DUY ———7Lw
ax? _ _
ar =F,(t, M)T , (B16) o—1 (1—7)Y
M o |1-(1—a)Y
2
gkg =F,(t, Mu*AMUD (B17) (B23)
! 4, Universal constants
Y | _ Fy(t, M)T (B18) Here we list the universal constants:
ar |, v=0.630,
S—A’; —F,(, M)u *AMUD (B19) 1=0.0333,
t a=3v—2=0.110, (B24)
with
1 A=0.51(o=A/v=0.80952) ,
- B20
Fy 1+ff,° (B20 u*=0.472 .
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