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Statistical approach to the geometric structure of thermodynamics
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We show how both the contact structure and the metric structure of the thermodynamic phase
space arise in a natural way from a generalized canonical probability distribution p. In particular,
the metric form and the contact form are found to be derived from the microscopic entropy
s = —lnp. Thus the first law and the second law of thermodynamics can be given the geometric in-

terpretation that a thermodynamic system must possess both a contact and a compatible metric
structure. We proceed to construct explicitly a new nondegenerate bilinear form on the thermo-

dynamic phase space, whose restriction to state space yields the Weinhold-Ruppeiner metric, and
whose restriction to Gibbs space can serve as an alternative to the metric proposed by Gilmore.

I. INTRODUCTION II. STATISTICAL PRECURSORS OF GEOMETRY

In 1973 Hermann' suggested that classical thermo-
dynamics has its proper setting within the geometric
framework of a thermodynamic phase space endowed
with a contact structure. About the same time a second
geometrical structure in the form of a Riemannian metric
on the thermodynamic state space was introduced into
thermodynamic theory by Weinhold. In 1979 Rup-
peiner was able to use a related metric as the starting
point for a new thermodynamic fluctuation theory. In
1983 Salamon and Berry showed the intimate connection
between this geometry and dissipation. Subsequent
work ' has elaborated our knowledge of both these as-
pects of geometry.

This paper sets forth a framework in which both of the
above geometrical structures appear as natural statistical
objects associated with a generalized canonical probabili-
ty distribution p. In particular the contact form and the
metric are shown to be the mean and the variance, re-
spectively, of ds, where s = —lnp has the interpretation of
microscopic entropy.

We offer this framework as a fertile forrnal setting for
discussing the relation between geometry and thermo-
dynamics. In this spirit we construct a nondegenerate bi-
linear form on the thermodynamic phase space whose re-
striction to state space gives the Ruppeiner metric, and
whose construction is natural in that it is compatible with
the statistical framework out of which both contact
structure and Riemannian structure appear.

Furthermore, our bilinear form, when restricted to
Gibbs space, provides a natural alternative to the metric
constructed by Gilmore in 1984.

A. The information-theoretic formulation of Jaynes

This may be recognized as the maximum entropy formal-
ism used by Jaynes" in his information-theoretic formu-
lation of statistical mechanics.

The solution is well known and can be expressed in
terms of the functions F', . . . , F", whose mean values are
constrained according to Eq. (2), and the Lagrange multi-
pliers w and p, , . . . ,p„corresponding to constraints ex-
pressed in (1) and (2), respectively,

p(t;w, p, , . . . , p„)=exp[ —w+p, F'(I )] .

We could now proceed to exploit the normalization of
p by expressing w as a function of the other Lagrange
multipliers

w (p, , . . . ,p„)=1n f exp(p, F')d I

whereupon the constraint Eqs. (2) become

(4)

Let p:I ~R be a non-normalized probability distri-
bution on a space I . Any given functions
F'.I ~R,i =1, . . . , n, may then be regarded as stochas-
tic variables with respect to p.

Consider the problem of finding the function p that has
maximum information-theoretic entropy —Ip 1np d I
subject to the constraints

1=fpdr,
F'p d I

p I

41 3156 1990 The American Physical Society



41 STATISTICAL APPROACH TO THE GEOMETRIC STRUCTURE. . . 3157

Bw
X

Bp;
l ly ~ ~ ~ gee

Eqs. (10) and (11) to be

((F' x—')(Fj x—') )dp;dp, .

Indeed, these equations may be taken as the key to the
physical interpretation of this formalism, since w can be
interpreted as a thermodynamic potential with respect to
which Eq. (4) is a fundamental relation and Eqs. (5) are
the equations of state. We choose, however, to explicitly
defer this normalization in the rest of this section, since
our primary goal is to imbed our thermodynamic descrip-
tion in a space of larger dimension.

We take Eq. (3) as our starting point with p as a func-
tion of n+ j. independent parameters and we define x'
from Eq. (2). That is,

fF'pdr
x'= (F') = (6)

This equation offers a phenomenological interpretation of
the covariances of the variables F . Alternatively, it gives

statistical interpretation of the derivatives Bx /Bp, .
Note that although p still has the free parameter w, the
functions x' in Eq. (6) depend only on p&, . . . , p„since
the factor e appears in the numerator and the denomi-
nator of the expression on the right. Consequently, Eq.
(7) is equivalent to

dx'= ((F' x')(FJ xj)—)dpj . —

where at the same time we introduce ( ) to denote the
expectation or mean over the space I .

By differentiating Eq. (6) we obtain

Bx =(F'Fj) —x'x~=((F' x')(F ——x )) .

Equation (8) permits the more symmetrical form

( (ds —( ds ) )') =dx 'dp, . (12)

Equation (11) leads to the contact structure of Sec. III,
and Eq. (12) to the metric of Sec. IV.

III. CONTACT STRUCTURE

Hh(d8)"WO . (14)

This condition is just a coordinate-free statement of the
requirement that on M "+ ' all coordinates w,
x', . . . , x", and p&, . . . ,p„be independent. Such a pair
(M "+',8) where M "+' is a manifold and 9 is a 1-form
which fulfills Eq. (14) is called a contact manifold.

Of course, for real thermodynamic systems w,
x', . ~ . , x", and p, , . . . ,p„are not independent. Indeed,
the physical interpretation of these parameters requires
the normalization of p, which, as noted in Sec. II, leads to
Eqs. (4) and (5). In this context these n+1 conditions
define an n-dimensional submanifold M" of M "+', on
which the following equation holds:

Consider now a (2n+1)-dimensional thermodynamic
phase space M "+' whose independent coordinates are w,
x', . . . , x", and p„.. . ,p„. In Eq. (11) the x' are func-
tions of p „.. . ,p„, but we now regard them as indepen-
dent, so that the form

8 =dw —x'dp, (13)

becomes a nondegenerate 1-form on M "+', i.e., satisfies
the condition

B. Microscopic entropy
6j=dw —x'dp; =0 . (15)

The equations below define the microscopic entropy or
bit number of the distribution p and give its differential.

s = —lnp=w —p;F',
ds =dw F'dp; . —

(9)

(10)

These are both functions of the microscopic variables I
[by way of F'( I ) ], and of the parameters w and

p, , . . . ,p„. Nevertheless, differentiation is understood to
be only with respect to the variables w, p, , . . . ,p„.

We have called s the microscopic entropy, because its
mean value is the macroscopic entropy. Schlogl calls s
the bit number, and has connected the behavior of the cu-
rnulants of s with the onset of internal correlations' of
the system. The quantity ds is closely related to what
Schlogl calls the relative bit number. The latter's link
with the Ruppeiner metric was explained in Ref. 6.

The mean and variance of ds lead naturally to the prin-
cipal geometric constructions in this paper. In view of
Eq. (6), the mean may be written

(ds ) =dw —x'dp; .

The variance ( ( ds —( ds ) ) ) is easily calculated using

Submanifolds of dimension n which satisfy Eq. (15) are
called Legendre submanifolds of M "+'. In Sec. V we
will give a general local characterization of these sub-
manifolds.

Equation (15) can be seen as the complete Legendre
transform of the Gibbs equation. This equation incorpo-
rates the first law of thermodynamics and includes the en-
tropy as a function of state. However, as it places no
convexity condition on the entropy, it does not incorpo-
rate the second law. Of course, the manifold M" satisfies
the second law by virtue of the maximum entropy princi-
ple from which it was derived. Nevertheless, we em-
phasize that this property does not come from the con-
tact structure, rather it is related to the metric structure
of Sec. IV.

The large space M "+' together with the contact
structure given by 0 offers the most natural setting for in-
vestigating the symmetry properties of thermodynamic
systems. In Sec. V we will consider the Legendre trans-
formations of thermodynamic coordinates. These trans-
formations form a subgroup of the group of contact
transformations, which are the most general transforma-
tions that preserve the 1-form 0 and, thus, the Legendre
subrnanifolds. Results of Sec. V also show that M "+'
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offers the best way to describe a thermodynamic system
without ascribing special importance to any particular
choice of parameters.

Gibbs space. Therefore a complete Legendre transforma-
tion of g (see Sec. V) can be viewed as an alternative to
the metric proposed by Gilmore.

IV. METRIC STRUCTURE

6 =dx'dp, +0 =dw dw —2x'dw dp, +dx'dp.

+x x dp]dp (16)

G has the interpretation of a pseudo-Riemannian metric
on M "+'. We observe that in the setting of Sec. IIB
Eqs. (11) and (12) show that G is the second moment
((ds) ) of ds.

Consider this metric restricted to the Legendre sub-
manifold M" described in Sec. III. On this submanifold
an additional n + 1 conditions hold between our variables

In this section we endow the contact space M " ' with
yet another geometrical structure. The new structure is
based on the variance of ds as given by Eq. (12). We
again take x' and p; as independent variables. In this
way dx 'dp; becomes a symmetric bilinear form on
M "+'. This form is, however, degnerate; its rank is 2n.
We remove this degeneracy by adding the square of the
contact form 0. This yields the nondegenerate symmetric
bilinear form

V. LEGENDRE TRANSFORMATIONS
OF THE METRICS

W=w —pox, P[ x ) PJ=pJ

X'=p„XJ=xJ .
(21)

Here I U J is a disjoint decomposition of the set of indices

I l, . . . , n ). 9 retains its canonical appearance in these
new coordinates,

All our constructions and discussions in the preceding
sections were connected with the particular role ascribed
to the parameters w and p ~, . . . ,p„and to the submani-
folds M" and M"+' defined by Eqs. (5) and (6). We now
consider the effect on our metric of allowing another
choice of n independent variables from among the set

1 np]j ~ ~ o)pg)x) ~ ~ ~ )xo
Formally, this can be achieved by considering the

Legendre transformations of M "+ '. These are a discrete
subgroup of all transformations which leave the contact
form 0 invariant. A partial Legendre transformation on
M "+' is given by the following 2n + l equations:

& =II(pi»»pn)» 8=dw —x 'dp; =d W X'dP;, i—= 1, . . . , n . (22)
anx'=, i =l, . . . , n .
p]

(18)

When our metric 6 is restricted to this submahifold, we
have

BQ
G IMn g dp»dpj dx dpj

dp» dpi'

(19)

+x x dpi dp

an=dw dw —2 dw dp;
ap&.

a'n anon
ap ap, ap ap,

' "' (20)

The space M" ' is an intensive counterpart of the

Thus, on the submanifold M", the metric is equivalent to
the Ruppeiner metric. It is here that the connection
may be seen between the metric and the second law of
thermodynamics. The function 8(pi, . . . ,p„) given by
the right-hand side of Eq. (4) is easily seen to be convex.
In fact, this may be taken as a statement of the second
law. However, this convexity condition may be formulat-
ed geometrically as the requirement that G ~s be positive
definite for any Legendre submanifold S representing a
physical system.

If we retain w as a free parameter and use only Eq. (18)
to define a submanifold, we obtain an (n + 1)-dimensional
submanifold M"+'. If G is restricted to M"+', we obtain

G~ „~l=g = dl8 dlo 2x dw dp; + dp;dpj
axj
a

To retain the same symbols for the same physical quanti-
ties, we now rewrite the terms —X dP; using our original
parameters

0=d W+p[dx —x dpJ . (23)

So far, the 2n + l variables x, pz, x, pJ and W are all
independent. As we have remarked earlier, Legendre
submanifolds are spaces of equilibrium states of thermo-
dynamic systems. The following useful theorem giving a
local description of Legendre submanifolds is cited by Ar-
nold '

Theorem. For any partition I U J of the set of indices

I 1, . . . , n I into two disjoint subsets and for a function
4(x,pJ) of n variables x', i EI, p. , and jEJ, the 2n +1
equations ae, ae, acp=—,x=, W=N —xax[

define a Legendre submanifold S of M "+'. Conversely,
every Legendre subrnanifold of M "+' is defined in a
neighborhood of every point by these equations for at
least one of the 2" possible choices of the subset I.

We will use this result as motivation for a two-stage
reduction of the metric G. The first reduction is accom-
plished by taking the variables pi and x to be no longer

We keep W because it can be interpreted as a partial
Legendre transform of our original potential w.

The same procedure of first applying Eqs. (21) to G and
then rewriting using our original variables gives us

G =dpjdx dx dpi+(dW—+prdx xdpJ) . (2—4)
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independent but given as first derivatives of a potential 4
as in Eq. (25), while &is retained as an independent vari-
able. This n +1 dimensional space can be thought of as a
Legendre transform of Gibbs space. As a result of this,
the restriction of G takes the form

I' I dx dx + dpJdpJ
0x Bx BPJc)PJ~

+ dg aed I avdp
2

(26)

For the second reduction, we take %=4(x,pJ) jn ac-
cordance with Eqs. (21) and (25). With this step, the re-
striction of gz, to n-dimensional Legendre submanifolds
of 0 becomes

a'c , , a'c
r' r dx dx + dpJdp J

Bx Bx BPJBPJ
(27)

Observe that there are no terms of the form dx dp. This
means that the nonzero terms in the metric matrix reside
in diagonal blocks.

VI. CONCLUSIONS

The approach to thermodynamics based on contact
geometry is a reformulation in which the elements of the
classical theory assume their proper mathematical role.
The Gibbs equation, which serves as a physical law ap-
plying to all systems, corresponds to the vanishing of the
contact form 0. A fundamental relation and its attendant
equations of state express the phenomenology of a partic-
ular system corresponding to a particular Legendre sub-
manifold of thermodynamic phase space. This is analo-
gous to phase space in classical dynamics, which supports
a symplectic structure, and where a choice of Harniltoni-
an establishes the phenomenology.

A new formalism, if it is to be productive, should point
beyond the theory it reformulates. The efforts of this pa-
per were guided by the hope that clues to additional
geometric structures important for macroscopic theory
could be found by clarifying the microscopic origin of the
contact form 0. Indeed, this form reveals itself as the
mean or expected value of a quantity ds. The higher mo-
ments of this quantity should, therefore, also be impor-
tant. In fact, the variance of this quantity is a bilinear
form whose restriction to the Legendre submanifold of a
physical system is a Riemannian metric whose
significance in thermodynamic theory has already been
recognized. ' ' Moments beyond the second are re-
lated to the curvature associated with this Riemannian
metric.

There is a compelling conceptual simplicity to this
viewpoint. The particular metric associated with a given
physical system is seen to be the restriction of the general
pseudometric G. Like the contact form itself, G depends
not on the particular system, but only on the choice of
macroscopic parameters. It therefore participates, along
with 0, in the embodiment of a physical law. Moreover,
since the new structure G is intimately linked on the mi-

croscopic level with the contact structure, its introduc-
tion can be seen as a natura1 development in the same
spirit as contact geometry.

Another theoretical bonus is derived from this point of
view. The Gibbs equation, and therefore the contact
geometry, does not address the second law of thermo-
dynamics. As a result, some Legendre subrnanifolds can-
not represent physical systems. The ones that are con-
sistent with the second law may be characterized as those
on which the restriction of the pseudometric G is a
genuine semimetric, i.e., is positive semidefinite. Thus,
the second law takes the form of a requirement of compa-
tibility between the contact and the metric structures.

Three problems in connection with this theory require
further study. One problem is to identify and to charac-
terize the appropriate group of symmetries for the
theory. One candidate is the subgroup of all contact
transformations which preserve the metric. ' Another is
the group which preserves only the conformal structure
associated with the metric, i.e., preserves the metric up to
rnultiplieation by a nonzero scalar function.

A second problem involves the interpretation of the
metric G. The meaning of its restriction to a Legendre
submanifold has been studied in earlier work, ' ' but
what is its role as a pseudometric in phase space? Can it
provide a natural quantitative measure of the separation
between Legendre submanifolds, and, therefore, between
physical systems? We show elsewhere' that it is possible
to obtain a Van der Waals-like real gas as the continuous
deformation of an ideal gas by means of a one-parameter
group of contact transformations. The "distance" be-
tween corresponding states of these two gases can be
measured by applying G to the flows associated with this
deformation. The result is a quantity which approaches
zero asymptotically with large volume and low pressure,
a rudimentary result which is at least consistent with any
reasonable quantitative comparison of these two gases.

Related to this problem is the associated metric on
M"+' obtained in Sec. IV as a restriction of G. Since it
reflects the properties of a system's potential surface, it
can be expected to provide a theoretical tool for stability
analysis of systems near equilibrium. We expect that the
geometric apparatus of Secs. III and IV will be associated
with any macroscopic theory derived on the basis of a
maximum entropy principle as outlined in Sec. II A. Re-
cently this maximum entropy formalism has been extend-
ed to the description of nonequilibrium phenomena. '

Understanding the geometry in this context presents a
third problem for future investigation.
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