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Mode coupling in a Penning trap: 7 pulses and a classical avoided crossing
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An inhomogeneous radiofrequency electric field can couple the cyclotron and axial modes of a
single ion in a Penning trap. The classical equations of motion are the same as those of a driven
quantum-mechanical two-level system. We discuss an analog of the 7 pulse, which can exchange
mode actions, and an analog of the avoided crossing. Experimental illustrations are presented.

In experiments to perform precise resonance measure-
ments on single charged particles in a Penning trap,' 3
only one of the particle’s normal-mode motions is typical-
ly detected directly. For example, in our recent single-
ion cyclotron-resonance experiment,>* only the axial
mode couples to our detector. The cyclotron and the
magnetron modes are undetected and essentially un-
damped. Cooling, driving, and measuring the frequency
of the undetected modes require techniques for coupling
them to the detected mode.

Wineland and Dehmelt’ suggested that an inhomo-
geneous rf electric field at the sum or difference frequency
of two modes will couple those modes, and that, in par-
ticular, the magnetron mode can be cooled by coupling it
to the damped axial mode. The technique was demon-
strated experimentally by Van Dyck, Schwinberg, and
Dehmelt.® Cohen-Tannoudji’ and Brown and Gabrielse?
discuss rf coupling fields in some generality and rigor. In
this paper we develop two particular effects of such cou-
pling fields, using an analogy with a two-state quantum-
mechanical system to motivate our purely classical re-
sults.

The data which we present here were taken on an ap-
paratus designed to compare the cyclotron frequencies of
single ions with the eventual goal of measuring ion mass
ratios to parts in 10'2. The apparatus, an orthogonally
compensated,’ hyperbolic Penning trap in a cryogenic en-
vironment, is described in Refs. 3 and 4.

For work with a single particle of mass m and charge e,
it is convenient to write the electric and magnetic fields in
an ideal Penning trap as
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where wl=eV,,, /(md?), o,=eB,/mc, d is the charac-
teristic trap size, and e is the charge on the ion. The
motion of the ion in these fields is a linear superposition
of the three normal modes,
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where
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and a,, a,, and a,, are the complex amplitudes of the cy-
clotron, axial, and magnetron motions, respectively.® We
will work in the approximation @, >>w, >>®,,. For most
of this paper we study the example of cyclotron-axial
coupling, although, as explained below, this approach
can be adapted to magnetron-axial coupling. For
cyclotron-axial coupling the perturbation frequency w,
must be near the difference frequency, with a small de-
tuning 8: 8=w, . +®,. In our experiment the fields
are produced by applying voltages to segments of the
guard rings. Near the center of the trap, the coupling
field to lowest order is an oscillating quadrupole field tilt-
ed with respect to the static electric field:

Ep=Rel épem"l)(x’z\+z’x\)

where &, is the complex amplitude of the coupling-field
gradients.

For simplicity, we assume that the cyclotron mode
may be treated as if it were a one-dimensional harmonic
oscillator, with spring constant kK =(w’,)’m. In the pres-
ence of a driving force in the X direction, we ignore the §
motion and write the equation of motion:

%] X
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A Green-function treatment of the ion’s motion in the x-y
plane shows that this assumption is good for w,>w,,
when F, is nearly resonant with the undriven cyclotron
motion, at ®,.%'" Then the forces from the coupling field
give two parametrically coupled simple harmonic oscilla-
tors:
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We guess the following solutions:
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TABLE 1. Summary of mode properties and cooling limits. The action of the cyclotron or magne-
tron mode is just 27 times the magnitude of the canonical angular momentum [note that the magnetron
canonical angular momentum is dominated by the field term, rXe A /c (Ref. 14)] The cooling limits
given for the cyclotron and magnetron modes are reached after a single 7 pulse exchanges the action in
the mode to be cooled with the action in the axial mode, which is assumed to have been cooled resis-
tively to a rms radius r,,;, corresponding to a temperature T,.

Angular momentum Action Cooling limit for 7 pulses
Mode rX(mv+eA/c) |$p-dgq| rms radius T
Axial m™mw,a? Ay T,
Cyclotron —imwa? mTmw.al (0, /0;) %,y (0l /w,)T,
Magnetron tmoal Tmo.al (0, /0.)%a,y (0 /0,)T,
Z(1) iw,t If the strength and duration of the pulse is such that
z=Re 1/2€ ’ |V|r=m, then after the pulse
(rmw,)
-V
Clty==—-2y, t>71
x=Re C(t) it 'V|
= _—c ,
(mme))'? v*
Z(t)=—C, .
Ve

and define the coupling strength in units of frequency:

Ve ie6,
T 2m(w,0))"?

Z and C are slowly varying functions of ¢, such that |Z|?

and |C|? equal the classical action (i.e., Iﬁ Pcanon 44 |; see

Table I) in each mode. Making the adiabatic approxima-

tion, and keeping only secular terms, Eq. (1) becomes

. ‘ .
z=i2£—e ~idie (2a)
C= _2Ve +idty (2b)

We recognize the standard equations for a driven two-
level system.!! Two particular properties of these equa-
tions are of experimental importance to us.

ACTION-EXCHANGING PULSES

The first property concerns the special case §=0. Im-
agine that the coupling drive is on between t=0 and
t =7. Before the pulse, the initial conditions are:

Z(1)=2Z, t<0 (3a)
ci=¢c,, (3b)

where C, (Z) is a complex number proportional to the
initial phase and action of the cyclotron (axial) motion.

During the pulse, the solution to Eq. (2) satisfying Eq.
(3) is
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Note that the action and phase information of the cy-
clotron motion is preserved now in the axial motion (but
shifted by the phase of the perturbing field). Similarly,
the 7 pulse has put the initial phase and action of the axi-
al mode into the cyclotron mode. The total action,
|Z|24]|Cl|?, is a constant of the motion. Figure 1 illus-
trates the effect of mode-coupling pulses of varying
strengths.

This 7 pulse is used in a novel technique for measuring
the cyclotron frequency w,. We begin the measurement
by driving the (initially cold) ion into a cyclotron orbit of
known phase with a pulse of rf electric field directly at
the cyclotron frequency. The cyclotron motion evolves

,‘6 T T ‘f_‘
3
g
25k a -
o
l“; a A &
v4__ a a %
Q a
o
2
| |
EZ)— a —
<
El" a
=
Fxo

0 L 1

0 15 30

Coupling Pulse Strength (mV sec)

FIG. 1. For each plotted point, the following experiment is
performed: An N, ion is excited into a 0.2-mm-radius cyclo-
tron orbit, a 40-msec coupling pulse (of indicated strength) is
applied, and the resulting axial amplitude measured. The solid
curve, the absolute value of a sine wave, is fit to the points. The
peak at pulse strength 11 mV sec corresponds to a 7 pulse, the
zero at 22 mV sec to a 27 pulse, and so on.
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in the dark, unperturbed by coupling fields, for a precise
length of time T, and then, with a 7 pulse, the cyclotron
motion is swapped into the axial mode. We then detect
the current induced on the endcaps and determine the
phase. The procedure is repeated with a variety of
lengths of time between pulses 7, to determine the cyclo-
tron phase as a function of 7. The cyclotron frequency is
simply the time derivative of the cyclotron phase. Refer-
ence 3 describes a precision mass comparison made using
this technique. The procedure is essentially a variant of
Ramsey’s method of separated oscillatory fields,'? except
that it is the final phase, rather than the transition proba-
bility, that is measured after the two pulses.

The 7 pulse may be used to cool rapidly the cyclotron
mode by exchanging its action with that of the resistively
cooled axial mode. The cooling limit for this scheme
(Table 1) is the same as the limit for cw sideband cooling,®
but the 7-pulse cooling rate is higher.

AVOIDED CROSSING

The second interesting property, which we call a *“clas-
sical avoided crossing,” is again easily understood in
analogy with a near-resonantly driven two-level system.
In this case, the analogy is to the dressed-atom formal-
ism.!? Instead of thinking of the motion of the perturbed
ion as swinging back and forth between the axial and cy-
clotron modes, we can find time-independent linear su-
perpositions of cyclotron and axial motions, the normal
modes of an ion “dressed” by the oscillatory perturbative
field.

By analogy with driven systems generally, we expect
that the two components will oscillate with frequencies
which differ by the driving frequency w,. We guess that
the dressed modes consist of the ion moving in the axial
direction with a frequency w near w, with e=w—w,, and
at the same time moving in the cyclotron direction with
frequency o +w,, so that (0 +w, )—w,=+8+e.

Then solutions to Egs. (2) will have the form

Z(t)=D,e'®,C(t)=D_e"c*®"

where (D,,D,) describes the eigenvector of the dressed
mode. Inserting these solutions into Eq. (2), and solving
the characteristic equation for €, we get two solutions:

=2 ELEH V]2 @)

We can observe the dressed modes directly by exciting
the axial motion of an ion with a short pulse and then
detecting the axial component of its ring-down signal in
the presence of a coupling drive. As the coupling drive
approaches resonance, the observed axial frequency shifts
from its unperturbed frequency. For small detunings
both modes have significant axial components and it is
possible to detect the axial component of both modes
simultaneously (Fig. 2). By fitting the observed frequency
shifts to the avoided crossing line shape [Eq. (4)], one ob-
tains a value for the cyclotron frequency and a calibra-
tion for the strength of the coupling drive, | V|, a quantity
which is difficult to calculate from electrode geometry a
priori.
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FIG. 2. Experimental illustration of the avoided crossing
effect, using a single N, ion. We adjust the coupling frequency
in 1-Hz increments and then excite the axial motion by pulsing.
Each trace is the fast Fourier transform of the detected signal
from the axial motion after the excitation. The dotted lines are
a fit of the peak centers to the avoided-crossing line shape
[Eq. @4)]. The fit yields |V|=1.5(1) Hz and v.—wv,
=4467761.36(15) Hz.

MAGNETRON MOTION

Extending the preceding results to magnetron-axial
couplings involves a few subtleties. To begin with, the
magnetron motion, driven near resonance in the X direc-
tion, does not act like a simple harmonic oscillation with
spring constant k =w2,m. But, again using a Green-
function approach, we find that by rescaling the applied
force

we can write the equation for the near-resonantly driven
magnetron motion in the familiar form

’
.s X
itolx=—.
m

In order to get coupled equations of motion in the form
of Eq. (2), it is necessary for the coupling frequency to be
near the sum, rather than the difference frequency, so we
define th.e detuning =0, —0, —o,,.

Guessing the solutions,

z=Re _Z) __ e
(rmw,)'? ’

v —Re | M@ __ o
(mmw)'? ’

and defining V exactly as before, we get the equations
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7= _Ve+i1,tMt
2
M*_ +V e—intz
2

The m-pulse and avoided-crossing results follow from
here.
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