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Equation of state for a fiuid of hard convex bodies in any number of dimensions
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An equation of state is proposed for an isotropic fluid of hard convex bodies in any number of di-

mensions. In general, only knowledge of the first three virial coe%cients is required. In three di-

mensions an approximation can be used that involves a single nonsphericity parameter. The result

appears to be very accurate as far as it can be tested against available computer simulations.

I. INTRODUCTION

Hard nonspherical bodies are among the simplest mod-
els of molecular fluids. ' Even more importantly, they
play the role of reference systems in perturbation theories
of molecular fluids, similar to that of hard spheres in
perturbation theories of simple fluids. ' ' Much atten-
tion has therefore been given to finding accurate analyti-
cal equations of state for various hard nonspherical bo-
dies, ' ' and to testing them against computer-
simulation data. A number of methods have been used,
mostly based on known results for hard spheres, includ-
ing extended scaled-particle theory, ' modifications of the
Carnahan-Starling equation for hard spheres, ' knowl-
edge of virial coefficients, ' ' perturbation theory, and
excluded-volume theory. ' However, all analytical equa-
tions proposed to date are limited to small or medium
nonsphericity or are applicable only to specific models.
There remains a need for an analytical equation of state
of universal form for different models, and accurate even
for medium and large nonsphericity.

In this paper we present an analytical equation of state
for hard convex bodies. It has a universal form for
different models and is very accurate, at least up to the
limit of available computer-simulation data. The physi-
cal basis for its derivation is the same as that used to gen-
eralize the equation of state of hard spheres for any nurn-
ber of dimensions, ' namely the lack of correlation be-
tween the motions of a body in different directions.

II. DERIVATION

The physical assumption underlying the present equa-
tion of state makes its generalization to d dimensions
quite simple, so we will keep the dimensionality arbitrary
for now. The equation of state for hard convex bodies for
any number of dimensions can be written as

=1+bp6,
pkT

where p is the pressure, p is the number density, kT has
the usual meaning, b is the second virial coefficient, and
6 is the average contact pair distribution function for the
hard convex bodies. ' We can introduce a shape factor f
in terms of the van der Waals covolume b0 of hard
spheres of the same volume,

b =bof,
b 0

(2)

where U0 is the volume of one particle. it is always possi-
ble to calculate b, and hence f, analytically, since it is a
straightforward (although perhaps complicated)
geometry problem.

For hard (hyper) spheres (f =1), G is the pair distribu-
tion function at contact, g(0+ ), for which we have previ-
ously found a very accurate expression, '

(4)

If we now assume that the motions of a nonspherical
particle in different directions are uncorrelated, the same
arguments apply as for hard spheres, and the most diver-
gent contribution to 6 near g=1 is again found to be
(1—tl) . The same overall form should thus hold for G
as for g(0+ ), namely Eq. (4), but a linear form for F(ri)
may no longer be adequate for nonspherical bodies. We
have found that a quadratic form works well for all the
cases examined, so that a good approximation is

1—r n+r n'

The constants y, and yz are chosen to reproduce the
correct third and fourth virial coefficients, 83 and 84, of
the hard convex bodies,

y, =d —2 '(B3/b )f,

where g is the packing fraction,

rl=vop=bpl(2 'f ),
and F(g) is some weak function of sl. This form was de-
duced by considering the nature of the singularity near
closest possible packing (g= 1). For hard spheres it was
sufficient to take F(tl ) as a linear function of density,

F(tl) =1—y, tl,
in which the constant y, was chosen to reproduce the
correct third virial coefficient 83,

41 3121 1990 The American Physical Society



3122 YUHUA SONG AND E. A. MASON

@2=—,'d(d —1)—2 'd(B~lb )f+2 ' "(B4lb )f 1.0

Although analytical expressions for B~ and B4 are not
known in general, it is always possible to calculate values
of B~ and B4 by numerical methods in particular cases.
A number of such values are summarized for d =3 in
Table III of Ref. 20. Once these values are known, Eq.
(8) for G gives a prediction of the entire equation of state.

The physical assumption of uncorrelated motions in
different directions must break down if the nonspherical
molecules become rotationally ordered, which should
occur for large nonsphericities at high densities. Thus we
do not expect the above result for G to describe liquid-
crystal formation or other phase changes, any more than
the Carnahan-Starling equation of state for hard spheres
describes freezing. However, we do expect it to be accu-
rate over the isotropic fluid range, including gas, liquid,
and perhaps metastable liquid.
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III. COMPARISONS (d =3) bp

Although the foregoing results apply to any dimen-
sionality, data for comparison are available only in three
dimensions. These data consist of some computer-
simulation results for prolate and oblate spherocylinders
and ellipsoids, ' and some proposed analytical expres-
sions for G. '

In three dimensions a hard convex body can be charac-
terized by three geometric quantities: volume vp, surface
area S, and an integrated mean radius of curvature R.
The second virial coefBcient is characterized by a single
dimensionless combination of these quantities,

a=RS/3vp .

This nonsphericity parameter is unity for spheres. In
terms of a the second virial coe%cient and the shape fac-
tor are

FIG. 1. Reciprocal of the average contact pair distribution
function G as a function of density for prolate spherocylinders
(d =3). The solid curves are the present Eq. (8) and the dashed
curves are Eq. (14). The points are computer simulations. The
values of a correspond to ratios of total length to diameter of 2
and 3.
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b =1+3',
Vp

f=
—,'(1+3a) .

(12)

(13)
0.6

Figures 1 —4 show comparisons of the available com-
puter simulations for G with the present Eq. (8), for pro-
late and oblate spherocylinders and ellipsoids. The com-
parisons are most conveniently given as G ' versus bp
for diff'erent values of a. The agreement of Eq. (8) with
the numerical simulations is excellent in all cases.

Also shown in Figs. 1 —4 are the results for what is
probably the best previous expression for G, obtained by
Boublik as an extension of the Carnahan-Starling equa-
tion for hard spheres, '
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1 3a(1+a)q a q (7—2g)
(1+3a)(1—g) 3(1+3a)(1—g)

This equation is accurate for small values of a, but clear-
ly becomes less accurate as a increases.

bp

FIG. 2. Same as Fig. 1, for oblate spherocylinders. The
values of a correspond to ratios of maximum-to-minimum di-
mensions of 2 and 3.5.
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The single nonsphericity parameter a is not sufficient
to characterize 83. An additional nonsphericity parame-
ter is needed, which is taken to be r=4vrR /S (r= 1 for
spheres). Kihara and Miyoshi have obtained upper and
lower bounds for 83, which can be expressed as

0.6

83 =1+6a+3a P(~),
Vp

I /r ~ P(~) ~ r

(15)

(16)
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We can obtain a reasonable approximation for 83 by tak-
ing ~=1 as for spheres,

83
2

= 1+6++3+
Up

This is the same result that would be extracted from
Boublik's Eq. (14) for G.

Only guesses by analogy are available for 84, with the
only firm requirement being that the hard-sphere result
be reproduced, which is

bp

FIG. 3. Same as Fig. 1, for prolate ellipsoids. The values of a
correspond to ratios of major-to-minor axes of 1.25 and 3.
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'
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+

70
=18.3648 .

(18)

IV. VIRIAL COEFFICIENTS (d =3)

It is inconvenient that general expressions for 83 and

84 are not available, since they are needed to determine
the coefficients y, and y2 in G. We therefore note here
some approximations for 83 and 84 in three dimensions
that give good results for G.

We have found that the following expression for 84 gives
a good fit to the computer simulations of Figs. 1 —4,

84 ~ 1+
Up

B4
3

3 Q+ 2(x
HS

(19)

For comparison, the result from Boublik's Eq. (14) for G
1s

1.0

84 —1+9o.+ —"a
3 3

Up
(20)

0.8

These two formulas give comparable results only if a is
close to unity.

The approximate values for y, and y2 obtained from
the above approximate expressions for 83 and 84 are

0.6
y2=3—

1+6a+ 3a2

1+[21—(8~ /U0)Hs]a+7a
1+3m

(21)

(22)
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Use of these values in the present Eq. (8) for G gives re-
sults that are indistinguishable from the solid curves in
Figs. 1 —4.

As a check, approximate values of the fifth virial
coefficient B~ can be extracted from the expressions for
G, for comparison with available computer calculations
(summarized in Table III of Ref. 20). The approxima-
tions of this section applied to Eq. (8) for G yield

0.0

bp

85
4

=1+3
Up

84 —8 a —3a
VP HS

(23)

FIG. 4. Same as Fig. 1, for oblate ellipsoids. The values of e
correspond to ratios of major-to-minor axes of 1.25 and 2.75. and Boublik's Eq. (14) for G yields
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TABLE I. Comparison of fifth virial coefficients {d=3). V. CONCLUSIONS

Dimension
ratio'

2
2.5
3
4

Accurate
Present
Eq. (23)

Prolate
1.200
1.500
1.818
2.143
2.471

Oblate
1.129
1.234
1.348
1.589

spherocylinders
31.90 33.99
36.80 40.89
39.70 47.62
39.90 53.86
63.00 59.51

spherocylinders
32.38 32.28
35.79 34.80
39.02 37.46
43.90 42.84

Boublik
Eq. (24}

37.48
53.50
73.51
97.12

124.24

34.09
39.16
45.04
58.79

The present results give the equation of state for hard
convex bodies in any number of dimensions, over the iso-
tropic fluid range. The average contact pair distribution
function G, which is the heart of the equation of state,
has the very simple form of a quadratic in g divided by
(1—ri) .

Knowledge of the first three virial coefficients is re-
quired in general, but in three dimensions an approxima-
tion can be used that involves only the single nonspherici-
ty parameter a. In particular, from Eqs. (21) and (22) for

y, and y, we obtain

= 1+ (( I+3a)—(2+3a —3a )ri
pkT (1—

r) )3

1.5
2.0

Prolate ellipsoids
1.059 29.88
1.179 31.87

30.58
33.50

30.92
36.49

+ I I+[(84/uo)Hs 12]a
—7a'I ri') . (25)

1.5
2.0

Oblate ellipsoids
1.059 29.51
1.179 33.18

'Ratio of maximum to minimum dimension.
Reference 20.

30.58
33.50

30.92
36.49

The accuracy appears to be very good, insofar as it can
be checked against available three-dimensional computer
simulations. Equation (25) should make an excellent
reference equation for perturbation theories of real
molecular fluids.

8~ = 1+12a+—"a
4 3

Vp
(24)
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