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M. I. Dykman and V. N. Smelyanski
Institute ofSemiconductors, Academy ofSciences of the Ukrainian Soviet Socialist Republic,

Kiev, Union ofSoviet Socialist Republics
(Received 20 April 1989; revised manuscript received 31 July 1989)

Fluctuations of a nonlinear oscillator driven by an intense resonant field with fluctuating phase
are considered in the region of bistability. The general expression for the probability of a fluctua-
tional transition between stable states is found to logarithmic accuracy. In the weak-damping limit
the probabilities are obtained in the explicit form including both the argument of the exponential
and the preexponential factor. A simple general method of determining the latter for underdamped
systems is suggested. The probability of an escape from a metastable state near the bifurcation
point where this state disappears is analyzed. The low-frequency susceptibility of the oscillator is
shown to have a peculiar structure in the region of parameters where the stationary populations of
the stable states are of the same order of magnitude. The stochastic modulation of the phase of an
oscillator due to coupling to a bath is considered and its consequences are compared to those of ran-
domness of the phase of a driving field.

I. INTRODUCTION

Nonlinear systems subjected to a strong periodic field
often have several stable states that correspond to forced
vibrations differing in their amplitudes, phases, periods,
etc. A Iarge number of such systems is investigated
presently in nonlinear optics (optical bi- and multistabili-
ty, see, e.g., Ref. l). A simple model system displaying
bistability in a periodic field is a nonlinear oscillator. The
frequency of eigenoscillations of a nonlinear oscillator de-
pends on their amplitude. This gives rise to coexistence
of two "self-consistent" regimes of forced vibrations of an
oscillator in a certain range of the parameters of a reso-
nant field. In the first regime the vibration amplitude is
small and the respective eigenfrequency differs compara-
tively strongly from the field frequency co (self-
consistently "bad" resonance), while in the second regime
the amplitude is large so that the eigenfrequency is close
to to (self-consistently "good" resonance).

The model of an oscillator bistable in a resonant field is
actual not only for optical bistability; it directly de-
scribes the motion of a free electron in a magnetic field
and in an intense resonant electric field which was inves-
tigated experimentally in Ref. 4 and also some other
physical systems.

In actual cases the field acting on a system is not strict-
ly periodic. Fluctuations of various origin result inevit-
ably in a smearing of the lines in the field frequency spec-
trum. When fluctuations are sufficiently intense (spectral
lines are sufficiently broad), so that the root-mean-square
displacements from the stable states of a field-driven non-
linear system exceed the distance between the states, the
bistability of the system is not manifested. In essence, bi-
stability can be observed clearly, provided that the fluc-
tuations are so small that there are two strongly differing
characteristic times in a system: the time v, of relaxation

to a stable state of forced vibrations in the absence of the
fluctuations and the inverse probability 8' of fluctua-
tional transitions between the stable states, with

W~„«1 .

When this inequality is fulfilled, the system for a time ~
such that 8' '&&~&&~„stays with an overwhelming
probability near that stable state in whose vicinity it has
been brought as a result of the variation of external pa-
rameters, and thus hysteresis can be observed.

The analysis of bistability in a fluctuating field is there-
fore closely related to the problem of transitions between
stable states. In contrast to classical thermally equilibri-
um systems weakly coupled to a bath where 8' is given
by the Arrhenius law while the stationary distribution is
Gibbsian, for nonequilibrium systems there are no
universal expressions for 8'and for the stationary distri-
bution. The expressions depend not only on the intensity
but also on other characteristics of noise acting on a sys-
tem (cf. Ref. 7). For a nonlinear oscillator in an external
field they were obtained earlier in case of the field
presenting itself a superposition of a comparatively
strong resonant monochromatic field and weak white
noise (in some respects this case is similar to that of an
oscillator subjected to the resonant monochromatic field
and coupled to a bath, with the coupling energy being
proportional to the oscillator coordinate). ' Transitions
between stable states and stationary distribution in a
periodic field and additive weak noise were considered
also for other nonlinear systems.

In the present paper the transition probabilities are an-
alyzed for a nonlinear oscillator driven by a resonant
external field with random phase. Randomness of the
phase variation in time is a feature of the fields generated
by various sources including lasers, electronic generators,
etc. ' If, on the average, the phase is homogeneously dis-
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tributed over the interval [0,2~], then the average value
of the field equals zero (although the intensity is finite).
Therefore for a fast phase change as compared with the
oscillator relaxation time, the oscillator perceives the field
as effectively weak and bistability does not arise. At the
same time for slow phase variation the bistability is possi-
ble, and the dependence of the transition probabilities on
the intensity of phase fluctuations (that is, on the
linewidth in the field frequency spectrum) is shown below
to be of the activation type. A similar dependence was
found numerically for a bistable system of another type. "

The motion of an oscillator in a resonant field depends,
in fact, not on each of the phases (those of the oscillator
and of the field), but on their difference. This difference
can fluctuate due to fluctuations of both the phases.
Fluctuations of the oscillator phase result from the
oscillator-to-bath coupling.

In the present paper the microscopic theory of stochas-
tic modulation of the oscillator phase is developed. This
modulation is shown to correspond to transverse relaxa-
tion in terms of quantum theory, that is, to damping of
the off-diagonal elements of the oscillator density matrix
(strictly speaking, to that contribution to the damping de-
crements which is not connected with the oscillator ener-

gy relaxation} and to respective broadening of the peaks
in the power and susceptibility spectra of the oscillator.
This relaxation is extremely important for many physical
vibrational systems, in particular, for localized vibrations
in solids' (see also the surveys '5}.2For an oscillator bi-
stable in a strong resonant field the respective mechanism
gives rise to transitions between the stable states.

This paper is organized as follows. In Sec. II we give
the stochastic equations of motion for the "slow" (as
compared to the field frequency) oscillator variables. In
Sec. III the general expression for the transition probabil-
ity is obtained to logarithmic accuracy for the case of
weak phase fluctuations, and the criterion of bistability is
given. In Sec. IV the transition probability including the
preexponential factor and the quasistationary distribution
are found in an explicit form in the limit of weak damp-
ing. In Sec. U we analyze the probability of an escape
from a metastable state near the bifurcation point where
this state coalesces with an unstable steady state and
disappears (the saddle-node bifurcation). In Sec. VI the
features of time correlation functions and of power spec-
tra connected with a randomness of phase of the driving
Geld are discussed. In Sec. VII we analyze the low-
frequency susceptibility and the extremely narrow peak
in it arising in the range of the kinetic phase transition.
The Appendix contains microscopic theory of stochastic
modulation of the phase of an oscillator coupled to a
bath.

II. EQUATIONS OF MOTION IN A RANDOM
RESONANT FIELD

The dynamics of the classical dissipating nonlinear os-
cillator in the external Geld is described by the equation

d2
+2I +cooq+yq'=F cos[to 2.+p (2.}]. (2}

d d

This equation is written for the archetypal model, the
Duffing oscillator with a linear friction (the friction force
is proportional to velocity' ). We suppose the friction
coeScient I to be small and the external field to be reso-
nant,

r, I5~ I «~F 5cil &F ci)0 ~ (3)

In addition, we assume that the field amplitude is not too
large so that the oscillator nonlinearity is relatively small,

lyl (q ) «co+, and that the phase of the field PF(r) is a
random function slowly varying over the period 2moz'
(that is, the characteristic width —(

I
d pt; /d 2 I ) of the

frequency spectrum of the field is small as compared with
the midband frequency coF).

It is convenient under these conditions to transform
from the fast oscillating variables, the coordinate q and
the momentum dq/d~ of the oscillator, to the smooth
variables, the dimensionless squared amplitude x and the
phase 8,

' 1/2
gcoF I 5' I

F F 'x'~2cos(co r 8+$—),
(4)

dq
FCO

scopl5col

3lyl
x '~ sin(tot;~ 8+PF) —.

Dimensionless equations of motion for x, 8 with al-
lowance for (2)—(4) are of the form

d (jg . d8 Bg dfFx=—
d =2&8 —2', 8=—

dt
= —

2& +

g—:g (x,8)=
—,
' [xsgn(y /5to) —I ]

Xsgn(5') —i/px cos8, t = I5colr,

(5)

where

q=r/I5~I, p=3lyl~'(32~'15~1') '. (6)

Two of the solutions (those with smallest and largest x)
are stable, they correspond to stable forced vibrations of
the oscillator, while the third solution is unstable. The
stable solutions correspond to stable foci (or nodes) on
the phase plane (x, 8), the unstable one corresponds to the
saddle point. The ranges of "attraction" of the system to

The dimensionless parameters ri and p (6) are seen fram
Eqs. (2) and (3) to characterize the relative detuning of
the field frequency co+ from coo and the relative field in-
tensity. In the spirit of the standard averaging method
we have neglected fast oscillating terms
-exp[+i(toF~ 8+Pt;)]—, exp[+3i(tour 8+/~}] i—n the
right-hand sides (rhs) of Eqs. (5) (when integrated over
t = I5colr- I they give a correction —I5col/co~ ((I).

The character of the solution af Eqs. (5) for x, 8 de-
pends on the values of the involved parameters 2},p and
on the character of the random function dP~/dt When.
the phase of the field PF is constant Eqs. (5) have three
stationary solutions in the parameter range, '

g & I/i/3, pii"(g) & p& pg'(2}) (y5co & 0)
p(1,2)(~}—2 [I +9~2 + ( I 3 2)3/2]
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different stable states are separated by the separatrix
which passes through the saddle point. At P=P~ '(r))
one of the stable states merges with the unstable one.

The bistability is obvious from the qualitative argu-
ments given above and from Eqs. (5) to arise only for
) 5co)0. Since Eqs. (5) for 5cu&0 may be put into the
form they have for Lo) 0 by changing g~ —g, 0~ —0,
dPF/dt~ dP—~/dt, we shall suppose for the sake of
concreteness that

=f (&), (f(&) ) =0,
dt

(f(t)f(~')) =2D5(r r') . — (9)

In the model (9) the line in the power spectrum of the
field is Lorentzian in shape with the maximum at cuF and
a halfwidth D~5co~. ' Fluctuations of the type in Eq. (9)
result directly from fluctuations of the frequency-
controlling factors of the field source (say, capacitance or
inductance in a contour of a radio-frequency generator,
or refractive index of the laser cavity). The model (9) is
applicable provided they are Gaussian (this is fulfilled
usually) and their characteristic correlation time is much
smaller than ~5co~ ', I '. Well above threshold of gen-
eration fluctuations of other origins which fulfill these
conditions result mainly in the fluctuations of the type (9)
also. '

Equations (5) and (9) are shown in the Appendix to de-
scribe also the dynamics of the oscillator in the important
case of phase fluctuations due to interaction between the
oscillator and bath. The value of D in this case is deter-
mined by the intensity of the respective fluctuations [cf.
Eq. (A10)].

y)0, 5')0.
Fluctuations of the phase PF result in randomness of

the motion of the oscillator. We shall consider this
motion assuming fluctuations of dPF/dt (the field fre-
quency fluctuations) to be described by a white noise f (t)
over the time scale ~&)cuF ',

D«q (10)

the oscillator within a dimensionless time t —g with an
overwhelming probability approaches one or another
stable state (depending on its initial state), while the tran-
sitions between stable states do not happen practically
within such time.

In calculating the transition probabilities it is of the ut-
most importance to find the argument of the exponential
in the expression for 8'. Rather a general approach to
this problem is based ' ' on the path-integral method in
the theory of random processes. ' This approach is con-
venient for systems driven not only by white noise, but by
an arbitrary Gaussian noise. The idea lies in writing
down the expression for the transition probability as a
functional integral over the noise trajectories and calcu-
lating it by the steepest-descent method. The extreme
trajectory describes the evolution of a random force in
the course of its optimal fluctuation which results in
bringing the system from the stable state occupied initial-
ly to the saddle point (see below). The determination of
ln W is reduced thus to certain variational problem.

By applying this method directly to the present prob-
lem we arrive at the following expression for the proba-
bility of a transition from the stable state f:

W=constXexp( —R/D), R =min f dt L(x,8,8),
(11)

L(x 8 8)=—' 8+2
4 Bx 8

x = 2'gx +2 Bg

The functional R should be minimized with respect to the
trajectories x (t), 8(t) which satisfy the given equation for
x. The trajectories go from the stable state f [a focus or a
node with the coordinates (xf, 8f ) on the phase plane] to
the saddle point s with the coordinates (x„8,) (see
below),

on the plane (x, 8) and the differences in the values of
g (x, 8), for these states are of the order of unity. There-
fore the character of motion depends mainly on the ratio
ofD to g. For

III. GENERAL EXPRESSION FOR THE TRANSITION
PROBABILITIES

Equations (5) and (9) have the form of the dimension-
less equations of motion of a Brownian particle with a
"coordinate" x and momentum" 0; its Hamiltonian
function is 2g (x, 8), the "friction force" is —2r1x and the
diffusion coefficient is D. Note, however, that friction
enters the equation for the coordinate x. This feature and
the explicit form of g (x, 8) (5) cause a substantial
difference between the motion of the present system and
that of a "true" Brownian particle in a static potential.
In particular, the stable states in the limit of small g cor-
respond to the minimum and the local maximum of
g (x,8), while the unstable stationary state corresponds to
the inflection point of g (x, 8).

The Hamiltonian function g (x, 8) contains a single pa-
rameter P. For P not too close to the bifurcational values
Ps ' [Eq. (7)] the distances between the stationary states

x (0)=xf, 8(0)=8f, x (t) =x„8(t)=8, (12)

[the appropriate equalities (12) should be fulfilled with an
accuracy to -D'~ ]. The minimum in Eq. (11) is taken
also with respect to the duration of the motion t. Equa-
tion (11) is valid to logarithmic accuracy in D

According to Eq. (11) the dependence of W on the
phase diffusion coemcient D is of the "activation" type,
and R plays a role of a characteristic "activation energy
of the transition. " The structure of the expression (11)
may be understood if one takes into account that the
probability density functional P [f]which gives the prob-
abilities of various realizations of the random force f (t)
determining the phase of the field P~ [Eq. (9)] for f (t)
presenting a white noise is of the form'

P[f]=exp — fdt f (t)
1

4D

According to Eqs. (5) and (7) (1/4D)f ( t)
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=(1/D)L (x, 8, 8), and thus the condition (11) that

f dt L(x, 8, 8) be minimal is just the condition of the

most probable (optimal) realization off (t}for the motion
of the system from the stable state to the saddle point.

The variational problem (11) is equivalent to the prob-
lem Of minimization of the functional

R =f dt L(x, 8,8}+A(t) x+2gx —2

with respect to x(t), 8(t) (their variations are now in-

dependent); A(t) ,is an undetermined coefficient which can
be found from the Euler equations and from Eq. (11) for
x. The respective variational problem corresponds to the
problem of the motion of a certain auxiliary two-
dimensional mechanical system. The Hamiltonian func-
tion for this system is of the form

H(p„,ps, x, 8) =pe —2ps —2p„7)x—2 ~g ~g (13)

where x, 8 are the generalized coordinates and p„,ps are
the respective generalized momenta of this system;
L(x, 8, 8) is its Lagrangian and R is its mechanical ac-
tion. The condition that R in Eq. (11) be extremal with
respect to t reduces (cf. Ref. 2) to the equality

H(p„,ps, x, 8)=0 . (14)

5x, = —58, [(Bg/88) —rtx ](Bg/Bx )

cf. Eqs. (5). Substituting this relation into the expression
for 5R and taking Eq. (14) into account we obtain that
5R = ,'p s58, /(Bg /Bx). Si—nce on the regular path

Equation (14) may be obtained in the limit of smail D
from the Fokker-Planck equation for the stationary
distribution function of the system p(x, 8), with
p = DBlnp/Bx—, ps= DBlnp—/88. For Markov sys-
tems the approach to the problem of transition probabili-
ties and of stationary distribution based on equations of
the type (14) was used in a number of papers, cf. Ref. 17.

Equation (14) has been used, in fact, to show that the
extreme path finishes in the vicinity of the saddle point
[see Eq. (12)]. For the considered case of a 5-correlated
noise it is sufhcient when calculating in@' to find the
probability of a system to reach the separatrix [the latter
divides the phase plane (x, 8) into ranges of attraction to
different stable states]. Indeed, the system placed on the
separatrix goes to the stable state needed with a probabil-
ity —1/2 due to small fiuctuations, so the large optimal
fluctuation of the force is switched oF' when the respec-
tive path of the system given by Eq. (11) reaches the
separatrix. Obviously, the minimum in Eq. (11)should be
taken with respect to the position of the end point (x„8,)

of this optimal path on the separatrix. The variation of
R as a function of (x„8,) is

5R =p 6X, +pg60, .

When the point (x„8,) is shifted along the separatrix
which is a "regular" path (that in the absence of a ran-
dom force),

This inequality provides also the fulfillment of the bista-
bility criterion (1).

IV. TRANSITION PROBABILITIES
FOR WEAK DAMPING

Equations (11)—(14) make it possible to find numerical-

ly the activation energies R of the transitions for any con-
crete values of two dimensionless parameters of the oscil-
lator P and rt. Explicit expressions for the transition
probabilities may be obtained in some limiting cases. We
now consider the limit of weak damping (or of the large
frequency detuning),

q=r/5~~ «1. (16)

To zeroth order in g, D the motion of the oscillator in
the (x, 8) representation is a conservative one with the
effective energy 2g(x, 8) (in quantum theory g is the
quasienergy of the oscillator in the resonant field's'9).
This motion is described by the periodic functions
X(g, g), e(g, g) which obey the equations

= —2' (g)
Bg
BX '

Bx, Bg Be
aq

g ae' aq
(17)

d =~(g), g =g(X, e)=-,'(X —1)'—&PX cose,

where co(g) is the dimensionless frequency of the motion
with a given g,

ag(x, e)
Q7 g —'7T

ae

g is the phase of the motion. The phase trajectories de-
scribed by Eq. (17) are shown in Fig. 1. Since the states
of the oscillator differing in e by 2~ are identical, the tra-
jectory pattern is periodic in e. The shape of a trajectory
depends on the value of g, and there are both closed and
open trajectories.

In the range of P where bistability occurs, 0&P& ~4„

the g axis is split into three parts by the values gf gf,
1 2

and g, which g takes on in the stable states (the foci)
f, ,f2 and in the saddle point s (we assume the foci f &

and f& to correspond to the smallest and to the largest
amplitudes of the forced vibrations; then gf ) g +gf ).

1 2

In the range g & g/ all trajectories X(e) are open and lie
1

above the separatrix. In the range gf & g )g,. there coex-
1

ist two types of the trajectories: those above the separa-
trix and those in the attraction range of the state f&. The
latter either surround the point f, and are thus closed or
(for P & —,', , see Fig. 1) are open in part and lie below the
separatrix. For gf &g &g, the trajectories lie in the at-

2

58(Bg /Bx) & 0 [cf. Eqs. (5)] we see that R decreases as the
end point moves along the separatrix to the saddle point,
and therefore the latter is the "true" end point of the ex-
treme path.

The criterion of the applicability of Eqs. (11)—(14) for
8'is the inequality

R»D .
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p(x, 8, t ) =p(g (x,8), t ),
(18)

a
Bt Bg

=oi(g)

where

rlI(g )—p+ DM(g )
Bg

traction range of the state f2. At P& —,', they surround

the point f2 (see Fig. 1), while at P) —,', they may be open
(for not too small g —

g& ) and lie then below the separa-

trix (at P) —,', the separatrix loops around the point f, in

contrast to the case g& —,', shown in Fig. 1 where the
separatrix loop surrounds the point f2).

For rt, D (&co(g) the main manifestation of friction and
noise is slow drift and diffusion of the oscillator on g.
The respective random process can be described (cf. Refs.
6, 18, and 20) by a one-dimensional Fokker-Planck equa-
tion for the distribution function p(x, 8, t) which is of the
following form in the case under consideration

Ig
—g, l ([DM(g, )]'", qlI(g, )l, (20)

slow and fast motions cannot be decoupled and Eq. (18) is
inapplicable [the rhs of (20) gives the change of g =g, per
unit time due to diffusion and drift; Eq. (18) is valid pro-
vided the change of g per the period 2nco '(g) is small,
but ro '(g) diverges logarithmically when g~g, ]. In the
range (20) the solutions p" '(g, t) for g &g, match one
another and the solution p(g, t) for g &g, .

A. Argument of the exponential

In the range g& +g +g, the function p(g, t) and the
1

coefficients I(g),M(g) are ambiguous. We denote their
values as p "', I'", M"', and p

' ',I' ' M' ' for x, 0 lying
in the attraction range of the stable state f, and above

the separatrix in Fig. 1, respectively.
Near the separatrix, where

I(g) = I dfX(g, g)
2

co(g) y&~ BX(g,g)Mg=
8n. o Bg

(19)

In the case of the small diffusion coefficient D ((g,
within a dimensionless time t such that

' &(t &( ~5'~ W ' a quasistationary distribution of the
oscillator over g is worked out in the neighborhood of the
stable state f occupied initially. According to Eq. (18) it
is quasi-Gibbsian,

OH

FIG. 1. Topology of phase trajectories (17) of the oscillator in the zero-friction limit for P( 27,
' f~,fz are equilibrium positions

(foci for finite damping), s is the saddle point. The trajectory passing through the saddle point is separatrix. The trajectories 1 and 2
refer to the same value of the quasienergy g (the concrete value of P taken is 0.045; the respective values of X in the points f, , s, f2
are approximately 0.05, 0.76, 1.19).
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R, =-,'qP ' (P«1) (22)

2R

p4-

pG(g, t) =Pfexp ——R (g)
1

(21}
R (g)= —ri f dg I(g)/M(g),

with an effective "temperature" DM—(g)/rII(g) depend-
ing on the quasienergy g [the sign of I(g) is obvious from
Eq. (19) and from Fig. 1 to be such that R (g) &0]. The
quantity pf varies over the time ~ 8' '.

To logarithmic accuracy the probability 8' of the es-
cape from the state f equals exp[ —R (g, )/D) according
to Eq. (21). The quantity R (g, ) coincides with the value
of R which may be obtained independently from the gen-
eral formulas (11)—(14}for rl &(1 with the aid of the ap-
proach developed in Ref. 8. As is obvious from (21), the
activation energy of the transition R ~7}=I /lficol. This
gives the dependence of R on the friction coefficient of
the oscillator 1. The quantity R /r) depends on the rest
of the parameters of the system only in terms of their
combination p~F ly/(5') l [Eq. (6)]. The respective
dependences for the activation energies R, and R 2 of the
transitions from the stable states f, and f2 are shown in

Fig. 2.
Both R, and R2 decrease with increasing dimension-

less field intensity P. In weak fields one obtains from Eqs.
(5), (19), and (21) that R, diverges with decreasing P,

B. Preexponential factor

In the case of weak damping, q & 1, the preexponential
factor in the expression for the transition probability W
depends on the ratio of two small quantities in the rhs of
(20), that is, on D/ri [note that D (&ri, cf. (10)]. We
shall consider it supposing the diffusion coefficient to be
not too small,

g2«D «q . (23)

We note first that parallel to solution (21), Eq. (18) has
one more quasistationary solution, pd„(g},

p=pG+pd„pd, (g)=C/I(g), Ig
—gfl »D/rl . (24)

The solution pd„corresponds to the quasistationary flow

qC along the quasienergy axis [a quantum analog to (24)
for a particle moving in a static potential and coupled to
a thermostat was found in Ref. 21]. At t »ri ' the flow
is due to the transitions between the ranges of attraction
to different stable states, and thus it is exponentially
small, C «1.

The probability of the transition from the state f is just
determined by the relative change in the population

2m f dg co '(g)p(g, t)

of the respective attraction range per unit time. Accord-
ing to Eqs. (18), (21), and (24), in the "real" time scale

W= l5col —ln f dg co '(g)p(g, r)
dt

while R 2 remains finite in spite of the values of gf and g2 S

approaching one another as P~O [however, R2~0 when

P~~z (ri) =ri, see Sec. V]. Such a behavior results fromN1) 2

the fact that the fluctuations under consideration are due
to the external field. Therefore when the field decreases
the effective fluctuation intensity decreases also and the
probability of a large fluctuation necessary for the escape
falls rapidly. For p~ ~4, when gf approaches g„ the

value of R, , as obvious from Fig. 2, vanishes.

8 2

=lfi~l " (c,/p, )(B'g/Bx )f .
D

(25)

The subscript f on the derivative in (25) means that it is
calculated in the state f, Cf is the constant in Pd, (24) for
the considered attraction range. We have taken into ac-
count that 8' does not depend practically on the upper
limit of the integral in (25),

2l27 4/27 P

FIG. 2. Activation energies Ri/g and Rz/q vs p for the
transitions f i

~f2 and fz~f, in the case of small damping,
g ((1. The phase-transition point, where R l

=R2 lies at
p= p0=0. 030.

dg co (g) = —riC,P
gf at

dg to '(g)p=(pfD/g)(co 'M/I)f, lg
—gfl »D/ri

and used Eq. (18) and the explicit expressions for M(g),
I(g), co(g) at lg —gfl-D/g«1 which follow from (17}
and (19).

The ratio Cf/pf in (25) may be found if one notices
that the characteristic scale hg =D /g over which
pG(g, t) varies [cf. Eq. (21)] exceeds greatly the range (20)
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due to inequality (23). The solution pd, varies over the
scale hg —1)& [DM(g, )]', 2) ~(I(g, ) ~. Therefore the
solution p (24) as a whole is practically constant within a
layer (20), and to zeroth order in q /D we can neglect an
effect of this layer on the distribution function. As a
consequence the solutions p above and below g, should
coincide with each other [p takes on one and the same
value on both sides of the separatrix in Fig. 1 or, to be
more strict, of the "stripe" of a width (20) around the
separatrix]. The flow should be continuous at g =g, as
well (note that in the quasistationary regime there is no
flow in the range above the separatrix loop in Fig. 1

where there are no stable states).
If we consider transitions from the state f, (i =1,2) and

thus the state f3, is not occupied practically
(r « ~5'~ W '), then p/ =0 and the matching condi-

tions take the form

p& exp( —R; /D) +C/ I; '(g, ) =C/ I3—'(g )

(26)
C~ =C~

[we have allowed for Eqs. (21) and (24) here]. Equations
(21), (25), and (26) result in the following expression for
the probability W; of the transition from the focus f; to

2Dx~cos Os =2Dxs(x~ —1) /PJ3,

x(1,2) (1,2)( ) 2+ 1(1 3 2)1/2
XB =XB 9

(28)

[x2) and 02) are the values of x and 0 for the merging
stable and unstable states at p =

p)3 (2I ); note that 21
=Q

in notations of Ref. 23). By applying the results of Ref.
23 and allowing for (28) we arrive at the following expres-
sion for the activation energy R (11)of the transition near
the bifurcation point:

H(r/)= P' [x (x —1) ~a~' ]
v'2

P~ =P23(ri), x23 =x2) (2) ),
a—:a (tl) =x2) [5x2) —3+3(2x2) —1) (x2) —1)2I ]

(29)

[the same expression may be obtained independently by
solving the variational problem (11)—(14) near a bifurca-
tion point]. The preexponential factor in the expression
for His given by

(p p ) ~

(/2[D Qp x 2 (x 1 )2)
—1/3

B

lI, (g, )I,(g, )l

/I, (g, )/ + /I2(g, )/

R;

(27)

The probability of an escape from a metastable state is
obvious to increase rapidly with approaching a bifurca-
tion point, that is, with decreasing ~p

—p2)(2))~. The fac-
tor H(g) in the expression (29) for R is shown in Fig. 3.
In the range of small g

We demonstrate explicitly here the dependence of the
preexponential factor on the oscillator damping I and on
the phase diffusion coeScient D. The value of A, de-

pends on the parameters only in terms of
p~F ~y/(5tu) ~. Since R; ~ I the probabilities W~ in-

crease with decreasing I". The proposed method is obvi-
ous to be applicable to arbitrary underdamped Markovi-
an systems.

H"'(t))= —
2) H' '(q)= —272)

8
2

[note that H"(ri) determines the probability of the es-

IO-

V. TRANSITION PROBABILITIES
NEAR BIFURCATION POINTS

Near a bifurcation point, when one of the stable states
is close in the phase space to the unstable steady state, in
the vicinity of these states a slow one-dimensional motion
of a system (a "soft mode") can be singled out. This en-
ables one to reduce the problem of fluctuations to a one-
dimensional one by making use of an adiabatic approxi-
mation and to obtain in an explicit form the probability
8' of an escape from the respective metastable state in-
cluding the preexponential factor.

The slow motion of the oscillator for p=p2)(g) is de-
scribed by the variable y =V'x sin8. The equation for y
in the present case of a stochastic phase modulation is of
the same form as in the case of an oscillator driven by a
monochromatic field and an additive broadband noise
considered in Ref. 23. The difference lies in the form of
the noise intensity in the equation for y which is obvious
from Eqs. (5) and (9) to equal now to

FIG. 3. Coefficients Hl and H, in the activation energies of
the transitions f2 ~f, and f, ~f2 near the bifurcation points,
where fz and f„respectively, merge with the saddle point. In
the critical point (p= —,', , g = I /3/3} H, and H2 diverge.
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cape from the state 3 —i, i =1,2]. The function H' "(r))
decreases (except a narrow range where ri= 1/v 3) while
H' '(ri) increases with increasing ri (in contrast with the
results for an oscillator driven by additive white noise).
They approach each other as g approaches the critical
value rile =1/v'3 where P~"(ri) =P~'(ri) =Px =

—,', [the
spinode point on the bifurcation curve p~(ri)]. In the
critical point, p=px, r)=r)z, two stable states and the
unstable steady state of the oscillator coalesce. Fluctua-
tions for P=Px, ri=rix are described by the theory '

with a properly renormalized random noise intensity. L,(r) = g L,„exp[in(corr+ PF )], j=1,2 (30)

time locked. We note that in this respect the effect of
fluctuations of the field phase differ qualitatively from
that of fluctuations of the oscillator phase due to coupling
to a bath.

The dependence of the average values of dynamical
variables on time are qualitatively different in these two
cases. For a system driven by a high-frequency field
Fcos(coFr+PF) it is convenient to write down an arbi-
trary dynamical variable L in a stable state f1 in the form

VI. TIME CORRELATION FUNCTIONS
AND NARROW PEAKS IN THE POWER SPECTRA

An important feature of systems bistable in intense
periodic fields is the onset of extremely narrow peaks in
the power spectra and in the spectra of response to an ad-
ditional weak field. These peaks can arise in addition to
much broader peaks (with a width -I', Refs. 8, 9, and
15) which are caused by vibrations about stable states.
The narrow peaks lie at the strong-field frequency and its
overtones and also at very low frequency. They are due
to fluctuational transitions between stable states and
occur within a narrow range of parameters where the
transition probabilities are of the same order of magni-
tude 8'» —W» and, respectively, w, -w2, where w„w,
are the stationary populations of the states f„fz,

w
& $V2&

w ~+wi =1, = cc exp[ —(Ri —R
&
)/D]

~i&

according to Eq. (11). The range of parameters where
R

&
R 2 and thus w, —w 2 may be called a range of a ki-

netic "phase transition. " On the opposite sides of it the
system occupies with overwhelming probability either
one or another stable state, that is, either w

&
« w2 = 1 or

w2 «w, =1. For the system under consideration the
condition R, =R i determines a curve po(ri) on parameter
plane (p, ri). Near the spinode point on the bifurcation
curve Pit(ri) ( a critical Point), Px =

—,'„rix. =1/v'3, one
can obtain by making use of the approach '

Pc(ri) = —,', [1+(3i/3/2)(ri — —)],v3
while in the limit g~O it is obvious from Fig. 2 that
po —+0.030. For intermediate t) the function po(ri} may
be estimated by interpolating smoothly between these
limiting values [Po(ri) may be obtained numerically for
arbitrary i) by solving the variational problein (11)—(14)].

In the case of a strong driving field with a random
phase, the spectral peaks and certain other statistical
properties of a system differ from those in the case of
fluctuations induced by a field-independent noise source.
This is connected with the following: In the latter case
forced vibrations of the oscillator present themselves a
nonlinear "superposition" of coherent (with a regular
phase} and stochastic vibrations and are thus "inhomo-
geneous" in time, while in the case of stochastic field
phase the vibrations are incoherent and thus are "homo-
geneous" in time on the average, that is, they are not

(L(r))= gw, L 0 (31b)

and thus the average values of dynamical variables are
time-independent. The behavior of time-correlation func-
tion QcM(r) of dynamical variables L,M,

Qc~(r)= lim (2T) ' f d7, [L(r+r, )
—. (L(r+r)))]

P—+ 0G —T

X[M(r, ) —(M(r, ))], (32)

changes respectively (note that in the case of fixed PF the
system is nonergodic and (L(r+r, )M(r, )) depends on
r& generally speaking). We shall assume first the parame-
ters of the system to lie far from the phase-transition re-
gion, so that w& w2 «1 and only one stable state is occu-
pied. Then for fixed PF the main contribution to QL~(r)
comes from small fluctuations of L,M about their values
in the occupied stable state, while for fluctuating PF there
arise in QI~(r} large terms QL~(r) oscillating at frequen-
cy ncoF Accordin. g to (30) and (9) they are given by

Qz~( r ) = g w L „M '„exp(in coFr nD
~
5cor

~

)—,
J

nAO, w&w2 «1 . (33)

The spectral density of fluctuations of the variable L
(the power spectrum} is given by the Fourier transform of
QLI (r),

1
QLL(co)= —Re dre' 'Ql.c.(r)

0
(32')

According to (33) QLL(co} contains Lorentzian peaks at
frequencies ncoF with halfwidths D~5co~n proportional to
the phase diffusion coefficient [these peaks correspond to

[cf. Eqs. (4) for q, dq/dr, with x, 8 having been replaced
by their values in a respective stable state]. This expan-
sion may be generalized also to include subharmonics if
present; it is valid for time-dependent PF provided the
change in PF over a characteristic relaxation time is
small.

If the phase PF is fixed and noise is weak so that the
system is localized predominantly close to the stable
states, then

(L(r) ) = g w, L,„exp[in(coFr+PF)] (31a)
j,n

(( ) denotes the ensemble averaging). In the opposite
case of random PF
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5-shaped ones in the Fourier transform of the correlator
(L(r+T, )M(r, )) averaged over r, for the case of fixed

&t&F]. An addition -n D l5col to the halfwidths of peaks
arises also in susceptibility spectra, say, in the spectrum
of absorption of a weak trial field. For w, w2 « 1 (that is,
far from the phase-transition region) these peaks are due
to small-amphtude vibrations about the occupied stable
state. In the considered case of the small phase diffusion
coefficient, D «Ti or D l5col « I, the respective broaden-
ing of peaks is small as compared to that (-I ) which is
due to friction.

The phase-diffusion-induced broadening is, however, of
primary importance for the peaks caused by fluctuational
transitions between stable states in the region of the ki-
netic phase transition. The shape of the respective peaks
in the spectral density of fluctuations may be found from
Eqs. (30), (32}, and (9) with allowance for the balance
equation for the time-dependent state populations
Wi 2(T),

dw, (r)
dr W12wi(T)+ W21W2( T)& W'i(r)+W2(T)= 1

(34)

[w„w2 in (31) and (33) and below are the stationary
values of w, (r), w2(r) ]. The redistribution over the
states described by (34) gives rise to the following term in

Qtt (r) [in addition to that given by (33)]:

QtL(r)=w, w2 g lL, „L2„lexp[—incoFT —n Dl5corl

(35)

Since

w 1 w2 W12 W21 /( W12 + W21 ) "exp( —IR 1
—R 2 l

/D )

this term is obvious to be exponentially small everywhere
except the phase-transition region, where lR, —R2l &D.
Damping of QLL (r) and the respective halfwidths of the
peaks in its Fourier transform QLL (co) are determined by
W, 2+ W2, +n Dl5col. If fluctuational transitions are
due to the fluctuations of pF, then for D «Ti according
to Eq. (11)

D
l
5a) l

))W J
0- I exp( —R; /D ) .

Therefore the peaks at frequencies neo+ which were ex-
ponentially narrow for PF=const [their halfwidth was
—W,2+ W2, ~ I exp( —R/D) &&I (Ref. 15)] turn out to
be smeared at n+0. The respective peaks in the suscepti-
bility spectra ' are smeared also.

The phase-diffusion-induced broadening is obvious
from Eq. (35) to be absent for the spectral peaks at zero
frequency. According to (32') and (35) these peaks are
given by

Such exponentially narrow peaks are universal for bi-
stable systems in the kinetic-phase-transition re-
gion ' ' ' and occur both in the power spectra and in
the susceptibility spectra.

VII. LOW-FREQUENCY SUSCEPTIBILITY

For thermally nonequilibrium systems the generalized
susceptibilities are not expressed directly in terms of the
spectral densities of fluctuations (as it is the case for equi-
librium systems }. However, the features of the respec-
tive spectra usually correlate. Therefore, in view of the
peculiar low-frequency structure of the power spectra in
the range of the kinetic phase transition, it is interesting
to analyze the structure of the low-frequency susceptibili-
ty for a nonequilibrium bistable system. To illustrate it
we consider a nonlinear oscillator driven by the strong
resonant force F cos[coFr+ Pz( r) ) (2) and perturbed
by a weak coordinate-dependent 1ow-frequency force
AqF'exp( i''T—) The.perturbing addition to the Hamil-
tonian of the oscillator is of the form

H' = ,' A,q F'—ex—p( i co'T—)

[if F' is an electromagnetic field the interaction (36) is
connected with a nonlinear dependence of the dipole mo-
ment of the oscillator on its coordinate; a contribution to
the low-frequency susceptibility similar to that due to (36)
may be shown to result from a linear in q interaction in
the presence of cubic oscillator anharmonicity].

Allowing for (4) the generalized susceptibility g(ro')
(Ref. 25) for co' «coF with an accuracy to small correc-
tions may be written as

y(co')—= ((q )F.—(q ) o)
/F'exp( ice'r)—

(37)

I

g(to') =((x )F.—(x )0)/A, F'exp i —t, co'« toF
5co

where ( )~ and ( )0 denote statistical averaging in the
presence and in the absence of the perturbation (36) (that
is, of the trial force proportional to F'), respectively.

To find (x )F to the first order in F' one has to solve
Eqs. (5) for x, 8 with g having been replaced by g+g',

g(x, 8)~g(x, 8)+g'(x, 8),
(38)

g'= —
—,
' xF'exp[ i(co'/l5col )t]—.

coF l5col

For low intensity of the phase fluctuations D ((g, there
are two main contributions to the susceptibility y(co').
They come from a motion in the vicinity of the stable
states f„f2 of the oscillator and from fluctuational tran-
sitions between the states,

1 2Q,.( )=—,, IL,.-L,.I
g(co') = g w;g;(co')+y„(co') .

i =1,2
(39)

X( W, 2+ W2, )/[ci) +(W,2+ W2, ) ] . The "partial" susceptibility y;(co') may be obtained
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easily by linearizing Eqs. (5) and (38) near the stable
states,

y, (co') = xI (1—x/ )[co' —v +2iI co']
COF J

Oscillating terms in W,- give rise to the oscillating in

time additions to the state populations w, (r),w2(r) which
are determined by Eqs. (34) and (43). They result in the
following expression for y«(co'):

vj=(5') [g +(1—xI )(1—3xI )],
(40) 1

Jtp(co )
~ [ (Upi v i2 )(xf xf )

I 2

where xI is the value of x in the stable state f~, x/ and
1

x& are the smallest and the largest roots of the equation
2

Wi2 Wzi CO

X 1 —i
( W„+W„)' W»+ W»

(44)

xI[(x/ —1) +g ]—P=O . (41)

The frequency dependence of y (co') coincides in form
with that of susceptibility of a harmonic oscillator with
the eigenfrequency v, and the friction coefficie I . Re-
spectively, the partial contribution to the absorption
coefficient p(co') of a trial field F',

p(co') =2Aco'Im[y(co')] (42)

is described by a curve with a maximum. For weak
damping I «v~, it is Lorentzian near the maximum,
which is placed at v, and its halfwidth is I . Since for
the small-amplitude stable state fi,x/ &1 according to

I

(41}, the sign of p, ,(co') is obvious from (40) and (42) to
correspond to amplification of a trial field F' (at the ex-
pense of the strong field F}. The sign of pz(co') corre-
sponds to absorption of F'.

Far from the kinetic-phase-transition region the state
populations w

&
and w2 differ exponentially and only one

of g;(co') contributes to y(co') [Eq. (39)]. In the transition
region the terms with i =1 and i =2 are of the same or-
der of magnitude. The addend y«(co') in Eq. (39) be-
comes essential here as well.

A. Extremely narrow peak of susceptibility
in the region of the kinetic-phase transition

The term y„(co') is due to a trial-field-induced redistri-
bution of the system over the stable states and manifests
itself at very low frequencies co' « I', ~5'~. For
m' « I, ~5'~ the trial field is practically constant within a
characteristic duration ( —I ', ~5'~ ') of a transition
and is obvious from Eqs. (5) and (38) to influence the
transition probability only parametrically,

A,F . N

co &&I, i 5' i

(43}

f dr ~+2 g, Iv,, l-&, /D. »1.
The integral in the expression for U;~ is taken supposing
x, 0 to vary along the extreme path which goes from the
focus f; to the saddle point and is described by the varia-
tional problem (11)—(14) [Eq. (43) is obtained by lineariz-
ing the expression (11) for W in the addition to the ac-
tivation energy of the transition R caused by the addition
g' (38) tog].

The frequency dependence of y„(co') is extremely sharp,
the characteristic frequency scale is W, 2+ Wz,« I, ~5'~. The function Im[y, „(co')] has a peak at

W~2 + Wp] with the height proportional to
(rl/D)exp( —~Ri R2~/—D). Since rI&&D, this height is

large in the region of rl, P, where R, =R2 and the kinetic

phase transition occurs, but it is exponentially small out
of this region. The absorption coefficient p(co') [Eq. (42)]
is small at co'~ W, 2+ W2, . However, its strong depen-
dence on frequency results in a sharp and high peak of
d p /d co' at co' = ( Wi~+ Wzi )/v'3.

The universal narrow peak of the low-frequency sus-

ceptibility predicted in Ref. 8 and analyzed above is relat-
ed clpsely tp the sp-called "stpchastic resonance. "
The latter was investigated for symmetric bistable sys-

tems; the stationary populations of the stable states for
such systems are equal (just the midpoint of the range of
the kinetic phase transition discussed above). The
phenomenon consists in a periodic modulation of noise-
induced switching between stable states by a relatively
weak low-frequency force [cf. Refs. 5 and 8; see also Eqs.
(34) and (43) above], or (that is physically equivalent) in a
strong dependence on an external noise of the ratio of
the force-induced periodic signal to noise at the force fre-
quency. Such dependence is described by Eqs. (37) and
(44) which just give the ratio of the periodic signal to the
weak driving force whose frequency is small as compared
with all eigenfrequencies of a system. For W, z= W2,= W~exp( —R/D) the real part of the susceptibility
Re[g«(co')] ~ W/(4W +co ) increases exponentially (in
absolute value} with increasing noise intensity D for
28'«co, while for higher D, when W&&co, it decreases
with D.

In the case of bistability in a strong periodic field with
fixed phase the trial-force-induced transitions between
stable states are efficient in the phase-transition region
not only for a trial force with a small frequency co' «co~
(co& is the frequency of the strong field), but also when co'

is close to co~ (or to its overtones), ~co' —co~~ &&co~. '

Therefore, in this case the high-frequency "stochastic res-
onance" similar to the low-frequency one can arise. To
describe it the explicit expressions given in Refs. 5 and 8
may be used (we note that in Imp(co')] was given ex-
plicitly; Re+(co')] is described by the same expressions
with Im having been replaced by Re). In contrast to the
low-frequency susceptibility (44), where

Im[y, „(co')]~ (co'/2 W)Re[y«(co')],

so that only ~Re[y„(co')]~ increases exponentially with
the noise intensity D for m' &)2 W, in the ease
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2W« ~co' —mF ~
&&coF both ~1m[a(co')]~ and ~Re[y(co')]~

contain exponentially increasing terms in the phase-
transition range.

For thermally equilibrium systems Re[y(co')] and
Im[y(co')] are interconnected via the Kramers-Kronig re-
lations; in addition

Im[g(co') ]= (neo'/T )Q(co'),

where Q(co') is the spectral density of fluctuations (32')
for the dynamical variable whose response to a trial force
is given by g(co'), and T is temperature. In the region of
the zero-frequency peak

Im[y(co') ]= (co'/2 W)Re[g(co') ],
thus frequency dependence of Re+(co')] is given by that
of Q(e'). The zero-frequency peak of Q(co') was con-
sidered theoretically and investigated by means of analog
simulation in Refs. 5, 15, and 24, and its width was found
to increase exponentially with increasing noise intensity',
this just corresponds to the very interesting phenomenon
of stochastic resonance.

VIII. CONCLUSIONS

The above results demonstrate the features of fluctua-
tions in bistable systems driven by an intense periodic
force with a random phase. As compared with the case
of a system driven by a regular periodic force and addi-
tive noise ' there are qualitative changes in the time
correlation functions, in the power spectra, and the sus-
ceptibility spectra in a vicinity of the kinetic phase transi-
tion, in the dependences of the probabilities of fluctua-
tional transitions between stable states on field intensity,
etc.

In the general case, when both the types of noise are
present, the predominance of one of them as a cause of
fluctuational transitions is determined by their relative in-
tensities (however, due to different dependences of the
transition probabilities on the parameters of a system the
transition mechanism can interchange in course of varia-
tion of the parameters). Since coupling to a bath which
results in friction inevitably gives rise to a field-
independent noise, fluctuations of the field phase can
dominate as a source of fluctuational transitions of an os-
cillator provided their intensity

[cf. (A10), (All), and (45)]. It has been noted, ' however,
that fluctuations of the phase can influence the transition
probability extremely strongly even for rather small
I /I (or small D) when the transitions are due to quan-
tum fluctuations (T «REF).

The collapse of bistability due to sufticiently strong
noise in the driving field was observed experimentally for
a relativistically anharmonic cyclotron oscillator. This
system is perhaps an ideal physical object for the experi-
mental investigation of the dependence of the probabili-
ties of fluctuational transitions on noise intensity and on
other parameters, as well as of the features occurring in
the kinetic-phase-transition region which were con-
sidered above.
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APPENDIX

=
—, g (pa+~aqa)

k

(A1)

Relaxation of an oscillator is due to coupling to a
medium with many degrees of freedom which is assumed
to be a thermostat. In Eqs. (2) and (5) the only relaxation
taken into account is that corresponding to a friction
force proportional to the oscillator velocity. In terms of
quantum theory this relaxation is due to decay processes
in which the oscillator switches to a neighboring energy
level by exchanging an energy quantum =%coo with a
thermostat (cf., e.g. , Ref. 5). However, there are often
important relaxation processes which are not accom-
panied by a change in the oscillator energy. A simple
mechanism resulting in such processes is quasielastic
scattering of elementary excitations of a medium by the
oscillator. It is actual for many physical systems. '2 This
mechanism is shown below to correspond to a stochastic
modulation of the slow part of the oscillator phase in
terms of classical mechanics.

We shall describe elementary excitations of a medium
as a set of harmonic vibrations whose eigenfrequencies
co& make up a continuous (or quasicontinuous) spectrum.
Their Hamiltonian is of the form

D»~) ~rT~ (S~) (45) Evolution of the coordinate q„of the kth mode in the ab-
sence of coupling is given by the expression

[we have used Eq. (11) and the results of Refs. 5 and 8
here, T is temperature of a bath in energy units].

Thermal fluctuations of the oscillator phase (see Ap-
pendix) are similar to fluctuations of the field phase from
the viewpoint of the fluctuational transitions, but the
effects of these two types of fluctuations on correlation
functions and narrow spectral peaks in the kinetic-
phase-transition region are shown to be qualitatively
different. The oscillator phase fluctuations dominate as a
transition mechanism provided the following relation be-
tween the relaxation parameters of the oscillator is
fulfilled:

1 » I /r »
~ y /5'

~
Tcg

qz '( r) = A& cos(co& r+ P& ) . (A2)

where T is temperature in energy units.
We assume that the Hamiltonian of interaction be-

tween the singled-out nonlinear oscillator under con-
sideration and the thermostat contains the term

In thermal equilibrium the distribution of the vibrations
is Gibbsian, and thus the phases P& are uniformly distri-
buted in the interval [0,2m], while the distribution of the
amplitudes is of the form

w(. . ., A~, . . . )= g (co~/2T)exp( —~~ A~/2T), (A3)
k
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Vkk'9k'Vk'
k, k'

(A4) T
(f\ (Y)) —2~+), P)= QVkkcok

26)p k

parallel to the terms causing linear friction in Eq. (2).
The interaction (A4) is supposed weak, while the charac-
teristic width co,h of the frequency spectrum of the ther-
mostat is supposed sufficiently large. In addition the dou-
bled oscillator frequency 2cop is assumed to lie out of the
range of combined frequencies lcok+cok l.

The interaction (A4} causes an addition

H; = —q(~)[f)(~)+fp(~)],
(A5)

f)(r)= g Vkkek('), f~(')= & Vkk'Pk(')gk'(r)
k, k'

krak'

to the rhs of Eq. (2) for the oscillator coordinate q(r} It.
gives rise also to the forces BH;/B—qk in the equations of
motion for the coordinates qk of the bath modes.

To lowest order in H; we can replace qk(r} in f)(~)
and fz(r) by qk()(r) [Eq. (A2)]. We denote the results by

fI"(r) and fz '(w), respectively. Equation (A3) yields

(f,''( )&=0.

When

(A6)

I') «a)p (A7)

the quantity P, , from Eqs. (2), (A5), and (A6), obviously
equals the shift of the oscillator eigenfrequency cop. The
inequality (A7) is one of the criteria of smallness of the
interaction (A4).

For a large number N of eigenmodes (degrees of free-
dom) of the medium, N))1 (the statistical limit),
(f, (r)) maybe shown to equal (f') '(r)). Moreover,

(f, (r, ) f, (r ))=(2~/, )

for arbitrary m [this is a consequence of the coupling pa-
rameters Vkk in (A4) being proportional to N ']. There-
fore f)(~) in Eq. (A5) may be replaced by 2'~) and
thus the respective term in (A5) comes simply to the re-
normalization of Np.

According to (A2)

(fz '(~)fz '(~')) =T $ Vkk cok '(ok'[cos[(&ok cok
—)(~ r')]—cos—[(cok+cok )(r r')]] =K—5(r '}, —

k, k'
krak'

rf Vkk'"k ~k'5(~k ~k')
k, k'

krak'

(A8)

The function 5(r) introduced here is of the order of co,„
for the time lrl co,„,while it is small and fast oscillating
for lvl »co,z . In addition, it follows from the definition
of 5(~) that

co,„&)r,l5col, P , ) (A9)

so we substitute 5(r) for 5(w) into Eq. (A8) bearing in
mind the equations for x, 8 "coarsened" over times
-co,„'(cf.Ref. 5).

The random process fz '(r) is not strictly Gaussian:
The higher-order correlators do not decouple exactly into
combinations of the pair correlators (A8). The additions
are, however, fast oscillating and localized within narrow
time intervals, e.g. , the products of the pair correlators
involved in the correlator

(fp(~))fp'(r~) f~'(~3)fl'(~4))
are comparitively large, provided the instants ~&, ~z, ~3 74

T2

8('T)dr=1, 7),rz&)mth'.
T

1

Therefore on a time scale exceeding substantially co,h' the
function 8(r) behaves as a 5 function. We suppose a time
-cath' to be small as compared with those times within
which the amplitude (proportional to x'') and the slow
part of the phase (8) of the oscillator are varied [see Eq.
(4)].

The latter substitution is equivalent to the following re-
normalization of the phase-diffusion coefficient in Eq. (9}:

D~D+(8co'FI5col } 'K . (Alo)

The phase diffusion described by Eqs. (5), (9), and (A10)
contributes to the "transverse" relaxation of the oscilla-
tor. The quantity K/Scop equals the high-temperature
value of the so-called modulational or Raman damping
F of the time correlation functions of the oscillator
which has been obtained in quantum theory by essentially

are close pairwise (e.g. , l') r3 —lrz ——r4l-co, „'), but an
interval between the pairs may be arbitrary. The non-
Gaussian correction to this cor relator is substantial
within a narrow range

cath On coarsening over the times greater than cath'

the non-Gaussian corrections may be neglected.
Therefore, on a coarse-grained time scale the function

fz '(r) is Gaussian and 5 correlated, i.e., it represents
white noise. The noise intensity equals E. Since
K-cog, /co, ~, this noise is weak, the mean-square depar-
ture of the oscillator phase 0 per the period 27TNp is
small: ((b,O) ) =2mK/coo«1. This enables us to go to
the slow variables x,8 [Eq. (4)] in Eq. (2) with (A5) having
been added to its right-hand side. The resulting equa-
tions for x, 0 coincide with (5), provided we replace

5'-5' P, , ~ ——(2a)F 5col) f p

dpF dpF -) (0)



3102 M. I. DYKMAN AND V. N. SMELYANSKI 41

different methods. ' The necessary condition for the bi-
stability in a resonance field to occur is obvious from Eqs.
(10) and (A10) to be of the form

(Al 1)

By making use of the approach given in Ref. 5 the

terms in fz(r) of higher order in H; (A4) may be shown
to renormalize the oscillator nonlinearity parameter y in

Eq. (2) (when 2coo lies out of the range of combined fre-
quencies ~cok+cok ~). The role of other types of interac-
tion with a thermostat was discussed in Ref. 5 and refer-
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