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Evolution equation of surface waves 1n a convectlng fluid
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We study the evolution of long shallow waves in a convecting fluid when the critical Rayleigh
number slightly exceeds its critical value. The surface displacement is found to obey a perturbed
Korteweg-de Vries equation that includes diffusion and instability effects.

I. INTRODUCTION

Convecting fluids whose first instability from the static
state is oscillatory have received much attention recently.
Such behavior is found, for example, in binary fluid con-
vection' and in electrohydrodynamic convection in
nematic liquid crystals. A common feature of these two
systems is that the transition occurs with finite critical
wave number and frequency. General arguments, as
well as asymptotic expansion in particular cases, show
that the nonlinear behavior near the transition is
governed by coupled Landau-Newell-type equations.
Traveling waves are governed by the Ginzburg-Landau
equation. Much work has been devoted to the study of
the behavior of the solutions to these equations and their
comparison with experimental results. In this article
we study the evolution of a system which exhibits an os-
cillatory instability from the static state with vanishing
wave number and frequency. This instability corre-
sponds to the appearance of long surface waves. ' We
show that the nonlinear evolution of the system near the
transition is governed by the perturbed Korteweg —de
Vries equation

OR2
u, +A, &uu„+Azu„„„+e u„„+A3u„„„„+A4(uu„)„

15

where cr is the Prandtl number and e is a small parameter
such that the excess of the Rayleigh number above its
critical value is given by e R2. The coefficients
i=1—4, are functions of the parameters of the problem.
Subscripts denote derivatives with respect to the time t
and horizontal coordinate x. This equation without the
effect of instability, that is, with R2=0, has been found
recently to be the generic equation that describes the evo-
lution of marginally diffusively stable wave trains. " A
similar equation but with X4=0 and with instability and
diffusion of the same order as dispersion arises in the
study of fluid flow along an inclined plane. ' Numerical
studies of this equation have shown that in the
dispersion-dominated regime, for periodic boundary con-
ditions, regular arrangements of solitonlike pulses ap-
pear. ' The overall evolution of the system for a
sufficiently long periodicity interval is apparently

governed by the interaction of these pulses. ' In the
present case, dispersion dominates over diffusion and in-
stability; therefore similar behavior is expected. Howev-
er, the presence of the nonlinearity (uu„)„has an addi-
tional destabilizing effect, as will be shown below. If this
nonlinearity predominates over the diffusion term u„„„,
the leading-order Korteweg —de Vries (KdV) soliton will
not be stable and we do not expect the appearance of
periodic arrangements of solitonlike pulses. Numerical
studies are needed to determine the nature of the solution
in this case.

II. MATHEMATICAL FORMULATION

Let us consider a layer of fluid which, at rest, lies be-
tween z=0 and z =d. Upon it acts a gravitational field
g= —gz. The fluid is described by the Boussinesq equa-
tions

V v=O,

po = —Vp+pV v+gp
dv 2

T==@V T,
dt

p =pc[1—a( T —To )],
where dldt =Bit)t +v V is the convective derivative; p,
T, p, and v denote the pressure, temperature, density, and
fluid velocity, respectively. The quantities po and To are
reference values. The fluid properties, that is, its viscosi-
ty p, thermal diffusivity, ~, and coefficient of thermal ex-
pansion a are constant. Furthermore we restrict our-
selves to two-dimensional motion so that v=(u, 0, w).

The fluid is bounded above by a free surface on which
the heat flux is fixed and upon it a constant pressure p, is
exerted. Below, it is bounded by a plane stress-free sur-
face which is maintained at constant temperature. As the
fluid moves the free surface is deformed, we shall denote
its position by z =d+r)(x, t) The boundar. y conditions
on the upper surface are'

g, +up =m,

2p
p —p, — [w, +u„rl„—r)„(u, +w„)]=0,

p(1 —r)„)(u, +w„)+2prj„(w, —u„)=0,
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n. V T = —F/k, (8) u, = —e wg+ e (u, +e wr )r)~+ 2@ rI((u (
—w, ), (18)

on z =d +g. Here, subscripts denote derivatives

X =(1+g„)',n=( —g„,0, 1)IN is the unit normal to
the free surface, I' is the prescribed normal heat flux, and
k is the thermal conductivity.

Denoting by Tb the fixed temperature of the lower sur-

face, the boundary conditions on the lower surface z=0
are

W =Q —0, T=Tb (9)

III. ASYMPTOTIC SOLUTION

The static solution to these equations is given by
T, = F(z —d) Ik—+ To, p, =pa[1+(aF/k)(z —d)], and

p, =p, —gpo[(z d)+(—aF/2k)(z —d) ]. We have
chosen the reference temperature Tp as the value of the
static temperature on the upper surface. The tempera-
ture on the lower surface is then Tb = To+Fd lk. Equa-
tions (1)—(9} constitute the problem to be solved. We
shall adopt d as unit of length, d /a as unit of time, pod
as unit of mass, and Fd/k as unit of temperature. Then
there are three dimensionless parameters involved in the
problem, the Prandtl number tr=@/paIt, the Rayleigh
number R =pogaFd Ikirp, , and the Galileo number

o.R2
g, +A, , (fg)(+A.~gg~+ fg

(19)

+A,3fgg+A, 4(ff()r=0 (20)

on z =1+@g. We then seek an asymptotic solution to
Eqs. (11)—(19) of the form u =uo+eu, +e uz+
N Np+Ew] +E' w2+ ' ' 0—op+60]+E 02+2 2

p =pp+ ep] +e p2+, q =gp+ eg]+e g2+
The Rayleigh number R is slightly above its critical
value, so we let R =R, +e R2. The wave speed c and R,
are the eigenvalues of the problem which will be found
from the solubility conditions. The equations to be
solved at each order and their solution are given in the
Appendix. Here we shall only quote the results.

The horizontal velocity u (g, r} is, in the first two lead-
ing orders, independent of z; its solution is given by
u(g, r}=f (g, r)+cg (g, r), where f and g are arbitrary
functions whose evolution equation we seek. The solubil-
ity conditions at order e and e determine the critical
speed c =cr 6 and the critical Rayleigh number R, =30,
respectively. In the following orders, the solubility con-
ditions yield evolution equations for the functions f and

g; they are

In order to obtain the nonlinear evolution of the per-
turbations to the static solution we introduce the follow-

ing scaling: rt(x, t)=e ri(x, t}, u(x, z, t}=e u(x, z, t),
w(x, z, t)=e w(x, z, t), p(x, z, t)=p, (z)+e p(x, z, t), and

T(x,z, t)=T, (z)+e H(x, z, t). In addition, we introduce
slow space and time variables defined by

(=E(x ct),

(10+aG),

682o 26 +717
2079

8
4

where the coeScients are given by

1 34cr3' 21

The nondimensional scaled equations read, after drop-
ping the hat from all variables,

(+ ,=0,
E'cu

g
+ E' Q ~ + E' u Q (+ E' wQ z

(10)

= —op~+@ aug+au„, (11)

E' Cwg+6' W~+6 QW(+6 Wwq

pz + 6' 0 W g +E'0 Wzz +E0

ecH(+e' H~ +ueH(+e wHq w =Hii+E Hg,

(12)

(13)

where subscripts denote derivatives. The boundary con-
ditions become

An improved approximate equation for the horizontal ve-
locity u =f +eg may now be obtained by recombining
Eqs. (19) and (20) above:

(f +eg), +k, [ff(+e(fg)~]+A~(f +eg)g~

aR2
+e fg+A3fgg+A4(fft)( =0 .

Then, the equation for u, correct to order e, is

u~+A, )uu(+Plug

o.R 2+IEug+A3ugg+Ag(uu&)&=0. (21)

6I=W =u =0
Z

on z=O, and

w — cYfg+ 6 'g ~+ 6 u 'g(,

H, =e rt~Hg+e [1—(1+@g~)' ],
2OR 2

p =Go.2~+62 ~2
2

2CTE 2 4 6 2+
~ (wz e /pe c 71gwg+e u(rtg) ~

N

(15)

(16)

As mentioned in the Introduction, this equation with
A,4=0 has been extensively studied. In the dispersion-
dominated regime, which is the case here, for periodic
boundary conditions, regular arrays of solitonlike pulses
appear for all initial conditions. The additional non-
linearity ( u u

&
)

&
has a destabilizing effect; this can be

readily seen by means of an asymptotic expansion around
the solution of the leading-order KdV equation. '

Following the standard procedure, we let u = u p

+au&+. . . , with up the solution of the unperturbed
KdV equation,
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uo =N sech
3

J

where the amplitude N is allowed to depend on a slow
time T =a~. The slow time dependence of the amplitude
is governed by

IV. SUMMARY

We have studied the nonlinear evolution of shallow
surface waves in a convecting fluid. The first instability
from the static state for the system studied is oscillatory;
however, the general arguments that predict the weakly
nonlinear evolution of such systems are not valid in this
case, as the transition occurs at zero wave number and
with vanishing frequency. In order to determine the
nonlinear behavior near the transition we have performed
an asymptotic expansion. The evolution of the surface
displacement is governed by a perturbed Korteweg —de
Vries equation. The excess of the Rayleigh number above
its critical value as well as nonlinear terms have a desta-
bilizing effect which is balanced by diffusion. Based on
previous results on similar equations, the appearance of
periodic solitonlike structures with the amplitude fixed by
the Rayleigh number is expected. Numerical solutions of
the evolution equation (21) would be desirable to deter-
mine the nature of the solutions for the case of diffusion
weaker than the nonlinear destabilizing effects; we have
not addressed this problem here, for within the parameter
range of interest in this problem this situation does not
occur.

APPENDIX:
SOLUTION OF THE ASYMPTOTIC EXPANSION

In this appendix the equations to be solved at each or-
der and their solution are given. Terms that vanish have
been omitted.

In leading order the system to be solved is

oz =
~op ~oyez

=0 Poz 0 ~oyez
= ~o

subject to

wp(0) =up, (0)=80(0)=0, up, (1)=80,(1)=0,
cr)0&= —wp(1), pp(1) =cr Gyp .

The solution is given by

up=f (g, r), 7)0=f/c, wp= f(z, —

80=f~T0(z), pp = a Gyp,

dN ZION 7o kzR ~ —
A, , ( 5A, 3

—12k.q )lV
315K,22

The case A,4=0 yields a limiting value for the amplitude
which agrees well with numerical results; ' in the present
case the coe%cient 5A, 3

—12K.4 is positive for values of the
Prandtl and Galileo numbers within the limits of validity
of the Boussinesq approximation; therefore we expect the
appearance of solitonlike pulses with an amplitude
N, =7crR2A2/[5A, l(513—12A4)].

where we have defined Tp(z) =(z —3z)/6.
At order e the system to be solved is

1
lz u lg' u lzz (ppg Cup/ )

CT

I 1z ~Rc 0& ~1zz 0$

subject to

w, (0)=u „(0)=8,(0)=0, u „(1)=8„(1)=0,

p2z =Cwpg+ 0'R&Hlq Hp&& 80Ig CHlg W2

subject to

w2(0)=u2, (0)=82(0) =0, u2, (1)= —wp&(1),

82, (1)= —ripHll„(1),

c )2I' 90r+ up )0$ W2( 1) Ipwpz( 1 ) r

2
OR,

p2(1)=cr Gr/2+ rjp+2a'wl (1) .
2

At this order, the solubility condition u2, (1)=J pu2„dz
yields the critical Rayleigh number R, =30. Making use
of this value, the solution may be written as

u2=f+U(z)+h(g, r), w2(z)= h&z —f&+&(z), —

p2 =p2(1)+ a R,g (P, (z) — f(I(z 1)— —

crCR,f&&P2 (z—),
182= — ff&z+h&T0(z) c—g&&Tl(z)+c f—~~&T2(z)
C

+fg]T3(z),
where

W(z) = (z —21z +91z ),1

168

U(z) =
dz

1

24
(z —15z +39z ),

1T (z)= —(z —21z +175z —427z),2 7)

T3(z)= —(5z —180z +1134z +5040z —19 575z),6

dTp ]P (z)= = (z —15z +75z —61) .
dz 720

cr),&= —w, (1), p, (1)=cr Gg, +2 aw 0(1) .

The solubility condition u „(1)=f pu „,dz=0 determines

the critical speed c =0. G. The solution is given by

ul —g ($, 1 ), 'gl —g/C, Wl ggz

8, = cf+T—, (z)+g&T0(z),

p l
= cr G ril 2a f(+—cr R,f(P l (z),

where Tl(z)=(z —10z +25z)/120 and P, (z)=dT, /dz
=(z —6z +5)/24. In the following order we have

1
W2z u 2(i u 2zz (p 1$ Cu lg ) up+
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At order e only the equations for u3, p3, and g3 are
needed. They are

l
tl 3zz

— (P3r Cu2g+ up~+ u pup) ) ll lt0

p 3z CW 1$ +0 WOg'+ CJ W2zz +0 ~c2+ 0 ~ 2 0 &

subject to

u3, (0)=0, u3, (1)=—w, ((1),

c'93 /1~+up /l(+u 1'go/ W3(1) 'gowlz(1)

—glwp, (1),

p3(1)= —)rppl(1)+cr Gg3+oR, capri, +2owz, (1) .

This time the solubility condition u3, (1)=f,'u3, dz

determines the evolution equation (19) for f. The solubil-
ity condition at order e will determine the evolution
equation (20) for g. To obtain it only the form of p3 is

needed. We write it as

z
p3=p3(1)+ (cw, &+lrwp&&+owzzz+gR g2

1

+0'R
2 ep )dz

Finally at order e only the solubility condition is needed.
The equation and boundary conditions for u ~ are

l
u 4zz (p 3$ Cu 3g +u l 7

+ u p u l g
+ u l u pg ) u 2g

CT

subject to

u4, (0)=0,
u4 (1)= ripuz (1) wzg(1) gpwpgz(1)

+2'gp]up(( 1 ) 2go(wo ( 1 )

The solubility condition u4, (1)= fpu4„dz yields Eq. (20).
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